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Abstract 

Calcium influx through the voltage-gated L-type calcium channels (LTCC) mediates a wide range of 

physiological processes from contraction to secretion. Despite extensive research on regulation of 

LTCC conductance by PKA phosphorylation in response to β-adrenergic stimulation, the science 

remains incomplete. Here, we show that Wnt11, a non-canonical Wnt ligand, through its G protein-

coupled receptor (GPCR) Fzd7 attenuates the LTCC conductance by preventing the proteolytic 

processing of its C terminus. This is mediated	 across species by protein kinase A (PKA), which is 

compartmentalized by A-kinase anchoring proteins (AKAP). Systematic analysis of all AKAP family 

members revealed AKAP2 anchoring of PKA is central to the Wnt11-dependent regulation of the 

channel. The identified Wnt11/AKAP2/PKA signalosome is required for heart development, controlling 

the intercellular electrical coupling in the developing zebrafish heart. Altogether, our data revealed 

Wnt11/Fzd7 signaling via AKAP2/PKA as a conserved alternative GPCR system regulating Ca2+ 

homeostasis. 
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The voltage-gated L-type calcium channel (LTCC) facilitates a major route for calcium entry into the 

cell. Consequently, its conductance must be strictly regulated, as calcium mediates a wide range of 

physiological processes, including those which can be electrically coupled, e.g. contraction, 

transcription, and secretion1,2. Calcium influx via LTCC increases during membrane depolarization, and 

decreases upon calcium- and voltage-dependent inactivation3,4. Regulation of LTCC conductance is 

most studied in the context of β-adrenergic receptor (β-AR)/PKA signaling1,5-7. 

The main pore-forming α1C subunit of the LTCC comprises cytosolic N- and C-terminal tails, and four 

transmembrane modules (Fig. 1a). Its long C-terminal tail (CT) serves as a scaffold for channel 

modulators, including kinases and phosphatases3,4. Most of the α1C subunit exists in a truncated form8 

due to calpain-dependent proteolytic processing of the CT9,10. This results in a non-covalently 

associated distal CT, which inhibits the activity of the LTCC10,11. This autoinhibition is alleviated upon 

stimulation of β-AR coupled to the stimulatory G protein, leading to cAMP-dependent phosphorylation 

of the CT by PKA12. PKA signaling is compartmentalized by AKAPs13-15, several of which have been 

identified to anchor PKA to the CT16-21. Whether PKA phosphorylation is absolutely required for LTCC 

regulation, however, has recently been brought into question22,23. Moreover, which AKAPs are involved 

in a cell- and tissue-specific manner in this context remains inconclusive. 

Wnt signaling is an evolutionarily conserved pathway within metazoans. Wnt ligands act through 

several receptors and co-receptors, most notably via the Fzd family of receptors belonging to Class F 

GPCRs24,25. While structurally different from Class A receptors including β-AR 24,26, the concept that 

Fzds do signal through heterotrimeric G proteins gained traction in recent years25,27-31. The 

identification of the signaling components downstream of Fzd-G protein coupling, however, remains 

unresolved. 

To date less attention has been paid to the regulation of LTCC via alternative GPCR systems. Wnt11 

also regulates the LTCC conductance32, yet the underlying mechanism is unclear. In the present study, 

we show that Wnt11 signaling attenuates LTCC conductance by preventing proteolytic processing of 

the CT. Our data reveal that unlike the β-AR stimulation, the signal transduction initiated by Wnt11 

ligand binding to Fzd7 is coupled to the inhibition of PKA. Furthermore, we identify the AKAP2/PKA 

signalosome playing a pivotal and conserved role in the Wnt11-dependent generation of the CT 
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isoform. Tight regulation of AKAP2/PKA signalosome is required for Ca2+ homeostasis, heart 

morphogenesis, and controls the intercellular electrical coupling in the developing heart. AKAP/PKA 

compartmentalization by Wnt/Fzd G protein-coupled signaling may provide specificity towards different 

effectors of this complex conserved pathway. 

 

Results 

Wnt11 regulates CT proteolysis 

To investigate the role of Wnt11 signaling in LTCC attenuation, we used a rat cardiomyoblast cell line 

(H9c2) and neonatal rat ventricular myocytes (NRVM). We confirmed expression of all the required 

components of the Wnt11 non-canonical pathway and the LTCC α1C subunit in H9c2 cells 

(Supplementary Fig. 1a). By siRNA treatment, we could efficiently reduce the expression levels of 

WNT11 and FZD7 in both cell models (Fig. 1b). Importantly, H9c2 cells and NRVMs responded to the 

loss of WNT11 in the same manner as cardiomyocytes in the developing zebrafish heart32, including an 

increase in Connexin 43 (CX43) levels as shown by immunostaining and Western blotting 

(Supplementary Fig. 1b, c). Moreover, in WNT11 siRNA-treated NRVM cells, the percentage (E%) of 

active LTCC-Ryanodine receptor (RyR) couplons, and their average open probability (P0), which 

directly relates to calcium release levels33, were significantly increased compared to scramble siRNA-

treated cells (Fig. 1c). Collectively, these data suggested Wnt11 plays an essential role in regulating 

calcium homeostasis across species, and that our cell-based models are suitable to study the 

molecular mechanisms of Wnt11 in regulating LTCC conductance. 

The transcription of the α1C subunit, encoded by the CACNA1C gene, is regulated through at least 4 

cryptic promoters; transcription from three of these gives rise to functional proteins34. To determine 

whether Wnt11 signaling transcriptionally regulates the LTCC, we quantified relative mRNA expression 

of CACNA1C using 3 different TaqMan probes targeting exon 18, 39 and 45 covering all predicted 

transcripts (Fig. 1a), and corresponding to the II-III loop, proximal-CT (pCT), and distal-CT (dCT) of the 

α1C subunit (Fig. 1a). Expression levels of CACNA1C were unaltered in the absence of WNT11 for all 

predicted transcripts (Fig. 1d). 
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To determine the LTCC localization within cardiomyoblasts, we first verified the efficiency of CACNA1C 

siRNA to test the specificity of the two different antibodies (Supplementary Fig. 1d, e): one recognizing 

the full-length α1C subunit (anti-II-III-loop), the other binding to the CT (anti-CT) (Fig. 1a). Lack of 

Wnt11 signaling had no effect on the localization or abundance of the α1C subunit (Fig. 1e, f). We 

found that the CT localized to the nucleus and the cytoplasm in both untreated and scramble siRNA-

transfected cells (Fig. 1g). This behavior of the CT has been observed in myocytes, where its 

appearance in the nucleus is regulated developmentally, and by intracellular calcium35. Noteably, we 

also observed CT accumulating in a punctate pattern within the nucleus (Fig. 1g). Co-labeling with 

nucleolin (anti-Nuc) revealed CT specific nucleolar localization (Fig. 1g, h). The loss of WNT11 induced 

CT nucleolar accumulation in both H9c2 (Fig. 1g-i) and NRVM cells (Supplementary Fig. 1f), as 

indicated not only by the increase in mean fluorescence intensities but also by a major shift in 

frequency distribution of fluorescence intensities. We focused on this particular phenomenon 

throughout this study. 

Wnt11 together with its putative receptor Frizzled-7 (FZD7)36,37 can signal through Gi/G0
31,38 as well as 

through Gs proteins27.	Importantly, the loss of FZD7 also increased CT nucleolar localization (Fig. 1g, h, 

j). Taken together, our data indicated that Wnt11 regulates the proteolytic processing of the LTCC via 

its FZD7 receptor, prompting us to hypothesize that on the molecular level, Wnt11 might attenuate the 

LTCC through GPCR activity, akin to regulation by the β-AR/Gi protein-coupled system. 

Wnt11 pathway regulates CT formation via anchored PKA signaling 

As PKA activation is the essential to cAMP signaling downstream of GPCR including β-AR, we tested 

whether Wnt11 may regulate PKA activity via GPCR-mediated signaling by utilizing the well-

characterised PKA reporter AKAR4-NES. This genetically-encoded Förster resonance energy transfer 

(FRET) biosensor detects changes in cytosolic cAMP-dependent PKA activity as an increase in the 

yellow/cyan emission ratio39. WNT11 siRNA-treated cells showed a significant increase in cytosolic 

PKA activity compared to untreated cells, as noted by an increase in normalized FRET emission (Fig. 

2a). This result indicated Wnt11/Fzd7 signaling inhibits PKA activity, most likely through Gi coupling. 

Similar to dCT generation, which is well characterized upon β-AR/Gs stimulation16,21, we first showed 

that the formation of the CT fragment depends on calpain proteolysis, which is independent of WNT11 
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siRNA treatment (Supplementary Fig. 2a). We then asked whether CT formation, like dCT, could be 

induced by the β-AR/Gs system. Indeed, treatment with the β-AR agonist isoproterenol (ISO) effectively 

increased the CT generation (Fig. 2b, c). This suggested CT formation might be induced via PKA-

dependent phosphorylation, similarly to dCT isoform formation. To study whether there is a crosstalk 

between Wnt11 and PKA signaling in regulating the CT isoform, we performed a series of 

pharmacological treatments. We reasoned that if Wnt11 does indeed regulate the LTCC via the PKA 

pathway, blocking PKA signaling should revert the loss of the Wnt11 effect. The direct activator of 

adenylyl cyclases, forskolin (FSK), elevated the level of phosphorylated PKA substrates, while 

treatment with the PKA inhibitor, Protein-kinase inhibitor (PKI), reduced phosphorylation of some 

substrates (e.g. 130kDa) (Supplementary Fig. 2b). FSK treatment strongly increased CT accumulation 

within the nucleoli (Fig. 2b, d), indicating that cAMP/PKA signaling is involved in the generation of this 

CT isoform. PKI treatment of WNT11 siRNA-transfected cells reduced CT signals in the nucleoli, and 

shifted the frequency distribution of fluorescence intensities towards those of control cells (Fig. 2b, e). 

This was corroborated by the treatment of WNT11 siRNA-treated cells with H89, a broader protein 

kinase inhibitor (Supplementary Fig. 2a), while neither okadaic acid, a phosphatase inhibitor, nor 

DMSO, the solvent of our pharmacological agents, reversed the loss of the Wnt11 effect 

(Supplementary Fig. 2a). 

To achieve specificity of PKA signaling, the kinase is often tethered to its substrates by AKAPs13-15,40. 

To test whether the observed effect of PKA activation involves its interaction with AKAPs, we globally 

uncoupled the kinase from AKAPs using the peptide AKAP18δ-L314E41. This peptide binds the 

regulatory subunits of PKA with nanomolar affinity, and effectively blocks AKAP-PKA interaction41. We 

used the membrane-permeant version of the peptide (L314E) to confirm that PKA requires AKAP-

anchoring to phosphorylate its substrates. The peptide mildly reduced the levels of some 

phosphorylated PKA substrates (e.g. 250 kDa) (Supplementary Fig. 2b), but importantly it reverted the 

CT formation in the absence of WNT11 (Fig. 2a, e). Thus, our data indicated Wnt11 prevents the CT 

generation via AKAP-anchored PKA signaling. 

To identify which AKAP(s) might have a role in the CT isoform formation downstream of Wnt11 

signaling, we screened potential AKAP candidates (Fig. 3a). The AKAP protein family comprises 17 

annotated human AKAP genes, which encode as many as 89 protein-coding transcripts 
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(Supplementary Table 1). From available databases, we selected 13 that are expressed in the human 

heart. Out of these 13, 7 AKAP proteins showed expression or significantly differential expression in 

differentiated vs. non-differentiated C2C12 mouse myoblast cells (Fig. 3b). On the basis of three Gene 

Ontology terms (i.e. membrane localization, PKA binding domain, and ion-channel binding domain), we 

filtered out 6 AKAPs (Fig. 3a). As we sought to identify the conserved role of identified AKAP(s) in 

Wnt11 signaling, a further criterion was that the selected AKAPs must have a zebrafish orthologue, 

leaving us with the following list: AKAP2, AKAP6, AKAP10, AKAP11, AKAP12, and AKAP13 (Fig. 3a). 

The zebrafish orthologues of these genes are: palm2, akap6, akap10, akap11, akap12, and akap13, 

respectively. We extended this list with AKAP5 and AKAP7, since many studies demonstrated their 

role in the LTCC regulation17-20, although akap5 does not have a zebrafish orthologue. Of note, palm2 

encodes a read-through transcript of Palm2 and Akap2 encoded by the palm2-203 and palm2-201/202, 

respectively, conserved in at least human and mouse. Palm2 and Akap2 are unrelated proteins with 

different function. We refer to zebrafish palm2-201/202 as akap2 in this study. 

To determine whether these genes are expressed in embryonic zebrafish heart, we used the 

Tg(myl7:eGFP)twu3442, in which the minimal promoter of myl7 (myosin, light chain 7, regulatory) drives 

the heart-specific expression of eGFP. We performed FACS (Fluorescence-activated cell sorting) on 

54 hours post fertilization (hpf) old embryos, followed by qPCR, and quantified the expression level of 

the aforementioned akaps in sorted cardiomyocytes (CM) compared to non-CM. We found that akap6 

is only expressed in non-CM, while akap11 is only expressed in CM. Akap2, akap7, and akap12 

showed significantly higher expression levels in CM (Supplemntary Fig. 2c). Next, we sought to identify 

the relationship of relative mRNA expression levels between the different akaps in CM (Fig. 3c). Our 

data show that akap12 is present in the highest amount with 41.8% followed by akap2 with 27.1% (Fig. 

3c). Corroborating these results, we performed similar quantification in H9c2 cells (Fig. 3c). mRNA 

expression levels of selected AKAPs in H9c2 cells revealed a similar expression pattern: AKAP12 

being the most abundant with 82.3% followed by AKAP2 with 6.6% (Fig. 3c). 

AKAP2/PKA signaling regulates the CT formation downstream of Wnt11 

To identify which of the selected AKAPs transduces the Wnt11 signal in preventing the CT formation, 

and ultimately results in LTCC regulation, we knocked down these AKAPs individually, or together with 
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WNT11 by siRNA treatment, as confirmed by qPCR (Supplementary Fig. 3a-h). Immunostaining 

revealed the loss of all but AKAP2 and AKAP5 increased CT isoform formation (Fig. 3d-f, 

Supplementary Fig. 3i-o). Markedly, only the loss of AKAP2 could revert the loss of WNT11 phenotype 

in a similar fashion as previously observed with PKI or L314E treatment (compare Fig. 3d, e to Fig. 2b, 

e, f). These results indicated a functional redundancy between CM-specific AKAPs in generating the 

CT isoform. Most importantly, our data demonstrated that Wnt11 signaling specifically targets AKAP2 

to compartmentalize PKA activity as a mechanism to attenuate LTCC activity. 

AKAP2 physically interacts with LTCC 

Next, we investigated whether the AKAP2-dependent regulation requires complex formation with the 

LTCC. As a means to determine whether AKAP2 interacts with the CT, we designed a construct 

encoding the rat CT from amino acid (aa) 1342 to 2006 tagged with FLAG on the N terminus and 

mVenus on the C terminus as illustrated in Fig. 4a. To show that we can efficiently immuno-precipitate 

(IP) this construct, we overexpressed it in H9c2 cell, immunoprecipitated the protein through its tags, 

and detected the precipitated proteins by Western blotting (Fig. 4b, Supplementary Fig. 4a). Detection 

of the proteins precipitated via the FLAG tag with FLAG antibody identified 3 isoforms: an isoform of 

around 130 kDa, which corresponds to the full-length construct, a shorter 80 kDa fragment, which 

corresponds to the CT construct without mVenus, and a 30 kDa fragment, which corresponds to the 

pCT. Although the predicted full-length CT construct is 105 kDa, these data indicate that its mobility on 

SDS-PAGE is 130 kDa. In addition, we identified 7 extra bands, which may be explained by the 

existence of multiple cleavage sites, or other splice variants of the CT construct, or the combination of 

both. By probing the FLAG precipitate with a GFP antibody, we detected the full-length 130 kDa 

isoform. Precipitation through GFP followed by the detection with anti-FLAG antibody also revealed a 

130 kDa isoform. However, detection of the GFP-IP with anti-GFP antibody identified two other 

isoforms in addition to a 130 kDa isoform: a 90 kDa one corresponding to dCT-mVenus, and a 30 kDa 

one, which is most likely the cleaved mVenus alone. Altogether, the existence of a 30 kDa isoform of 

FLAG-IP/FLAG detection, and a 90 kDa isoform of GFP-IP/GFP detection indicate our exogenously 

expressed CT construct is proteolytically processed similarly to the endogenous LTCC at the calpain 

cleavage site11. 
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We next probed the physical interaction between the CT construct and AKAP2. AKAP2 is expressed in 

at least 6 isoforms43. Consistently, immunoblotting of H9c2 lysates identified at least 5 AKAP2 isoforms 

with mobility from 100 to 180 kDa (Fig. 4c). FLAG-IP of the CT construct followed by the detection with 

anti-AKAP2 antibody yielded a band of around 130 kDa (Fig. 4d, Supplementary Fig. 4b) 

corresponding to one of the AKAP2 isoforms. Reciprocal co-IP of the endogenous AKAP2-IP followed 

by the detection of the CT construct using its FLAG tag (Fig. 4e, Supplementary Fig. 4c) validated our 

results, and demonstrating a physical interaction between the CT and AKAP2. 

To study the interaction between endogenous proteins, we generated a custom-made antibody (rat 

anti-pCt), which recognizes the CT at aa 1758-1777. We first verified the specificity of this antibody 

(Fig. 4f). The anti-pCt antibody recognizes a 250 kDa band corresponding to the full-length α1C 

subunit. After AKAP2-IP/AKAP2 detection, we re-stained the membrane with the anti-pCt, which 

resulted in an additional signal at around 250 kDa in Scramble siRNA-treated, but not in AKAP2 

siRNA-treated cells (Fig. 4g, Supplementary Fig. 4d). This 250 kDa band corresponds to the full-length 

α1C subunit, indicating an interaction between AKAP2 and the channel. To confirm this interaction, we 

overexpressed an AKAP2 construct, which is tagged with FLAG and HA on its N terminus. After 

AKAP2-IP followed by AKAP2 detection, we re-stained the membrane with our custom-made pCT 

antibody. In cells transfected with the tagged AKAP2 construct, an additional band appeared around 

250 kDa, but not in the cells transfected with an empty control plasmid (Fig. 4h, Supplementary Fig. 

4e). In summary, these data provided strong evidence that AKAP2 interacts with the LTCC, either 

directly or via a yet unidentified complex, and coordinates local Wnt11 signaling. 

Akap2 is essential for heart development in zebrafish 

To gain insight into Akap2 function during cardiac development, we utilized the developing zebrafish 

embryo as the in vivo model. We showed by qPCR that akap2 is highly expressed in embryonic CM 

(Fig. 3c, Supplementary Fig. 2c). Because akap2 expression pattern within the whole embryo is 

unknown, we performed in situ hybridization (ISH). In wild-type (WT) embryos, we detected strong 

akap2 expression in the brain, the eyes, and in the heart at 48 hpf (Fig. 5a, Supplementary Fig. 5a). 

Using complementary approaches, we characterized the consequences of the loss of akap2 (Fig. 5b-f, 

Supplementary Fig. 5b-h). Knock down of akap2 by using a splicing-site targeting morpholino 
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(akap2e2i2 MO) resulted in the exclusion of exon 2, which includes the PKA binding domain 

(akap2Δex2) (Fig. 5b). RNA extraction followed by RT-PCR confirmed that only akap2e2i2-, but not 

control- or mismatch MO-injected embryos, lacked the exon 2 of akap2 as expected (Fig. 5c). Of these 

embryos, 43.4% were shorter and had smaller head and eyes compared to WT (Fig. 5d, 

Supplementary Fig. 5b). They also developed cardiac edema and looping defects (Fig. 5e, f). Similarly, 

both the injection of a morpholino targeting the transcription start site (akap2ATG MO) and mosaic 

CRISPR/Cas9 somatic mutagenesis with akap2 sgRNA targeting exon 2 (Fig. 5d, Supplementary Fig. 

5c-e) yielded comparable phenotypes in 48% and 41.6% of embryos, respectively. Neither injection of 

control or mismatch morpholino, nor injection of Cas9 alone induced the observed phenotypes (Fig. 5d, 

Supplementary Fig. 5f, h). 

In developing zebrafish embryos, cardiac looping occurs from 30 to 48 hpf when the linear heart tube 

becomes bicameral, and the ventricle and atrium become morphologically distinguishable. To visualize 

the looping defect, we injected Tg(myl7:eGFP) with either aforementioned morpholinos, or an akap2 

sgRNA/Cas9 nucleoprotein complex and measured the heart looping angle at 54 hpf (Fig. 5e, f). The 

defined angle is within the midsagittal line and the atrioventricular canal, and indicates the relative 

position of the atrium to the ventricle. In 54 hpf uninjected control embryos, the mean looping angle 

was 18.9° ± 7.4°, with the atrium in an almost juxtaposed position to the ventricle (Fig. 5e, f). On the 

other hand, injection of either akap2 sgRNA, or akap2ATG and akap2e2i2 morpholinos increased the 

looping angle to 56.1° ± 15.3°, 52.6° ± 19.0°, and 62.4° ± 12.8° respectively (Fig. 5e, f). Injection of 

control or mismatch morpholino or injection of Cas9 alone did not induce any phenotypes (Fig. 5f, 

Supplementary Fig. 5h). 

To ensure these phenotypic characteristics outlined above are caused by the loss of akap2 and are not 

off-target effects of the morpholino, we cloned akap2 mRNA and performed rescue experiments. 

Injection of akap2 mRNA alone did not cause any defects (Fig. 5d, Supplementary Fig. 5b), and the 

heart looping was comparable to WT at 17.3° ± 6.7° (Fig. 5f, Supplementary Fig. 5h). Co-injection of 

akap2 mRNA and akap2e2i2 MO completely abolished the morpholino effect and resulted in normally 

developed embryos without any visible phenotype with a mean looping angle of 22.7° ± 7.9° (Fig. 5d-f, 

Supplementary Fig. 5b). To further verify these results, we cloned akap2 mRNA without the PKA 

binding domain (akap2ΔPKA) (Fig. 5b). We surmised this should abolish AKAP2-specific 
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compartmentalization of PKA activity, which our in vitro data have suggested to be a central 

mechanism of Wnt11-dependent LTCC regulation. Indeed, co-injection of akap2ΔPKA mRNA with 

akap2e2i2 MO failed to rescue the morpholino-induced phenotype with 56.2% affected embryos, and an 

average looping angle of 48.9° ± 6.6° (Fig. 5d-f, Supplementary Fig. 5g), while injection of akap2ΔPKA 

mRNA alone yielded normal embryos with the looping angle of 16.2° ± 4.9° which is comparable to WT 

(Fig. 5d, f, Supplementary Fig. 5g, h). Taken together, our data showed AKAP2, specifically through its 

scaffolding function for PKA, is essential for cardiac development. 

AKAP2 regulates the intracellular calcium concentrations 

Our findings prompted us to examine whether Akap2 affects the phasic changes of intracellular 

calcium concentrations [Ca2+]i during diastole and systole similarly to Wnt11. Using high-speed 

ratiometric calcium imaging, we measured calcium transients in WT and akap2-deficient zebrafish 

hearts as previously reported32. Loss of akap2 markedly increased calcium transient amplitudes when 

compared to WT hearts (Fig. 6a-c). Significant increases were readily observed in the atria, with larger 

variability in the ventricles during systole (Fig. 6b, c), while the diastolic [Ca2+]i seemed unaffected, in 

either the atrium or in the ventricle (Fig. 6d). 

To explore whether the function of AKAP2 in regulating [Ca2+]i is conserved, and to investigate more 

directly whether AKAP2 affects LTCC conductance, we probed the changes in calcium release in 

NRVM. We compared the percentage (E%) of active LTCC-RyR couplons as well as their average 

open probability (P0), which directly relate to the calcium release33, in ten consecutive Ca2+ transients 

(Fig. 6e). Both the active percentage and open probability of LTCC-RyR couplons are significantly 

increased in the absence of AKAP2 (Fig. 6f, g). Altogether, these data highlighted AKAP2 as an 

integral component of the machinery regulating LTCC conductance in cardiomyoytes. 

Akap2 is an effector of Wnt11 signaling required for cardiomyocyte intercellular coupling 

Wnt11/LTCC signaling regulates the emergence of the electrical coupling gradient in the developing 

myocardium32. We assessed whether Akap2 is the effector through which Wnt11 attenuates LTCC to 

modulate the intercellular coupling across the myocardium. We performed genetic epistasis to 

determine the extent of the interaction between Akap2 and Wnt11 by co-injecting akap2e2i2 and 

wnt11ATG morpholino into one-cell stage zebrafish embryos (Fig. 7a, b, Supplementary Fig. 6a-c). In 
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double morphants, about 60% of the embryos showed heart edema, abnormal looping, and cyclopic 

eyes—the phenotypic hallmarks of wnt11 morphants and mutants44 (Fig. 7a, Supplementary Fig. 6a, 

b). To ensure that the embryos used for further studies were deficient for both wnt11 and akap2, we 

selected only embryos with cyclopic eyes. RT-PCR confirmed the exclusion of akap2 exon 2 in these 

embryos (Supplementary Fig. 6c). Focusing on the looping defect, loss of wnt11 resulted in the 

defective looping with a heart angle of 32.5° ± 13.1°. In double wnt11; akap2 morphants, this angle 

was further increased to 47.9° ± 3.1° (Fig. 7a, b). These data suggested Akap2 may genetically interact 

with Wnt11. 

The action potential (AP) triggered by the sinus node propagates from the atrium through the 

atrioventricular junction to the ventricle, where in normal conditions at 54 hpf the outer curvature (OC) 

of the ventricle conducts AP three times faster than the inner curvature (IC)32 (Fig. 7c, d). To examine 

the physiological role of Akap2 in AP propagation, we performed high-speed optical mapping of 

transmembrane potentials in the zebrafish heart (Fig. 7c, d). We measured the conduction velocities in 

the OC and IC regions of interest and plotted them as an OC/IC ratio. We confirmed in uninjected 

controls this ratio was close to three (3.21 ± 0.54). In wnt11-deficient hearts, the gradient formation 

was completely abolished with a ratio of 1.47 ± 0,32, and 1.65 ± 0.70 in wnt11tx226 mutants (Fig. 7c, d) 

as previously reported32. The OC/IC ratio was significantly reduced in the absence of akap2 (2.20 ± 

0.61) (Fig. 7c, d) indicating that Akap2 contributes to the patterning of intercellular electrical coupling. 

Co-injection of akap2 mRNA with akap2e2i2 MO yielded a ratio of 3.06 ± 1.18, thus restoring the WT 

coupling gradient (Fig. 7c, d). Injection of akap2 mRNA alone led to unaltered intercellular coupling 

with a ratio of 3.07 ± 0.91 (Fig. 7c, d). Importantly, in the hearts deficient for both wnt11 and akap2, the 

formation of the intercellular electrical gradient was completely restored, with a ratio of 3.22 ± 0.60 (Fig. 

7c, d), further demonstrating that Akap2 is an integral component of Wnt11/LTCC signaling. 

Taken together, we have identified AKAP2 as a downstream effector of the WNT11/LTCC pathway, 

where compartmentalization of AKAP2-anchored PKA signaling is required for tuning LTCC 

conductance. 
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Discussion 

Stimulation via the β-adrenergic signaling cascade and shifting the L-type calcium channel gating 

mode to more open probability states has been thoroughly studied as a signaling pathway regulating 

the channel conductance5,7. Lesser attention, however, has been given to mechanisms independent of 

classical GPCR systems that attenuate the ionic influx through the LTCC. Here, we describe a novel 

branch of Wnt11 non-canonical signal transduction: Wnt11 together with its receptor Fzd7 

compartmentalize PKA activity scaffolded via a complex with AKAP2. We demonstrate a previously 

uncharacterized interaction between AKAP2 and the C-terminus of the LTCC, the result of which 

modulates channel conductance. Wnt11 signaling prevents this interaction, thus lowering the channel 

open probability states. In heart development and physiology, this Wnt11/AKAP2/PKA-dependent 

attenuation of LTCC conductance is crucial for the emergence of the intercellular electrical coupling 

gradients necessary for the formation of sequential cardiac contraction. 

Frizzled proteins are Wnt ligand receptors belonging to the Class F receptors of GPCR family24. The 

unique sequence and structural features of the C-terminal tail of Frizzleds are noted to hinder the 

binding of traditional GPCR ligands24,26. Nevertheless, increasing evidence are indicative of their ability 

to signal through heterotrimeric G proteins25,27,45. Similarly, Wnt ligands are able to regulate cAMP 

levels and thus activate the cAMP/PKA pathway in diverse contexts46-48. Our findings demonstrate that 

in addition, Wnt signaling can also modulate the spatiotemporal regulation of PKA activation. In 

constrast to the β-adrenergic system, we propose Wnt signaling prevents PKA-dependent 

phosphorylation of its targets, in this case the C-terminal tail of the LTCC, by compartmentalizing 

AKAP/PKA complexes. Compartmentalization of AKAP/PKA signalosomes, which is essential for PKA 

substrates recognition and PKA activity40,49, can provide specificity in targeting different effectors of the 

conserved Wnt/Fzd G protein-coupled signaling. 

In cardiomyocytes, a number of AKAPs have been identified50. Thus far, only AKAP5 (AKAP79/150) 

and AKAP7 (AKAP15/AKAP18) of the AKAP family have been described in regulating the 

LTCC18,20,21,51. Here we refine the catalog of cardiomyocyte-specific AKAPs with an emphasis on those 

which are developmentally regulated. Of note, although there are other AKAP-domain containing 

proteins binding and scaffolding PKA, either in the Wnt pathway52 or implicated in the LTCC 
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regulation53, we chose to focus in this study on the bonafide AKAP protein family consisting of 17 

members (Supplementary Table 1). Out of 6 potential AKAPs, we found only AKAP2 transducing 

Wnt11/Fzd7 signals to regulate the Ca2+ influx through the LTCC. By demonstrating the physical 

binding of AKAP2 to the C-terminal tail of LTCC, we establish a novel interacting AKAP capable of 

regulating LTCC conductance in a PKA-dependent manner. Moreover, we establish this is a conserved 

interaction regulated by the Wnt11/Fzd7 signaling. Lack of Wnt11/Fzd7 induced the PKA/AKAP2-

dependent cleavage of the C-terminus, leading to increased Ca2+ influx through the LTCC across 

species. Given that AKAP2 associates with the plasma membrane or the actin cytoskeleton43,54,55, it is 

possible Wnt11 signaling restricts AKAP2 binding to the LTCC via known effects on endocytosis or 

actomyosin contractlilty44,56-58. 

The Wnt11 ligand is indispensable for heart muscle cell specification and terminal differentiation59-62. 

Previously, we have shown that Wnt11 attenuates the LTCC conductance, which is required for proper 

formation of intercellular coupling and electrical gradients32. Loss of coupling gradients, and with them 

the associated physiological boundaries in the myocardial syncytium, are detrimental for the generation 

of physiologic contraction, and possibly for septation in higher species63. Besides its role in calcitonin-

mediated cancer invasion55 and ocular transparency54, the cellular functions of AKAP2 are not fully 

explored. Mechanistically, this Wnt11/AKAP2/PKA axis attenuation of the LTCC conductance has 

major implications for cardiac muscle physiology, as observed by changes in calcium transient 

amplitudes and percentage of active LTCC-RyR couplons. Additionally, lack of akap2 affected both 

heart morphology and electrical coupling. These data and prior evidence demonstrating dysregulated 

Wnt signaling and PKA-AKAP2 in different forms of cardiomyopathies64-66, imply potential links 

between Wnt11/AKAP2/PKA and human heart muscle diseases or arrhythmias, potentially via effects 

on cardiomyocyte differentiation67. There also exists some evidence from work in stem cells suggesting 

a complex role for the Wnt11/AKAP2/PKA axis in integration of electrical and mechanical inputs68-70. 

Modulation of electrical signals through Wnt11/AKAP2/LTCC signaling might therefore be important to 

explore in the context of stem cell differentiation in the future. 

Taken together, we establish the molecular mechanism through which Wnt11 signaling attenuates the 

LTCC conductance. This distinct branch of non-canonical Wnt signaling represented by the multivalent 
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effector complex of PKA/AKAP2/LTCC is required for the formation and regulation of intercellular 

electrical coupling in the early cardiac epithelium. Our findings reveal Wnt11/Fzd7 signaling as an 

alternative GPCR system to β-adrenergic cascade in modulating the LTCC conductance across 

species. In more general terms, we propose that the Wnt-dependent regulation of L-Type calcium 

channels via protein kinase compartmentalization may be a key effector in many different cell types 

and tissues, ranging from neurons to insulin-producing cells. Indeed, LTCC attenuation by Wnt signals 

may be of fundamental importance in regulating various cellular states through excitation-coupling 

mechanisms. 
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Methods 

EXPERIMENTAL MODELS 

Ethics statement 

All zebrafish husbandry and experiments were performed in accordance with guidelines approved by 

the Max-Delbrück Center for Molecular Medicine at the Helmholtz Association and the local authority 

for animal protection (Landesamt für Gesundheit und Soziales, Berlin, Germany) for the use of 

laboratory animals, and followed the “Principles of Laboratory Animal Care’ (NIH publication no. 86-23, 

revised 1985) as well as the current version of German Law on the Protection of Animals. 

Zebrafish husbandry 

Zebrafish were maintained under continuous water flow and filtration with automatic control for a 14:10 

h light/dark cycle at 28.5°C. Fertilized eggs were collected and raised under standard laboratory 

conditions (at 28.5°C in E3 solution (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM MgSO4, pH 

7.4)). The following zebrafish lines were used in this study: AB/TL wild-type, Tg(myl7:EGFP)twu3442, and 

wnt11tx226 mutant line71.  

Cell culture 

H9c2(2-1) (rat [Rattus norvegicus] heart myoblast) cells were obtained from ATCC® (CRL-1446™), 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% of Fetal Bovine Serum 

(FBS), 1% of Penicillin-Streptomycin and 1% of non-essential amino acids, and incubated at 37°C with 

5% CO2. Neonatal rat ventricular myocytes (NRVMs) were isolated from 2 days old Wistar rat pups 

with digestion buffer (80µg/ml LiberaseTM, 0.1% Trypsin, 20µg/ml DNase I, 10 µM CaCl2 in Hank's 

Balanced Salt Solution), and maintained in DMEM-F12 medium with 10% foetal bovine serum and 1% 

penicillin/streptomycin for 24h hours, than cultured for next 48h with serum-free medium containing 

80% DMEM-F12, 20% M199 with GlutaMAX Supplement and 1% Penicillin-Streptomycin.  

C2C12 cells were a kind gift from the Birchmeier lab (MDC Berlin-Buch in the Helmholtz association, 

Germany). Cells were cultured in SILAC DMEM Medium (PAA Laboratories) at 37°C and 5% CO2 and 

complemented with 10% dFCS (Sigma), 1% Penicillin-Streptomycin (Gibco), 1x L-Glutamine (PAA 

M11-004), 1x L-arginine (Sigma) and 1x L-Lysine (Sigma) as described in72.  
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METHODS DETAILS 

siRNA-mediated Knockdown 

Before transfection, NRVMs were switched to antibiotic-free culture medium. H9c2 cells were plated 

the evening before transfection, either on 12mm PDL-coated coverslips in a 24-well plate (5x104 cells/ 

well), or 100mm petri dishes (2x106/dish).  All cells were transfected with ON-TARGETplus 

SMARTpool siRNA (Dharmacon) for 24h (H9c2), or 24-48h (NRVM) with a final concentration of 50nM 

per siRNA using DharmaFECT1 according to manufacturer’s instructions. To check the baseline 

response to siRNA treatment, a non-targeting ”Scramble” siRNA was used as control.  

qPCR 

Total RNA was isolated from cultured H9c2 cells, NRMVs, and from 54 hpf zebrafish FACS-sorted 

cells using TRIzol according to the manufactur’s instructions. Isolated RNA was DNAse-treated with 

the DNase set (Qiagen), column purified using RNeasy Mini Kit (Qiagen), and reverse transcribed 

using First Strand cDNA Synthesis Kit (Thermo Fisher). 10-100 ng of cDNA was used for real-Relative 

mRNA levels were quantified by gene-specific TaqMan assays (see Table S4) using ViiATM 7 Real-

Time PCR System and Quant Studio 7. Each reaction was performed in triplicates. Reactions with no 

template and no reverse transcriptase were included as controls. Threshold cycle (CT) values were 

normalized to those of relevant housekeeping genes, and fold change was quantified using ΔΔCt 

method 73. ΔCT values matched by specific experiment were analysed with two-tail Wilcoxon signed 

rank test. To quantify gene knock-down efficacy of all targeting siRNA, paired ΔCT values were 

analysed with one-tail Wilcoxon signed rank test. All results were plotted as log2 of fold change (2^-

ΔΔCt). 

Single-cell dissociation and FACS 

54 hpf Tg(myl7:EGFP)twu34 embryos were dechorionated using Pronase, anesthetized using 0.016% 

tricaine (w/v) (pH~7), and incubated in 0.25% Trypsin at 28.5°C. Single-cell dissociation was monitored 

every 20 minutes and was generally achieved within 2 hours. Efficient dissociation was facilitated by 

gentle pipetting. Cell suspension was filtered through a 70 µM strainer, and cells were thoroughly 

washed three times in cold PBS supplemented with Fetal Calf Serum in reducing concentration, and 
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eventually resuspended in 1 ml of cold PBS. Single cells were then filtered in a glass tube with a cell 

strainer cap and placed on ice until counting. Samples were sorted using a BD FACS Aria1 flow 

cytometer, operating with BD LSRFortessa analyzer with BD FACSDiva software. GFP-expressing 

cells were sorted using a 488nm laser and a 530/30 BP filter. 

Drug treatment 

H9c2 cells were plated 48 hours prior to drug experiments and incubated with the following: 10 µM 

Foskolin (FSK), 10 µM Protein kinase inhibitor (PKI), 10 µM H-89, 10 µM Okadaic acid (OA), 10 µM 

Calpeptin (CLP), 100 µM L314E for 1 hour or with 4 µM isopropanol (ISO) for 3 minutes, and with 

corresponding concentration of DMSO as a control before harvesting or fixation. 

Ratriometric FRET 

Relative PKA activity in cells were estimated using AKAR4-NES, a cytosol-targeted FRET-based PKA 

biosensor. H9c2 cells were plated on 8-well plates (µ-Plate, ibidi) at a density of 2x104 cells/well, and 

transfected with 300ng of the sensor using LipofectamineTM 2000 per manufacturer’s instructions. Cells 

were imaged 48h post-transfection in FluoroBriteTM DMEM supplemented with 10% FBS on an 

Olympus IX81 microscope, equipped with a UV Apochromat 20X/0.75 DIC objective. Dual emission 

imaging was performed using a 430/25 excitation filter, a zt442RDC dichroic mirror, and a 483/32 (for 

CFP) or a 542/27 (for FRET acceptor channel) emission filter as appropriate. All images were 

automatically acquired with an ImagEM CCD 9100-13 camera (Hamamatsu) at 16-bit depth on a 

motorized stage (Märhäuser Corvus-2) and automated ZDC z-Focus sytem. Images were processed 

using Fiji to calculate FRET ratios. Average background images were calculated for each channel from 

untrasfected control cells, and were substracted from raw image data to correct for background. 

Region of interests (ROI) were defined from thresholded images of each channel, and combined using 

the conjunction operation “AND” to generate the final ROI composite. FRET ratios were calculated 

within the final ROI, and normalized to the maximum value for each frame and to the average of 

untreated control. Mean differences between two groups were analyzed with a two-tail unpaired t-test 

with Welch’s correction.  
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Immunofluorescence staining and confocal microscopy 

H9c2 cells were plated on poly-D-lysine coated (0.1mg/mL, Sigma) coverslips 48 hours prior to the 

experiments, and fixed for 20 minutes in 4% PFA supplemented with 4% Sucrose. Cells were 

permeablized with 0.2% Triton X-100. These following antibodies were diluted in 1% Gelatine at the 

specified dilutions: anti-II-III loop (Millipore) 1:100, Alexa Fluor® 633 phalloidin (Thermo Fisher 

Scientific) 1:4, anti-pCt (Abnova) 1:500, anti-nucleolin (Abcam) 1:500. Z-stacks of images were 

obtained on a Leica TCS SP8 confocal microscope using the HC PL APO 63x/1.40 OIL CS 2 objective 

(NA =1.4).  

Fluorescence intensity from maximal z-projections was quantified using ImageJ/Fiji. To assess 

changes in pCt accumulation within nucleoli, we made a mask using thresholded signals from 

Nucleolin, and mean fluorescence intensity values from pCt signals were then measured in individual 

objects larger than four pixels. All values were then corrected for background signals before 

normalized to the inverse of average intensities from control untreated cells (1 𝐴𝑉𝐺!"#$). Mean 

differences between two groups were analyzed with a two-tail unpaired t-test with Welch’s correction 

for unequal variance as appropriate. For analysis of difference among ≥3 groups, we used a standard 

One-Way ANOVA with Tukey’s correction for multiple comparison of mean values from treatment 

groups with the mean value from control. Additionally, frequency distribution of all normalized values 

were visualized as density curves and/or histogram with equal bandwidth/binwidth of 0.2.  

Immunoblotting 

H9c2 cell lysates were prepared using RIPA buffer (20 mM Tris-HCl, 150 mM NaCl, 0.1% Triton X-100, 

0.1% SDS, 0.5% Sodium-deoxycholate, PhosSTOP, EDTA-free Protease Inhibitor Cocktail). Lysates 

were sonificated and centrifuged at 5000xg at 4°C for 5 minutes. Protein concentrations were 

quantified by Lowry’s estimation method. After addition of Laemmli buffer (50 mM Tris-HCl, 0.1% SDS, 

9% Glycerol, 1% β-mercaptoethanol, 0,02% Bromphenolblue, 25 mM DTT) lysates were cooked for 10 

minutes and centrifuged again at 5000xg and 4°C for 5 minutes. Total protein was separated on 4-15% 

SDS-polyacrylamide gel (BioRad), and transferred to a Nitrocellulose Blotting membrane (GE 

Healthcare). Membranes were blocked for 1 hour in 5% milk/TBS-T. The following primary antibodies’ 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/741637doi: bioRxiv preprint first posted online Aug. 20, 2019; 

http://dx.doi.org/10.1101/741637
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 25 

were diluted in blocking buffer and used in the specified dilutions: anti-AKAP2 (Bioscience) 1:1000, 

anti-β-actin (Sigma) 1:3000, and anti-pCt (custom-made, Cambridge Research Biochemicals) 1:1000. 

Membranes were incubated with primary antibodies with gentle agitation overnight at 4oC, followed by 

incubation with appropriate HRP-coupled secondary antibodies. Chemiluminescent detection was 

performed using Pierce ECL Western Blotting Substrate (Thermo Scientific). All western blots were 

quantified with ImageJ/Fiji. 

Plasmid construction 

cDNA encoding FLAG-CT-mVenus of rat CACNA1C and rat AKAP2 was purchased from Thermofisher 

Scientific. FLAG/HA-tagged AKAP2 was cloned using Gateway technology (Invitrogen) by PCR 

amplification of the AKAP2 cDNA using attB-flanked BP primers (see Table S2). attB-flanked PCR 

product was cloned first into a pDONR™221 vector using BP Clonase™ II Enzyme mix to generate an 

entry vector, and subsequently transferring into a destination vector pFRT_TO_DESTFLAGHA to 

create expression clone using LR Clonase™ II Enzyme mix. 

Immunoprecipitation 

H9c2 cells were transfected with a concentration of 200 ng/ml plasmid DNA using Lipofectamine™ 

2000 according to manufacturer’s instructions. After 24h, cells were solubilized in mild lysis buffer 

(2mM EDTA, 2mM EGTA, Triton X-100 in PBS) containing PhosSTOP and EDTA-free Protease 

Inhibitor Cocktail. Lysates were passed through a syringe of 0.4mm diameter, centrifuged at 5000xg at 

4°C for 5 minutes and quantified by Bradford’s protein estimation method (Anal. Biochem. 72, 248-254 

(1976)). Lysates were incubated over night at 4°C either with Anti-FLAG M2 Magnetic Beads or with 

Dynabeads Protein A, which was beforehand incubated with AKAP2 or GFP antibody. Beads were 

washed four times with mild lysis buffer using magnetic separator. Immunoprecipitated proteins were 

eluted with 0.1M glycine (pH 2.5), neutralized with 1M Tris (pH 10.6) and denatured in 1x Laemmli 

sample buffer (10 % glycerol; 2 % SDS; 0.01 % bromophenol blue; 75 mM Tris-HCl; 50 mM DTT; pH 

6.8) for 7 min at 95°C. Eluted proteins were resolved on 10% SDS-PAGE gels and western blotted 

using standard procedure. The following primary antibodies were used: anti-AKAP2 (Bioscience) 

1:500, anti-FLAG (Sigma) 1:1000 and anti-pCt (custom-made, Cambridge Research Biochemicals) 

1:1000, anti-GFP (GeneTex) 1:4000. Chemiluminescent detection was performed using Immobilon 
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HRP substrate (Merck #WBKLS0500), and western blots were visualized using Odyssey Fc Imaging 

System (LI-COR Biosciences). 

C2C12 cell sample preparation for Mass Spectrometry 

For SILAC experiments the medium was alternatively supplemented with Arg6 and Lys4 (medium) or 

Arg10 and Lys8 (heavy). For the differentiation, cells were transferred to DMEM containing 2% 

dialyzed horse serum (Gibco), 1% Penicillin-Streptomycin (Gibco), 4mM Glut, L-Arg and L-Lys at 90% 

confluency. The differentiation medium was exchanged every second day. Differentiation was 

observed to start after three days and was finished at day 5. Cells were grown in light, medium and 

heavy conditions, and were harvested at different time points after start of differentiation (0h light, 10h 

light, 30h medium, 100h heavy, 150h heavy). Cells were washed with PBS, spun down and mixed to 

obtain two SILAC sample mixtures (sample1: 0h light, 30h medium and 100h heavy; sample2: 10h 

light, 30h medium and 150h heavy). 

Cells were lysed with NuPage LDS Sample Buffer (Invitrogen) and 150µg protein per sample were 

separated by SDS-Page on a 4-12% SDS-polyacrylamid gel (Invitrogen). Proteins were fixed and 

stained using a colloidal blue staining kit (Invitrogen). Gel pieces were washed sequentially with ABC 

(50 mM AmmoniumBiCarbonate), ABC/EtOH and EtOH for 10 min each at room temperature. Gel 

pieces were dried in a speed vac for 5 min at 45°C, got rehydrated with 10 mM DTT in 50 mM ABC 

and incubated for 60 min at 56°C. Gel pieces were incubated for 45 min in 55 mM iodacetamide and 

50 mM ABC buffer in the dark, then they were washed once with ABC at room temperature, and 

dehydrated twice. Remaining EtOH was removed by vacuum centrifugation, trypsin solution added 

(0.5µg/µl in 50mM ABC) and left shaking overnight at 37°C. The liquid was transferred to a fresh tube, 

peptides were extracted from gel pieces by adding extraction buffer (3% TFA, 30% acetonitrile) and 

liquid was transferred to the corresponding fresh tubes. Pure acetonitrile (LC-MS grade, Merck) was 

added for 10 min, supernatant additionally added to the corresponding tubes and samples vacuum 

dried to 10-20 % of the original volume to remove acetonitrile. Fractions were desalted on stage tips as 

described 74. Vacuum dried peptide fractions were resuspended (5 % Acetonitrile and 0.1 % formic 

acid) and analyzed by mass spectrometry. 
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Mass Spectrometry analysis 

Peptides were separated on a High Performance Liquid Chromatography System (Thermo Scientific) 

using a 15 cm column (75 µm inner diameter) packed in house with ReporSil-Pur C18-AQ material (Dr. 

Maisch, GmbH). The applied reverse phase gradient ran from 5 to 60 % Acetonitrile within 3 h. 

Peptides were ionized with an electrospray ionization source (Thermo Scientific) and analyzed on a Q 

Exactive mass spectrometer (Thermo Scientific). The mass spectrometer was running in data-

dependent mode to select the 10 most intense ions for fragmentation from the corresponding MS full 

scan. Other parameters were: 70,000 ms1 resolution; 3,000,000 ions target value for ms1; maximum 

injection time of 20 ms; 17,500 ms2 resolution; 60 ms maximum ion collection time; 1,000,000 ions 

target value for ms2. 

Microinjection 

Morpholinos (MO) were dissolved in RNase/Dnase-free water to make 1mM stock solutions, and 

used at the specfied dilutions: akap2 MO 1:1 (e1i1, splice MO) or 1:2 (ATG MO), wnt11 MO 1:6. 

Diluted MO solutions were incubated at 65oC for 10 minutes before injection into the yolk of 1-4 cell 

stage embryos. As negative controls, we also used standard control MO and mismatch MO, both at 

a 1:1 dilution. All MO used were obtained from GeneTools.  

Capped akap2 mRNA or akap2ΔPKA mRNA (75 pg/µl each) was injected into 1-cell stage embryos. 

sgRNA-Cas9 injection mix was prepared as descibed75: akap2 sgRNA (200ng/µl) was mixed with 

purified Cas9 protein(600ng/µl), and supplemented with 0.2M KCl. All solutions were diluted in 

RNAse- and DNAse- free water (Sigma). Injection volume is 1nl per embryo for all experiments. 

mRNA construction 

Zebrafish akap2 (ENSDARG00000069608) mRNA was constructed by PCR amplification of cDNA 

using Danio rerio akap2 infusion primers (see Supplementary Table 2), which were designed with 

http://bioinfo.clontech.com/infusion/convertPcrPrimersInit.do. The cDNA fragment was cloned into 

pBluescript KS (-) vector with HindIII at the 5’-end and BamHI restriction enzyme site at the 3’-end 

using the In-Fusion® HD Cloning System. In vitro transcription was performed with mMessage 

mMachine T3 Transcription Kit using BamHI-linearized DNA template at 37°C. To increase transcript 
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stability and translation efficiency, we performed polyadenylation of the mRNA using Poly(A) Tailing 

Kit. Akap2 cDNA lacking the PKA binding site (akap2ΔPKA) was generated by PCR-mediated deletion 

of plasmid DNA using the full-length cDNA construct described above as template. The primer pair was 

designed corresponding to 30 nucleotides (nt) up and downstream from the PKA binding sequence of 

75nt. The construct was amplified by Pfu DNA polymerase according to manufacturer’s instructions in 

a 50µl PCR reaction containing 2mM Mg2+. Template plasmid was removed by DpnI digestion, followed 

by PCR clean-up and ligation by T4 ligase. The vector was then cloned into chemically competent 

DH5α E.coli. After confirming successful PKA binding site deletion from isolated plasmid DNA by 

sequencing, the plasmid was linearized by BamHI before RNA synthesis with T7 MAXIscript® Kit. 

akap2ΔPKA mRNA was again polyadenylated using Poly(A) Tailing Kit, and purified with RNeasy Mini 

Kit before injection.  

CRISPR/Cas9-mediated Mosaic Mutagenesis 

For targeted mutagenesis of zebrafish embryos using the CRISPR/Cas9 system, gRNA targeting 

exon 2 of Akap2 was designed with chopchop.cbu.uib.no. We synthesized sgRNA by in vitro 

transcription with MEGAscriptTM T7 Transcription Kit using sgRNA primers (see Table S2). Genomic 

DNA was isolated from wild-type, Cas9 or sgRNA-Cas9 injected 54 hpf single embryos and 

amplified with flanking primers (see table S2) designed to amplify the sgRNA target site, and 

subsequently cloned into pGEM®-T Easy Vector. To analyze specific allele variations, we used 

CrispRVariantsLite as described76. 

Zebrafish embryos imaging 

54 hpf embryos were either anesthetized using 0.016% tricaine (w/v) (pH~7), or fixed in PEM solution 

(100 mM PIPES, 2 mM MgSO4, 1mM EGTA, pH 7) with 4% Formaldehyde and 0.1% Triton X-100 for 2 

h at RT. Embryos were mounted in 2% methylcellulose for imaging using a Leica M165 Fluorescence 

Stereo Microscope equipped with a Leica CCD camera. Images were processed using ImageJ/Fiji and 

Adobe Photoshop CS6. 
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Whole-mount In situ Hybridization (ISH) 

Whole-mount ISH was carried out as described previously77. Briefly, both akap2 anti-sense and sense 

DIG-labeled probes were synthesized from cDNA template by T7 polymerase. Dechorinated and PTU-

treated embryos were fixed in 4%PFA. Permeabilized embryos (10ug/ml Proteinase K, 20min) were 

labeled with Alkaline phosphatse anti-DIG antibody diluted in blocking buffer (2mg/ml BSA in PBT) at a 

1:5000 dilution overnight at 4oC. Labeling reactions in NBT/BCIP solution occured in the dark for 3-5 

hours until the desired intensity of signals was achieved. Embryos mounting and imaging were done as 

described. 

RT-PCR 

Total RNA was isolated from cultured H9c2 cells, and from 54 hpf zebrafish embryos using the TRIzol 

reagent according to the manufactur’s instruction. RNA was reverse transcribed using First Strand 

cDNA Synthesis Kit and amplified using Phusion polymerase (NEB) with primers for the relevant genes 

(see Table S2). The PCR products were visualized on 3% agarose gel stained with Redsafe. 

Heart Looping Measurement 

Heart angle was defined as the angle enclosed by the midsagittal line and the atrioventricular canal 

as described78. For the measurements, fixed 54 hpf Tg(myl7:EGFP)twu34 embryos were imaged as 

described. Images were analyzed using ImageJ/Fiji. 

Confocal [Ca2+]i imaging in isolated NRVM 

NRVMs were loaded with Ca2+ indicator Fluo-4 AM as previously described79, transferred to the stage 

of a confocal microscope (Zeiss LSM800, excitation 488 nm, emission >515 nm) and superfused with 

Tyrode’s solution (in mM: NaCl 130, KCl 4, CaCl2 1.8, MgCl2 1, D-glucose 10, HEPES 10; pH 7.4 with 

NaOH). NRVMs were stimulated in an electrical field (1 Hz) and cytosolic Ca2+ transients were 

recorded along a line repetitively scanned at the equatorial plane along the long axis of the cell (pixel 

size: 0.07-0.13, 0.8 ms/line, respectively). The global Ca2+ transient was calculated from the average 

intensity of the line within the cell recorded over time. Local Ca2+ release was quantified in 1 µm 

intervals along the line. Local Ca2+ increase was defined as „late” if local [Ca2+] reached half-maximum 

of the global Ca2+ transient (F50) in >6 ms, or „early” if local time to F50 was ≤6 ms, indicating close 
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proximity to an active couplon/Ca2+ release unit80. For early sites, i.e. with early Ca2+ release in at least 

1 out of 10 consecutive Ca2+ transients at steady state, open probability of the couplon (Po) was 

calculated by dividing the number of transients with early release by the number of total consecutive 

transients recorded. 

High-speed Ratriometric Calcium Imaging in Isolated Embryonic Zebrafish Hearts 

Recording of the intracellular Ca2+ transients in developing zebrafish heart was perofrmed as descirbed 

32. Hearts were isolated from 54 hpf zebrafish embryos in normal Tyrode’s solution (NTS, see 

below) supplemented with 20 mg/ml BSA. For ratiometric calcium transient recordings, hearts were 

loaded for 15 min with 50mM of the calcium-sensitive dye Fura-2AM (Thermo Fisher Scientific) and 

subsequently washed in dye-free NTS. Hearts were then incubated in NTS at room temperature for 

30–45 min to allow complete intracellular hydrolysis of the esterified dye. A high-speed monochromator 

(Optoscan, Cairn) was used to switch the excitation wavelength rapidly between 340 nm and 380 nm 

with a bandwidth of 20 nm and at a frequency of 500 s-1. The excitation light was reflected by a 400-nm 

cut-off dichroic mirror and fluorescence emission was collected by the camera through a 510/80-nm 

emission filter. High-speed CCD camera (RedShirtImaging) and equipped with NeuroPlex software 

was used for recordings. Images were analyzed with MatLab (MathWork) using customized 

software32. 

Optical mapping of action potential propagation 

Optical mapping and signal processing was performed as previously described32. Hearts were 

isolated from 54 hpf zebrafish embryos in normal Tyrode’s solution (NTS contains 136 mM NaCl, 

5,4 mM KCl, 1mM MgCl2x6H2O, 5mM D-(+)-Glucose, 10mM HEPES, 0.3 mM Na2HPO4x2 H2O, 1. 

mM CaCl2x2 H2O, pH 7.4) supplemented with 20 mg/ml BSA. To record membrane potential 

changes, hearts were stained for 12 minus FluoVolt probe (Thermo Fisher Scientific), and washed 

with NTS-BSA. Individual hearts were transferred into perfusion bath (Warner Instruments), which 

contained NST supplemented with 100 µM Cytochalasin D to inhibit contraction. For the imaging 

high-speed CCD camera (RedShirtImaging) was used equipped with 488 nm LED lamp and 

NeuroPlex software. Images were analyzed with MatLab (MathWork) using customized software32. 
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	 31 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Data analysis and visualization were done using GraphPad Prism 7 and R. For all statistical tests, 

significance level (alpha) was set at 0.05. All p-values >0.0001 are rounded to the third decimal. 

Specific p-values <0.05 are included in the figures, and p-values>0.05 are in corresponding figure 

legends.  Equal variance of normally distributed data was checked with an F-test. Differences between 

groups were analyzed as indicated in corresponding method sections. Experiment-specific statistical 

details can be found within figures and figure legends.  

Analysis of mass spectrometry data 

Raw files were analyzed with MaxQuant 1.6.0.181. A mouse specific database (Uniprot 2018-02, 

canonical and isoforms) was used for the peptide search. Multiplicity was set to 3, Arg6 and Lys4 

defined as medium and Arg10 and Lys8 as heavy. Trypsin was set as the protease including the option 

to cut after proline.  Deamidation at N and Q, N-terminal acetylation and oxidation at methionine were 

set as variable modifications. Carbamidomethylation of cysteines was set as a fixed modification. 

Peptide and protein FDR were set to 0.01. The proteinGroups.txt file was used for further processing of 

the data in R. The table was prefiltered to exclude proteins with a peptide count less than two and also 

excluding potential contaminants. The timeseries was extracted from normalized ratios by using the 

30h timepoint as a reference. Therefore, the 30h timepoint for every given protein is set to 0 while 

changes in other timepoints are expressed as relative values to 0. The timepoints at 0h and 100h were 

considered as representative timepoints for myoblasts and myotubes respectively, and log2-fold 

changes between both timepoints were plotted. iBAQ values as calculated by MaxQuant72 were used 

to approximate overall relative protein abundances. 

 

Data availability 

The data that support the findings in this study are available within this article and its Supplementary 

Information files, and from the corresponding author upon reasonable request. 
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Table 1 
	

Gene name 
(Human) Other names Rat 

Orthologs 
Mouse 

Orthologs 
Zebrafish 
Orthologs 

AKAP1 

AKAP121, AKAP149, 
SAKAP84, S-AKAP84, 
AKAP84, D-AKAP1, 
PPP1R43, TDRD17 

+ + AKAP1b 

AKAP2 
PALM2-
AKAP2 

AKAP-KL, KIAA0920, 
DKFZp564L0716, 
MISP2, PKRA2 

+ 
- 

+ 
+ 

- 
+ 

AKAP3 FSP95, SOB1,  
AKAP110, CT82 + + - 

AKAP4 p82, hAKAP82, AKAP82, 
Fsc1, HI, CT99 + + - 

AKAP5 AKAP75, AKAP79 + + - 

AKAP6 
KIAA0311, mAKAP, 
AKAP100, PRKA6,  
ADAP6 

+ + + 

AKAP7 AKAP18, AKAP15 + + + 

AKAP8 AKAP95,  
DKFZp586B1222 + + - 

AKAP8L  + + + 

AKAP9 

KIAA0803, AKAP350, 
AKAP450, CG-NAP, 
YOTIAO, HYPERION, 
PRKA9,  
MU-RMS-40.16A, 
PPP1R45, LQT11 

+ + + 

AKAP10 D-AKAP2, PRKA10, 
MGC9414 + + + 

AKAP11 

KIAA0629, AKAP220, 
PRKA11, FLJ11304, 
DKFZp781I12161, 
PPP1R44 

+ + + 

AKAP12 AKAP250, SSeCKS + + AKAP12a 
AKAP12b 

AKAP13 
Ht31, BRX, AKAP-Lbc, c-c-
lbc, PROTO-LB, HA-3, 
ARHGEF13 

+ + + 

AKAP14 AKAP28 + + + 

AKAP17A 
XE7, XE7Y, DXYS155E, 
MGC39904, 721P, 
CCDC133 

+ - + 

AKAP17B AKAP16B, AKAP16BP + + - 
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Fig. 1 Wnt11/Fzd7 pathway regulates CT proteolysis 

a Schematic of the L-Type Calcium channel. Calpain cleavage site (dotted black line), target 

sites for corresponding TaqMan probes (black), and antibody epitopes (red) are highlighted 

(reference sequence: Ensembl ID: ENSRNOT00000052017.6). 

b Quantification of relative mRNA expression of scramble and WNT11 siRNA-treated NRVM 

(left), and untreated, scramble, WNT11 and FZD7 siRNA-treated H9c2 cells (right) showing 

siRNA efficacy. Data plotted as log2 of fold change (FC) ± SD of N = 3 experiments. Wilcoxon 

rank sum test, WNT11: PUnt>0.999, FZD7: PUnt=0.563. Unt: untreated, NRVM: neonatal rat 

ventricular myocytes. 

c Calcium release at LTCC-RyR couplons is higher in WNT11 siRNA-transfected NRVM 

compared to scramble control. The percentage of line scanned with active couplons (left), and 

the average probability of calcium release at the couplons (right). Mean ± SD of N = 3 

experiments, and n ≥ 10 cells. Unpaired t-test. 

d Quantification of relative mRNA expression of CACNA1C using Taqman probes targeting 

three different exons (as noted), in scramble and WNT11 siRNA-transfected H9c2 cells. Data 

plotted as log2 of fold change ± SD of N = 3 experiments. Two-tailed Wilcoxon rank sum test, 

Pexon18=0.13, Pexon39 = 0.79, Pexon45 = 0.233. 

e Representative maximum intensity Z-projection of untreated and WNT11 siRNA-transfected 

H9c2 cells labeled with anti-II-III-loop (gray) and DAPI for nuclei (blue). 

f Quantified mean intensity of II-III-loop signals in whole cell. Bar graph (left) shows mean ± 

SD of N ≥ 3 experiments and n ≥ 110 cells as noted in the columns. Unpaired t-test with Welch’s 

correction, P=0.244. Corresponding histograms overlaid with density plots (right) show the 

distribution of normalized pixel intensity values within all analyzed images. 

g Representative maximum intensity Z-projection of CT signals in untreated, WNT11 or FZD7 

siRNA-transfected H9c2 cells (gray scale, upper panel), and merged (magenta, lower panel) 

with nucleolin (Nuc) signals (green). Scale bar, 20 µm. 

h Line-scan analysis of CT and Nucleolin (Nuc) signals in ROIs in (G). 

(i-j) Quantified mean intensity of CT signals in nucleoli. Bar graphs (left) show mean ± SD of 

N ≥ 3 experiments and n ≥ 100 cells. Unpaired t-test with Welch’s correction, ****P<0.0001. 

Corresponding histograms overlaid with density plots (right) show the distribution of normalized 

pixel intensity values within all analyzed images. 
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Fig. 2 Wnt11 signaling regulates the CT formation via AKAP anchored PKA signaling 

a Measurements of basal PKA activities using the PKA biosensor AKAR4-NES in untreated 

(top) and WNT11 siRNA-treated (bottom) H9c2 cells. Normalized FRET ratios calculated from 

>100 frames and N ≥ 3 experiments. Dashed-line indicates means. Unpaired t-test with 

Welch’s correction; ****P<0.0001. Scale bar, 50 µm. 

b Representative maximum intensity Z-projection of CT signals in H9c2 cells treated with 

isoprotenerol (ISO, 4µM), Forskolin (FSK, 10µM), WNT11 siRNA together with protein kinase 

inhibitor (PKI, 10µM), or L314E peptide (100µM) (gray scale, upper panels) and merged 

(magenta, lower panels) with nucleolin (Nuc) signals (green). Scale bar, 20 µm. 

c-f Quantification of mean intensity of CT signals in nucleoli shown in (b). Bar graphs show 

mean ± SD of N ≥ 3 experiments and n ≥ 83 cells. Unpaired t-test with Welch’s correction; 

****P<0.0001. Corresponding histograms overlaid with density plots show the distribution of 

normalized pixel intensity values within all analyzed images. 
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Fig. 3 AKAP2-anchored PKA signaling regulates the CT formation downstream of Wnt11 

a Schematic of AKAPs candidate mini-screen. 

b Expression profile of AKAPs in C2C12 cells during differentiation. The log2 fold change of 

the 100h (log2-FC) and 0h timepoint were used to identify changes in protein abundance 

between myotubes (100h) and myoblasts (0h). Log-FC were plotted against relative protein 

abundance estimates (iBAQ). 

c Relative mRNA expression of the selected AKAPs in FACS-sorted cardiomyocytes from 

Tg(myl7:EGFP) normalized to myl7 (top), and in H9c2 cells normalized to GAPDH (bottom) 

(N= 3 experiments). 

d Representative maximum intensity Z-projection of CT signals in AKAP2 siRNA-transfected 

H9c2 cells alone, or in combination with WNT11 siRNA (gray scale, right panels) and merged 

(magenta, left panel) with nucleolin (Nuc) signals (green). Scale bar, 20 µm. 

e Quantified mean intensity of CT signals in nucleoli of untreated control (red) and AKAP2 

siRNA-transfected H9c2 cells alone (blue), or in combination with WNT11 siRNA (green). Bar 

graphs show mean ± SD of N ≥ 3 experiments. Differences compared to untreated control 

were analyzed by One-way ANOVA with Tukey’s multiple comparison test, P=0.06. Number 

in each column indicates cell number (n). Corresponding density plots show the distribution of 

normalized pixel intensity values within all analyzed images. Distribution of signals in (-)WNT11 

cells are shown as reference (dotted black line). 

f Quantification of CT signals in nucleoli, both in single knockdown of remaining AKAP 

candidates and double knockdown experiments with WNT11 siRNA, as described in (B). Bar 

graphs show mean ± SD of N ≥ 3 experiments. One-way ANOVA with Tukey’s multiple 

comparison test, *P<0.05, ****P<0.0001. Number in each column indicates cell number (n). 
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Fig. 4 AKAP2 directly binds to LTCC 

a Schematic of the FLAG- and mVenus-tagged CT construct (UniProt ID: A0A0G2QC25, 

1342aa-2006aa) and the expected CT isoforms after proteolytic processing. 

b FLAG (left panel) or GFP (right panel) detection by WB of CT construct of lysates of H9c2 

cells, transfected either with the CT construct or with empty vector GFP (EV-GFP) control, 

showing input and FLAG- or GFP-IP. N ≥ 10 experiments. 

c Western blot (WB) detection of AKAP2 in lysates of untreated control (U) and WNT11 (W11) 

and AKAP2 (A2) siRNA transfected H9c2 cells by using anti-AKAP2 antibody. Membrane was 

stained with b-actin as loading control. (N = ≥ 5 experiments). 

d GFP (upper panel) and AKAP (lower panel) Co-IP detection by WB of lysates of H9c2 cells 

transfected either with the CT construct or EV-GFP control, showing input and FLAG-IP. N ≥ 

3 experiments. 

e AKAP2 (upper panel) and FLAG (lower panel) Co-IP detection by WB of lysates of H9c2 

cells transfected either with the CT construct or EV-GFP control, showing input and 

endogenous AKAP2-IP. N = 3 experiments. 

f CT detection by WB in lysates of untreated control (U) and CACNA1C siRNA-transfected (C) 

H9c2 cells using anti-pCt antibody. Membrane was stained with b-actin as loading control. (N 

= ≥ 3 experiments). 

g AKAP2 (upper panel) and pCT (lower panel) Co-IP detection by WB of lysates of H9c2 cells 

transfected either with scramble or AKAP2 siRNA, showing input and endogenous AKAP2-IP. 

N = 1 experiments. 

h AKAP2 (upper panel) and pCT (lower panel) Co-IP detection by WB of lysates of H9c2 cells 

transfected either with FLAG-AKAP2 or EV-GFP control, showing input and FLAG-IP. N = 1 

experiments. 
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Fig. 5 Akap2 is essential for normal heart development in zebrafish. 

a In situ hybridization detection of endogenous akap2 mRNA in whole-mount wild-type (WT) 

zebrafish embryo at 48 hpf. Frontal view of an embryo shows head- and heart-specific (red 

dashed line) expression pattern of the akap2. Scale bar, 200 µm. 

b Schematic of the zebrafish wild-type (WT) akap2 (palm2-202 ENSDART00000165942.2) 

with predicted PKA binding domain (green), as well as of akap2DPKA mRNA lacking PKA 

binding domain, and akap2e2i2 morpholino- (MO) induced exclusion of exon 2 (akap2Dex2). 

The exons are not depicted to scale. PKA: Protein-kinase-A binding domain. 

c RT-PCR of akap2 cDNA from uninjected control, standard morpholino-injected (std MO), 

mismatch morpholino-injected (mm MO) and akap2e2i2MO-injected embryos at 54hpf. The size 

of the akap2 fragment is 2434 bp, while in akap2 morphants it is only 300 bp due to exclusion 

of the exon 2 (akap2Dex2). 

d Phenotypic analyses of the loss of akap2 based on heart defects. N ≥ 3 experiments; n ≥ 

300 embryos. 

e Bright field image overlayed with fluorescent image, frontal view of uninjected control, akap2 

sgRNA/Cas9-injected (akap2ex2CR), akap2 morpholino- (akap2e2i2MO or akap2ATGMO) 

injected, akap2e2i2MO with WT akap2- or akap2DPKA- mRNA injected Tg(myl7:EGFP) 

zebrafish embryos at 54hpf. Scale bar, 200 µm. 

f Quantification of the heart-looping angle. Data show mean ± SD of at least 5 embryos per 

condition. One-way ANOVA with Dunnett’s multiple comparison test, PCas9=0.999; Pstd 

MO=0.999; Pmm MO=0.999; Pakap2mRNA=0.999; Pakap2e2i2MO/akap2 mRNA=0.996; Pakap2DPKA mRNA=0.9993. 

**** P<0.0001. 
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Fig. 6 AKAP2 regulates the LTCC conductance 

a Averaged Ca2+ transients from uninjected control (red) and akap2e2i2MO-injected (blue) 

zebrafish embryonic hearts at 54 hpf in atrium (upper panel) and ventricle (lower panel). 

b Ratiometric map of Ca2+ transient amplitudes from uninjected control and akap2e2i2MO-

injected zebrafish embryonic hearts at 54 hpf. Scale bar, 40 µm. 

c Bar graphs show mean ± SD of Ca2+ transient amplitudes in atrium, ventricle, and whole 

heart from uninjected control (red) and akap2e2i2MO-injected (blue) zebrafish embryos at 54 

hpf. Mann-Whitney test, PVentricle=0.071; N=3 experiments, n (akap2e2i2MO-injected) = 9, and n 

(uninjected control) = 7. 

d Bar graphs show mean ± SD of baseline in atrium, ventricle, and whole heart from uninjected 

control (red) and akap2e2i2MO injected (blue) zebrafish embryos at 54 hpf. Mann-Whitney test, 

PAtrium=0.837, PVentricle=0.607, PHeart=0.64; N=3 experiments, n (akap2e2i2MO-injected) = 9 and 

n (uninjected control) = 7. 

e Line scan images of 5 consecutive calcium transients (Fluo4-AM, field stim, 1 Hz) in a 

representative NRVM. Black arrow indicates time of electrical stimuli. The green and red 

vertical line in each transient indicates the relative position of the time of half maximal calcium 

release at that site. Green is < 6 ms after begin of transient (early release), red is ≥ 6 ms as 

late release (same cut-off for all cells/groups). 10 consecutive transients from each cell were 

assessed (only 5 are shown for space reasons). 

f-g Measurements of calcium release at LTCC-RyR couplons in AKAP2 siRNA-transfected 

NRVM compared to scramble control. Data express the percentage of line scanned with active 

couplons (f). Data represent the average probability of calcium releases at the couplons (g). 

Mean ± SD of N = 3 experiments, and n ≥ 16 cells. Unpaired t-test. 
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Fig. 7 Wnt11/Akap2/PKA signalosome is required for the electrical gradient formation in 
developing heart 

a Bright field image overlayed with fluorescent image, frontal view of uninjected control, 

akap2e2i2MO-injected, wnt11ATGMO-injected and double morpholino-injected Tg(myl7:EGFP) 

zebrafish embryos at 54hpf. Scale bar, 200 µm. White asterisk labels cyclopic eye, a hallmark 

of loss of wnt11 phenotype. 

b Quantification of the heart-looping angle. Data show mean ± SD of at least 5 embryos per 

condition. One-way ANOVA with Dunnett’s multiple comparison test, P(wnt11ATGMO)=0.069; 

**** P<0.0001. 

c Isochronal map of 54 hpf embryonic zebrafish heart from uninjected control, akap2e2i2MO- or 

wnt11ATGMO- or akap2e2i2MO/wnt11ATGMO-injected embryos, from wnt11 mutant ((-/-

)wnt11tx226), from akap2 mRNA-injected (akap2) or akap2 mRNA- and akap2e2i2MO-injected 

embryos. Lines represent the positions of the action potential wavefront at 5 ms intervals. Red 

dots indicate the start site of the excitation and blue dots represent the end. Scale bar, 40 µm. 

IC, inner curvature, OC, outer curvature. 

d Quantification of the voltage propagation at 54 hpf of uninjected control, akap2e2i2MO- or 

wnt11ATGMO- or akap2e2i2MO/wnt11ATGMO-injected embryos, from wnt11 mutant ((-/-

)wnt11tx226), from akap2 mRNA-injected (akap2) or akap2 mRNA- and akap2e2i2MO-injected 

embryos. Data express the ratio of the OC/IC conduction velocity and are plotted as mean ± 

SD of N=3 experiments. One-way ANOVA with Dunnett’s multiple comparison test, 

P(akap2)=0.999; P(akap2e2i2MO/akap2)=0.145, P(akap2e2i2MO/wnt11ATGMO)=0.985, 

****P<0.0001. 
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Supplementary Figure 1
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Supplementary Figure 1 

a RT-PCR of cDNA of the indicated gene from H9c2 cells. b Representative maximum intensity z-

projection of Cx-43 signals in untreated, and WNT11 siRNA-transfected H9c2 or NRVM cells alone 

(gray scale), and merged (green) with F-actin signals (gray). Scale bar, 20 µm. c Western blot (WB) 

detection of Connexin 43 (Cx43) in lysates of untreated control (U) and WNT11 siRNA transfected (W) 

H9c2 cells using anti-Cx43 antibody. On the right, column graph represent the semi-quantified Cx43 

amount normalized to b-actin. ( Mean ± SD; N = 2). d Representative maximum intensity Z-projections 

of II-III-loop signals in untreated, scramble and CACNA1C siRNA transfected H9c2 cells alone (gray 

scale), and merged (green) with F-actin signals (gray); and of CT signals in untreated, scramble and 

CACNA1C siRNA transfected H9c2 cells alone (gray scale), and merged (magenta) with nucleolin 

(Nuc) (green), and F-actin (gray) signals. Scale bar, 20 µm. e Quantification of relative mRNA 

expression of CACNA1C, using Taqman probes targeting three different exons in scramble and 

CACNA1C siRNA-transfected H9c2 cells. Data plotted as log2 of fold change ± SD of N = 3 

experiments. One-tailed Wilcoxon rank sum test. f Representative maximum intensity z-projections of 

CT signals in untreated, and WNT11 siRNA-transfected NRVM cells (gray scale), and merged 

(magenta) with F-actin signals (gray). Scale bar, 20 µm. 
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Supplementary Figure 3 

a-h Quantification of relative mRNA expression of untreated, scramble, AKAP siRNA-treated H9c2 

cells showing siRNA efficacy. Data plotted as log2 of fold change (FC) ± SD of N = 3 experiments. 

Wilcoxon rank sum test; AKAP2: PUnt=0.426, AKAP5: PUnt=0.074, AKAP6: PUnt=0.36, AKAP7: 

PUnt=0.301, AKAP10: PUnt=0.159, AKAP11: PUnt=0.219, AKAP12: PUnt=0.945, AKAP13: PUnt=0.426. 

i-o Representative maximum intensity z-projection of CT signals (gray scale) in AKAP, or 

AKAP/WNT11 siRNA-transfected H9c2 cells. Scale bar, 20 µm. 
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Supplementary Figure 5 

a Bright field images (lateral view) of in situ hybridization detection of endogenous akap2 mRNA using 

antisense (upper panel) and sense (lower panel) akap2 probe in wild-type (WT) zebrafish embryos at 

48 hpf. b Bright field images (lateral view) of wild-type (WT), akap2 splicing site targeting morpholino 

(akap2e2i2MO), akap2 mRNA (akap2), and akap2 morpoholino/mRNA (akap2e2i2MO/akap2) double-

injected zebrafish embryos at 54 hpf. c Bright field images (lateral view) of wild-type (WT) and akap2 

start site targeting morpholino (akap2ATGMO) injected zebrafish embryos at 54 hpf. d Bright field 

images (lateral view) of wild-type (WT) and akap2 sgRNA/Cas9 (akap2ex2CR) injected zebrafish 

embryos at 54 hpf . e Panel plot showing allele variations in CRISPR/Cas9 (akap2ex2CR) injected 

embryos compared to WT akap2 allele (ENSDARG00000069608). f Bright field images (lateral view) of 

wild-type (WT), standard (std MO), and mismatch (mm MO) control morpholino injected zebrafish 

embryos at 54hpf. g Bright field images (lateral view) of wild-type (WT), akap2DPKA mRNA, 

akap2DPKA mRNA and akap2 double (akap2e2i2MO/akap2DPKA) injected zebrafish embryos at 54 hpf. 

h Bright field images overlayed with fluorescent images (frontal view) of Cas9, standard (std MO), 

mismatch (mm MO), akap2 mRNA, akap2DPKA mRNA injected myl7:EGFP transgenic zebrafish 

embryos at 54hpf. Scale bar=200 µm. 
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