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ABSTRACT
G protein–coupled receptors (GPCRs) are regulated by complex
molecular mechanisms, both in physiologic and pathologic condi-
tions, and their signaling can be intricate. Many factors influence
their signaling behavior, including the type of ligand that acti-
vates the GPCR, the presence of interacting partners, the kinetics
involved, or their location. The two CXC-type chemokine receptors,
CXC chemokine receptor 4 (CXCR4) and atypical chemokine
receptor 3 (ACKR3), both members of the GPCR superfamily, are
important and established therapeutic targets in relation to cancer,
human immunodeficiency virus infection, and inflammatory dis-
eases. Therefore, it is crucial to understand how the signaling of
these receptors works to be able to specifically target them. In this
review, we discuss how the signaling pathways activated by
CXCR4 and ACKR3 can vary in different situations. G protein

signaling of CXCR4 depends on the cellular context, and discrep-
ancies exist dependingon the cell lines used. ACKR3, as an atypical
chemokine receptor, is generally reported to not activate G proteins
but can broaden its signaling spectrum upon heteromerization with
other receptors, such as CXCR4, endothelial growth factor re-
ceptor, or the a1-adrenergic receptor (a1-AR). Also, CXCR4 forms
heteromers with CC chemokine receptor (CCR) 2, CCR5, the Na1/
H1 exchanger regulatory factor 1, CXCR3, a1-AR, and the opioid
receptors, which results in differential signaling from that of the
monomeric subunits. In addition, CXCR4 is present on membrane
rafts but can go into the nucleus during cancer progression,
probably acquiring different signaling properties. In this review, we
also provide an overview of the currently known critical amino acids
involved in CXCR4 and ACKR3 signaling.

Introduction
G protein–coupled receptor (GPCR) signaling involves

numerous factors that influence cellular functions. These
include: 1) the variety of ligands binding to the receptor, 2) the

kinetics of the processes, 3) the location of the GPCR, and 4)
the available interactome or cellular context:

1. Different ligands can induce a variety of conformational
changes in a receptor and, therefore, adopt several confor-
mations (Kim et al., 2013; Manglik et al., 2015; Masureel
et al., 2018). These conformations could preferentially
activate different pathways, which is known as biased
agonism (Vaidehi and Kenakin, 2010; Lane et al., 2017).

2. GPCR activation is also influenced by the kinetics of
both ligand binding and receptor signaling, which can
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possibly lead to the observation of bias profiles, such as
in the case of the dopamine D2 receptor (Klein Here-
nbrink et al., 2016).

3. Most GPCRs signal from the plasma membrane, where
they gather in separate compartments rich in G proteins
(Huang et al., 1997) and interact with other partners
(Hur and Kim, 2002). Nevertheless, increasing evidence
suggests that GPCRs also signal after internalization
(Calebiro et al., 2010; Vilardaga et al., 2014; Eichel and
von Zastrow, 2018) and from subcellular sites, including
the endoplasmic reticulum, Golgi apparatus, and nu-
cleus (Rebois et al., 2006; Boivin et al., 2008; Godbole
et al., 2017). These internalized receptors could activate
signaling pathways distinct from those activated by the
same receptors at the cell surface.

4. Different cellular contexts contain different sets of
proteins that may directly or indirectly interact with
the GPCR and hence alter its signaling. Therefore, the
signaling pattern of one GPCR can strongly vary
between cell types. For instance, although class A
GPCRs can function as monomers (Whorton et al.,
2007), they can also form and function as homo- and
hetero-oligomers, which might result in altered sig-
naling properties compared with those of the individ-
ual monomers (Jordan and Devi, 1999; Ferré et al.,
2014). In this respect, the existence of membrane
compartments can facilitate the interaction between
different partners and result in a variety of cellular
outcomes.

Is this complexity in signaling also applicable to the GPCRs’
CXC chemokine receptor 4 (CXCR4) and atypical chemokine
receptor 3 (ACKR3)? Both receptors bind the same chemo-
kine, CXC motif ligand 12 (CXCL12), but interestingly their
signaling outcomes are different (Busillo and Benovic,
2007; Rajagopal et al., 2010). In addition, ACKR3 also binds
CXCL11, although with lower affinity (Burns et al., 2006).
Under physiologic conditions, CXCR4 is involved in vascu-
larization (Tachibana et al., 1998), neurogenesis (Cui et al.,
2013), angiogenesis (Salcedo and Oppenheim, 2003) and
homing of immune cells in the bone marrow (Sugiyama
et al., 2006), while ACKR3 has a role in the development of
the central nervous system (Wang et al., 2011), angiogenesis
(Zhang et al., 2017), neurogenesis (Kremer et al., 2016), and
cardiogenesis (Ceholski et al., 2017).
Similar to most chemokine receptors, CXCR4 and ACKR3

are important therapeutic targets due to their involvement
in immune-related diseases and cancer. The CXCL12/CXCR4
axis is involved in over 23 types of cancer, including breast,
lung, colon, and ovary cancer (Guo et al., 2014; Panneerselvam
et al., 2015; Zheng et al., 2017; Raschioni et al., 2018), and acts
as a coreceptor for the human immunodeficiency virus (HIV)
to enter host T cells (Feng et al., 1996). The discovery of
ACKR3 as another CXCL12 receptor added complexity to
the understanding of the CXCR4/CXCL12 signaling axis
(Balabanian et al., 2005a). ACKR3 is also overexpressed in
many cancer types, playing an important role in tumor
development and metastasis by promoting cell survival and
adhesion (Burns et al., 2006; Miao et al., 2007; Wang et al.,
2008). Importantly, ACKR3 has a functional cross-talk with
CXCR4, and they are proposed to heteromerize (Balabanian
et al., 2005a; Burns et al., 2006; Levoye et al., 2009; Decaillot

et al., 2011). Several other receptors can also alter the
function of CXCR4 and ACKR3, either through a functional
cross-talk or as a consequence of heteromerization (Contento
et al., 2008; Martínez-Muñoz et al., 2014; Becker et al., 2017;
Dinkel et al., 2018).
Studies regarding CXCR4 and ACKR3 have been performed

using a variety of cellular systems in which interacting
proteins may not necessarily be identical, and often in trans-
fected conditions, which could lead to the artificial induction
of oligomerization (Meyer et al., 2006). Hence, there is in-
creasing interest in investigating their signaling in a native-
like context. In this review, we discuss these issues and the
importance of location, kinetics, and interactions with other
receptors/effectors in the scope of CXCR4 and ACKR3 signal-
ing in physiologic and pathologic conditions.

CXCR4 and ACKR3 Signaling
A number of signaling pathways are known to be activated

by CXCR4 and ACKR3, with outcomes differing depend-
ing on the cellular context. Generally, CXCR4 is able to
signal through multiple G proteins and is also regulated by
b-arrestins through different interacting regions. Con-
versely, ACKR3 signals predominantly via b-arrestins and
is generally not able to activate G proteins. Nevertheless, as
discussed in the following section, there is still conflicting
evidence in relation to the precise details of their signaling.
G Protein–Dependent Signaling through CXCR4.

CXCR4 couples predominantly to G proteins of the Gai/o

family. Upon activation of the receptor, this family of G
proteins generally leads to the inhibition of adenylyl cyclase,
and as a consequence, cAMP production and the activity of
cAMP-dependent protein kinases are reduced.
Many G protein activation studies are performed using

bioluminescence resonance energy transfer (BRET)–based
and Förster resonance energy transfer (FRET) –based tech-
niques in transfected cells, which provide a very goodmodel to
study the possible signaling pathways triggered by a receptor.
However, the disadvantage of such studies is the need to
transfect cells, which could generate artifacts as a result of
overexpression of the corresponding proteins (Meyer et al.,
2006). Studies using these recombinant systems have shown
that CXCR4 can engage and activate different Gai/o proteins,
including Gai1, Gai2, Gai3, and Gao, in response to CXCL12
stimulation. In particular, it seems that CXCR4 might couple
more efficiently to the Gai1 andGai2 subtypes than to Gai3 and
Gao (Kleemann et al., 2008; Quoyer et al., 2013). No activation
of Gaz, the only member of the Gai family that is resistant to
pertussis toxin, has been demonstrated, although the
CXCR4/CC chemokine receptor 2 (CCR2) hetero-oligomer is
capable of stimulating Gaz-driven Ca21 mobilization through
the CCR2 receptor (Armando et al., 2014).
In addition to its coupling to the Gai/o subfamily, CXCR4 can

also signal through other G proteins. Studies using a more
endogenous-like setting suggested that CXCR4 mediates
some of its functions through Ga13. For example, migration of
Jurkat T cells in response to CXCL12 is controlled not only by
Gai through the activation of Rac but also by Ga13 through
the activation of Rho (Tan et al., 2006). Importantly, it seems
that the coordinated activation of these two pathways is also
essential for the CXCR4-induced migration of metastatic
basal-like breast cancer cells in vitro and in vivo in response
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to CXCL12 (Yagi et al., 2011). The coupling of CXCR4 to the
noncognate G protein Ga13 might be relevant in specific
contexts, such as in metastatic breast cancer cells, where
Ga13 is potentially overexpressed (Yagi et al., 2011; Rasheed
et al., 2015). In addition, CXCR4 trafficking into Rab111
vesicles upon CXCL12-induced endocytosis in T cells is known
to be dependent on Ga13, which, together with Rho, mediates
the polymerization of actin necessary for this process. It is
thought that in this subcellular compartment, CXCR4 forms
heterodimers with the T lymphocyte Ag receptor (Kumar
et al., 2011).
CXCL12 stimulation of CXCR4 also led to activation of Gaq

(Soede et al., 2001), a strong activator of members of the
phospholipase C-b subfamily. However, this was only the
case in dendritic cells and granulocytes, but not in T and
B cells, where CXCR4 signaling and, ultimately, chemotaxis
were shown to be Gai-dependent (Shi et al., 2007). Alto-
gether, these examples suggest that the cellular context can
potentially have an impact on the signaling properties of this
GPCR, although some caution must be taken when compar-
ing the different studies, since the assays used could differ in
their sensitivity and selectivity.
G Protein–Independent Signaling through CXCR4.

Similar to the majority of GPCRs, CXCR4 can also be
regulated by b-arrestins at a number of levels, including
CXCR4 internalization, G protein signaling, and chemotaxis.
Following activation of a receptor, G protein–coupled

receptor kinases (GRKs) phosphorylate the intracellular side
of the receptor, resulting in the recruitment of b-arrestins-
1/2 and subsequent internalization of the receptor through
clathrin-coated pits. Interestingly, coexpression of CXCR4
with b-arrestin-2 notably increased internalization of CXCR4
upon CXCL12 stimulation in contrast to b-arrestin-1. How-
ever, this difference disappeared when GRK2 was overex-
pressed, suggesting that b-arrestin-1–mediated internalization
highly depends on the phosphorylation state of CXCR4 (Cheng
et al., 2000).
Several studies have shown that the arrestins attenuate G

protein signaling. In human embryonic kidney 293 (HEK293)
cells, overexpression of CXCR4 with either b-arrestin reduced
inhibition of cAMP production in response to CXCL12, in-
dicating that both b-arrestin-1 and -2 play an important role
in signaling regulation (Cheng et al., 2000). In accordancewith
this, using endogenous levels of CXCR4, lymphocytes isolat-
ed from b-arrestin-2 knockout mice showed a decreased
desensitization and enhanced G protein coupling to CXCR4
(Fong et al., 2002). This attenuating effect on G protein
signaling could be abolished by truncating the C terminus of
the receptor, revealing a functional interaction of the recep-
tor’s C terminus with the arrestin. However, receptor in-
ternalization and extracellular signal-regulated kinase
(ERK) activation were not affected, suggesting that a differ-
ent region of CXCR4, in addition to the C terminus, is
involved in the binding of these proteins with a different
functional role (Cheng et al., 2000). This other region appears
to be the intracellular loop 3 of the receptor, as it was also
first described by Wu et al. (1997) and Cheng et al. (2000).
Overall, b-arrestins appear to regulate CXCR4 signaling
through at least two different and independent interacting
regions on the receptor (Cheng et al., 2000). In accordance,
the presence of mutations or truncations in the C terminus of
CXCR4 is the cause of a rare congenital disease namedwarts,

hypogammaglobulinemia, immunodeficiency, and myeloka-
thexis syndrome (Hernandez et al., 2003; Balabanian et al.,
2005b; Luo et al., 2017).
Last, b-arrestin-2 also plays a key role in CXCR4/CXCL12-

mediated chemotaxis of HeLa cells, enhancing the chemotactic
efficacy of the ligandmainly through the p38mitogen-activated
protein kinase pathway (Sun et al., 2002).
Kinetics of CXCR4 Signaling. GPCR activation and

downstream signaling kinetics have been extensively stud-
ied within the last two decades with the aid of emerging
fluorescence microscopy methods. Unlike many other recep-
tors (Lohse et al., 2008; Stumpf and Hoffmann, 2016), only a
few studies have been published on the kinetics of CXCR4
activation and its corresponding downstream signaling
processes. Even so, using BRET studies, activation kinetics
by CXCL12 and the pepducin ATI-2341 were compared.
CXCL12 has been shown to rapidly induce Gai protein
recruitment to CXCR4 and lead to a full activation with a
t1/2 value of approximately 32 seconds. The kinetics of Gai

protein recruitment were similar for the pepducin, al-
though activation of Gai was significantly slower (Quoyer
et al., 2013). One study also focused on the phosphorylation
kinetics of intracellular sites of CXCR4 in both HEK293 and
human astroglial cells and suggested that Ser-324, Ser-325,
and Ser-339 were phosphorylated rapidly by GRK6 after
CXCL12 exposure, while the kinetics for Ser-330 phosphor-
ylation were significantly slower. Such phosphorylation is
directly involved in the association of arrestin to the receptor
and hence can finely regulate CXCR4 signaling (Busillo
et al., 2010). Another group also demonstrated that Gai

engagement to CXCR4 upon CXCL12 stimulation led to the
phosphorylation of Tyr residues in the receptor via the Janus
kinases 2/3 within a few seconds (Vila-Coro et al., 1999).
Key Residues for Signaling in the CXCR4 Receptor.

The intracellular loop 3 and the C-terminal tail of the receptor
seem to be important for b-arrestin recruitment and G protein
activation, and accordingly, mutations in these regions have a
considerable impact on signaling. Several mutational studies
have been performed to unravel howCXCL12 binds to CXCR4,
and how the signal is transmitted from the extracellular part
of the receptor through the transmembrane regions to the
intracellular part, where interactions with protein partners
involved in signaling occur. In these regards, previous studies
have identified, with nearly atomic resolution, the pathway
from the binding of the chemokine to the G protein cou-
pling, and that severalmutations in the receptor impair ligand
binding and signaling (Wescott et al., 2016). A schematic
summary including important residues relating to the func-
tion of CXCR4 is provided in Fig. 1.
G Protein–Dependent Signaling through ACKR3.

Many studies have shown that ligand binding to ACKR3 does
not result in either coupling to or activation of G proteins, or
the triggering of signaling pathways typical of G proteins, in
contrast to CXCR4. In fact, ACKR3 lacks the specific DRY-
LAIV motif on the intracellular side of the receptor that is
essential for G protein interaction in other chemokine recep-
tors, and instead presents a DRYLSIT motif (Ulvmar et al.,
2011). However, efforts on creating a chimeric ACKR3 where
the DRYLSIT is replaced by the corresponding DRYLAIV
motif of CXCR4 failed to induce CXCL12-mediated signaling,
such as G protein activation, intracellular Ca21 mobilization,
G protein–mediated ERK phosphorylation, or chemotaxis
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(Naumann et al., 2010; Hoffmann et al., 2012). This implies
that the missing DRYLAIV motif in ACKR3 is not the
only determinant for the lack of G protein–dependent
signaling.

Nonetheless, the interaction of ACKR3 with G proteins has
been proposed in two studies. In the first case, a specific BRET
signal was detected between ACKR3–yellow fluorescent pro-
tein (YFP) andGai1–Renilla luciferase (RLuc), which decreased

Fig. 1. Snake plot of human CXCR4 with highlighted residues important for receptor function as determined in the following studies: 1Wescott et al.
(2016), 2Berson et al. (1996), 3Zhou et al. (2001), 4Cronshaw et al. (2010), 5Rapp et al. (2013), 6Doranz et al. (1999), 7Brelot et al. (2000), 8Tian et al. (2005),
9Armando et al. (2014), 10Ballester et al. (2016), and 11Martínez-Muñoz et al. (2018). Snake plot adapted fromGPCRdatabase (GPCRdb) (Pándy-Szekeres
et al., 2018). WHIM, warts, hypogammaglobulinemia, infections, myelokathexis.

Context-Dependent Signaling of CXCR4 and ACKR3 781

 at A
SPE

T
 Journals on N

ovem
ber 26, 2019

m
olpharm

.aspetjournals.org
D

ow
nloaded from

 

http://molpharm.aspetjournals.org/


upon treatment with guanosine 59-3-O-(thio)triphosphate, sug-
gesting that ACKR3 can interact withG proteins in the absence
of an agonist but fails to activate them (Levoye et al., 2009). In
the second case, CXCL12 was still able to promote Gi/o protein
activation in primary astrocytes after CXCR4 depletion but not
after ACKR3 depletion. In addition, ACKR3-only-expressing
astrocytes also led to ERK and Akt activation in response to
both CXCL12 and CXCL11, although only the former appeared
to be G protein dependent (Ödemis et al., 2012). Both Gi/o and
ACKR3 are highly abundant in astrocytes and glioma cells
(Schönemeier et al., 2008; Tiveron et al., 2010; Ödemis et al.,
2012; Banisadr et al., 2016), and therefore, a hypothesis is that
ACKR3might be able to activateG proteins specifically in these
cell types, indicating once again how important the interactome
might be for a given GPCR.
Overall, although there is conflicting evidence on the role of

ACKR3 in relation to G protein–dependent signaling, there is
increasing evidence for a b-arrestin–biased receptor in most
cell types. Moreover, studies have shown that ACKR3 could
modulate other cellular signaling pathways, potentially by
forming a heteromeric complex with other receptors, which is
discussed in a later section of this review.
G Protein–Independent Signaling through ACKR3.

Many studies have shown that ACKR3 can act as a “decoy” or
“scavenging” receptor, since it can efficiently internalize its
chemokine ligands CXCL11 and CXCL12 (Naumann et al.,
2010). By internalizing CXCL12, ACKR3 finely tunes the
CXCL12 gradient necessary for the CXCR4-mediatedmigration
(Dambly-Chaudière et al., 2007; Boldajipour et al., 2008; Donà
et al., 2013). Nevertheless, ACKR3 is not only a “decoy” receptor,
it can also activate downstream pathways via b-arrestins, in
response to both CXCL11 and CXCL12, directly promot-
ing Akt and mitogen-activated protein kinase activity,
ERK phosphorylation (Hattermann et al., 2010; Rajagopal
et al., 2010; Decaillot et al., 2011; Ödemis et al., 2012;
Torossian et al., 2014), and activation of the Janus kinase
2/STAT3 pathway (Hao et al., 2012). CXCL11-dependent
ERK phosphorylation could be seen in ACKR3-overexpressing
HEK293 cells but not in rat vascular smooth muscle cells
(VSMCs) that endogenously express ACKR3, again demon-
strating the importance of the cellular context (Rajagopal
et al., 2010). Interestingly, AMD3100, an antagonistic small-
molecule against CXCR4, can have an agonistic effect on
ACKR3. In high concentrations, this molecule can induce
b-arrestin recruitment to ACKR3 and increase CXCL12
binding to the receptor (Kalatskaya et al., 2009). A similar
scenario was observed with the CXCR4 inverse agonist
TC14012, which acts as an agonist on ACKR3 (Gravel et al.,
2010). Therefore, when considering CXCR4 as a therapeutic
target, it should be taken into account that a molecule can
have unexpected effects via ACKR3 and vice versa.
Although ACKR3 is constitutively internalized via clathrin-

coated pits by b-arrestins (Luker et al., 2010), it has also been
described that ACKR3 internalizes in a ligand-dependent
manner in response to both CXCL11 and CXCL12, leading
to different patterns of receptor internalization (Rajagopal
et al., 2010; Canals et al., 2012).
Ubiquitination, a constitutive modification on ACKR3, is

the key modification responsible for the correct traffick-
ing of the receptor from and to the plasma membrane
(Canals et al., 2012). Also, the phosphorylation of serine
and threonine residues at the cytoplasmic C-terminal tail of

ACKR3 has been implicated in ACKR3 internalization,
chemokine scavenging, and receptor-arrestin interactions
(Ray et al., 2012).
There are some controversies regarding the involvement of

ACKR3 in chemotaxis. Some reports suggest that ACKR3
induces migration of different cell types via ACKR3 exclu-
sively (Rajagopal et al., 2010; Chen et al., 2015), while others
report a role in migration by only modulating the CXCR4
function (Abe et al., 2014). Hence, this role of ACKR3 awaits
further clarification.
Key Residues for Signaling in the ACKR3 Receptor.

In two studies, mutational analysis was performed to identify
the key residues of ACKR3 in ligand binding (CXCL11 and
CXCL12), recruitment of b-arrestins, the scavenging capacity
of chemokines (Benredjem et al., 2017), and trafficking of
ACKR3 (Canals et al., 2012). These key residues are shown in
Fig. 2.
Key residues for CXCL11 and CXCL12 binding were mostly

present in the extracellular loops. Surprisingly, no N-terminal
residues of the receptor were required for CXCL12 binding in
contrast to CXCL11 binding, highlighting the different
binding mechanisms of these ligands (Benredjem et al.,
2017). Certain C-terminal residues are ubiquitinated and
very important for receptor internalization and recycling
(Canals et al., 2012). Recently, the residues protected
by CXCL12 were determined by radiolytic footprinting
(Gustavsson et al., 2017).

Oligomerization of CXCR4 and ACKR3
Influences Signaling

CXCR4 and ACKR3 Homomerization. CXCR4 is
known to potentially form dimers, and in accordance, it has
been crystallized as a homodimer in the presence of various
ligands (Wu et al., 2010; Qin et al., 2015). There is also
evidence that CXCR4 might form higher-order oligomers,
demonstrated using bimolecular fluorescence complementa-
tion (Armando et al., 2014). A FRET signal between CXCR4–
cyan fluorescent protein and CXCR4-YFP could be detected
in intact tumor cells, and when the energy transfer was
decreased, by depletion of cholesterol in lipid rafts or using
a transmembrane (TM) 4 peptide analog, tumor cells
significantly lost their capacity to migrate toward
CXCL12. Although the decrease in FRET signal does not
necessarily imply a disruption of the homomer, it does
suggest that changing the conformation of a CXCR4
homomer can influence signaling (Wang et al., 2006). The
observation of ligand-induced conformational changes
within the CXCR4 homodimer unit was also reported prior
to this work (Percherancier et al., 2005). In addition,
pertussis toxin treatment reduced the amount of CXCR4
oligomers detected by single-molecule microscopy, suggest-
ing that these oligomers play a role in G protein–mediated
signaling. In the same study, it was shown that CXCR4
dimers also have more tendency to internalize than mono-
mers (Ge et al., 2017). However, as stated previously in the
Introduction, increasing CXCR4 expression levels could also
increase the amount of homomers present, which should be
accounted for when using transfected cell lines. Meanwhile,
using single-moleculemicroscopy, at very low expression levels,
CXCR4 was predominantly present in a monomeric state,
and increasing its expression levels led to a higher degree of
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oligomers. This could suggest that higher-order oligomers
might be present in cancer cells, where CXCR4 is expressed
abundantly (Lao et al., 2017), which is consistent with the
involvement of dimers in migration (Wang et al., 2006).
Recently, nanoclusters of CXCR4 were also observed in

Jurkat T cells using single-molecule tracking and super-
resolution microscopy (Martínez-Muñoz et al., 2018).
CXCL12 promoted the formation of these nanoclusters by
decreasing the amount of monomers and dimers. The dis-
ruption of these nanoclusters using a TM6 analog strongly

Fig. 2. Snake plot of human ACKR3 with highlighted residues important for receptor function as determined in the following studies: 1Benredjem et al.
(2017), 2Canals et al. (2012), and 3Gustavsson et al. (2017). Snake plot adapted from GPCRdb (Pándy-Szekeres et al., 2018).

Context-Dependent Signaling of CXCR4 and ACKR3 783

 at A
SPE

T
 Journals on N

ovem
ber 26, 2019

m
olpharm

.aspetjournals.org
D

ow
nloaded from

 

http://molpharm.aspetjournals.org/


impaired CXCR4 functioning, suggesting that not only
dimers but also bigger clusters of CXCR4 might be involved
in signaling. Coexpression of cluster of differentiation
4 (CD4) or inhibition of the actin cytoskeleton reduced the
size of CXCR4 nanoclusters and hence reduced the Ca21 flux
(Martínez-Muñoz et al., 2018). So, the presence of CD4 in the
cellular system seems to be important when interpreting the
signaling outcome mediated via CXCR4.
The dimeric interface in the crystal structure of CXCR4

consists of the fifth and sixth transmembrane domains when
the receptor is in complex with IT1t (a specific small-molecule
antagonist), and of the third and fourth helix when it is in
complex with CVX15 (a small cyclic peptide) (Wu et al., 2010).
However, mutations in those regions did not significantly
decrease the specific BRET signal detected between lucifer-
ase- and green fluorescent protein–tagged CXCR4 receptors,
indicating that multiple homomerization interfaces might
exist (Hamatake et al., 2009). Since evidence exists that
dimerization has an influence on CXCR4 signaling (Ge et al.,
2017), the dimer conformation might also have important
consequences in downstream activation. Since different
ligands can induce different conformational changes, it can
be speculated that these ligands can also lead to different
homodimer interfaces, as could be seen for the crystal
structures of CXCR4 (Wu et al., 2010). Hypothetically, these
complexes could have different signaling properties
(Percherancier et al., 2005).
To our knowledge, two publications suggest the existence of

constitutive ACKR3 homomers in transfected HEK293T cells.
In both papers, a specific BRET signal was observed between
ACKR3-RLuc and ACKR3-YFP (Kalatskaya et al., 2009;
Levoye et al., 2009). The costimulation with CXCL12 and
AMD3100 caused an increase in the BRET signal between the
tagged ACKR3 receptors that was significantly higher than
when using CXCL12 alone, which is in accordance with the
idea that AMD3100 might be an allosteric agonist for ACKR3
(Kalatskaya et al., 2009). Yet, no other publications focused on
ACKR3 homomerization.
CXCR4 and ACKR3 Heteromerization. CXCR4 func-

tion can be influenced by the interaction with other receptors,
as shown by many publications that demonstrated CXCR4
heteromerization or cross-regulation with/via other chemo-
kine receptors. The occurrence of heterodimers might be
feasible, since chemokine receptors are often coexpressed in
the same cell types and, in some cases, even bind the same
chemokines. For example, several studies using transfected
cells showed that CXCR4 is able to form heteromers with
CCR2, CCR7, CCR5, and CXCR3, among others.
In the first example, using BRET assays, CXCR4was shown

to heteromerize with CCR2, and coactivation of both co-
expressed receptors led to a potentiation in Ca21 release.
In addition, this heteromer has been shown to recruit
b-arrestin-2 using bimolecular fluorescence complementation.
However, using BRET again, it has been seen that while
the CXCR4 homodimer was able to recruit the Ga13 protein,
the CCR2/CXCR4 heteromer completely lost this ability
(Armando et al., 2014). Moreover, in radioligand binding
assays, binding of the respective chemokines to either CCR2
or CXCR4 impaired chemokine binding to the other recep-
tor, suggesting a negative cooperativity within the heteromer.
This has been shown in recombinant cells aswell as in primary
leukocytes, where CCR2 and CXCR4 are endogenously

present, suggesting that these two receptors might form
heteromers even in a native context (Sohy et al., 2007). In the
second example, CXCR4 not only formed heteromers
with CCR7, as shown by proximity ligation assay, but also
required the presence of CXCR4 to be properly expressed
on the CD41 T-cell membrane. When activated by the HIV
glycoprotein gp120, CXCR4 enhanced CCR7-mediated mi-
gration of CD41 T cells to the lymph nodes, significantly
facilitating HIV infection (Hayasaka et al., 2015). In
another study, using bimolecular fluorescence complemen-
tation, Hammad et al. (2010) showed that CCR5 homomers
could interact with an important GPCR regulatory protein
named Na1/H1 exchanger regulatory factor 1 (NHERF1).
However, upon formation of CCR5/CXCR4 heterodimers,
this receptor could no longer interact with NHERF1.
Therefore, one should account for heteromerization when
targeting CCR5 in HIV infection (Hammad et al., 2010). In
the last case, the existence of CXCR3/CXCR4 heteromers
has been seen by coimmunoprecipitation, saturation BRET,
time-resolved FRET, and GPCR-heteromer identification
technology. A negative cooperativity for ligand binding was
observed as well for CXCR3/CXCR4 heteromers. Addition of
a CXCR3 antagonist impaired CXCL12 binding to CXCR4,
but not the other way around. This heteromer could
specifically recruit b-arrestin-2 according to an analysis
that used GPCR-heteromerization identification technol-
ogy (Watts et al., 2013).
CXCR4 has also been suggested to heteromerize with other

class A GPCRs, such as adrenergic and opioid receptors
(Pello et al., 2008; Tripathi et al., 2015; Gao et al., 2018). For
example, activation of the a1-adrenergic receptor (AR) led to
the recruitment of b-arrestin-2 to CXCR4, and a specific
agonist of a1-AR induced the internalization of CXCR4, as
shown using the PRESTO-Tango assay in HEK293 cells.
Neither of these effects could be inhibited by AMD3100 or
the 12G5, an antagonist and internalization-blocking CXCR4
antibody, respectively, but both could be abolished by disrupt-
ing the heteromer using a peptide analog of TM2 of CXCR4,
suggesting a tight cross-regulation within the a1-AR/CXCR4
complex (Gao et al., 2018). In addition, CXCR4 also influences
the adrenergic function (Tripathi et al., 2015). a1-AR/CXCR4
heteromers were detected in a completely endogenous context,
on the cell surface of rat and human VSMCs, via a proximity
ligation assay. Disrupting the a1-AR/CXCR4 heteromer with a
TM2 analog of CXCR4 or CXCR4 silencing impaired the
association of these two receptors, as well as inhibited
adrenergic-mediated responses to an agonist such as Ca21

mobilization or myosin light chain 2 phosphorylation. As a
result, the authors proposed that targeting the a1-AR/CXCR4
heteromermight be an alternative for the currentmedications
against a1-AR to modulate blood pressure (Tripathi et al.,
2015). The significance of this work comes from it being an
exceptional example of detecting oligomers at endogenous
expression levels in vivo, rather than detection of overex-
pressed receptor probes with epitope tags.
Another example of how such cross-talk can affect currently

used treatments is the cross-talk between CXCR4 and the
opioid receptors. In mice studies, CXCR4 activation
by CXCL12 decreased the effect of antinociceptive drugs on
the m- and d-opioid receptors, but activation of these opioid
receptors did not desensitize CXCR4 (Chen et al., 2007). A
cross-desensitization in both directions could be detected only
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between CXCR4 and the k-opioid receptor in several cell lines
and in vivo (Finley et al., 2008). Such evidence suggests that
the effect of painkillers is decreased when CXCR4 is present.
Nonetheless, only CXCR4/d-opioid receptor heteromers have
been observed using FRET experiments (Pello et al., 2008);
thus, the cross-talk between CXCR4 and the other opioid
receptors might not necessarily be due to heteromerization,
but rather as a consequence of sharing the same intracellular
signaling pathways.
Not only human receptors from the class A GPCRs are able

to change the signaling of CXCR4, but also some viruses
can take advantage of the alterations in receptor signaling
potentially caused by heteromerization. For example, the
Epstein-Barr virus encodes in its genome a viral GPCR
named BILF1, which heteromerizes with human CXCR4
according to BRET experiments. Coexpression of the con-
stitutively active BILF1 impairs CXCL12 binding to CXCR4
and, ultimately, the CXCL12-mediated G protein signaling
(Nijmeijer et al., 2010).
Altogether, the function of CXCR4 seems to be strongly

dependent on the interacting partners found in the cells, and
consequently, it significantly varies between cell types. It is
important to keep in mind that the change in the CXCR4
function due to the presence of certain proteins is not always
due to oligomerization, but can also be due to a cross-talk
in signaling pathways. In pathology, the degree of oligo-
merization and the type of oligomers could be heavily
altered. For example, using BRET, the authors observed
that CXCR4–warts hypogammaglobulinemia, infections,
myelokathexis mutants can oligomerize with the wild-
type CXCR4 and possibly retain it at the plasma membrane
(Lagane et al., 2008).
Regarding ACKR3 heteromerization, there is evidence of

the presence of a1-AR:ACKR3:CXCR4 hetero-oligomers
in VSMCs, and the activation of ACKR3 can lead to the
inhibition of the a1-AR activity (Albee et al., 2017). ACKR3
is also known to interact with the epidermal growth factor
receptor (EGFR) in a b-arrestin-2–dependent manner and
is implicated in the phosphorylation of the EGFR. Together,
they are involved in mitosis of breast cancer cells (Salazar
et al., 2014).
Cross-Talk between CXCR4 and ACKR3. Upon the

discovery of ACKR3 as a receptor that can also bind CXCL12,
whichwas previously known as aCXCR4-exclusive chemokine
(Balabanian et al., 2005a), several studies focused on coex-
pression of CXCR4 and ACKR3 in diverse cell types and the
influence of a possible CXCR4:ACKR3 interaction and/or
cross-talk on the signaling properties. CXCR4 and ACKR3
are coexpressed in diverse cell types. These include human T
and B lymphocytes (Balabanian et al., 2005a), dendritic cells
(Infantino et al., 2006), monocytes (Sánchez-Martín et al.,
2011), renal progenitor cells (Mazzinghi et al., 2008), VSMCs
(Evans et al., 2016), vascular endothelial cells (Schutyser
et al., 2007), and zebrafish primordial germ cells (Boldajipour
et al., 2008).
A number of studies hypothesized that ACKR3 might

regulate CXCR4 activity by scavenging or segregating
CXCL12. ACKR3 generates a gradient of available ligand for
CXCR4, thus finely tuning CXCR4-mediated cellular signal-
ing and hence controlling, for example, primordial germ cell
migration in zebrafish (Boldajipour et al., 2008; Naumann
et al., 2010). Thework of Naumann et al. (2010) suggested that

themodulation of CXCR4 activation via ACKR3 is achieved by
the scavenging activity of ACKR3, rather than heterodimeri-
zation, as they did not observe any cointernalization of these
receptors.
Other studies shifted the focus more onto the mechanisms

that may be involved, including the physical interaction of
both receptors and subsequent modulation of their functions.
For example, ACKR3 inhibition can act as a negative modu-
lator of CXCR4-mediated lymphocyte integrin adhesiveness
in human T lymphocytes and CD341 cells (Hartmann et al.,
2008). In this case, ACKR3-mediated modulation of CXCR4
activation was suggested to be due to a physical interac-
tion between the two receptors. Indeed, the hetero-
oligomerization of CXCR4/ACKR3 in intact HEK293 cells
in the absence of CXCL12 was demonstrated using the
FRET acceptor photobleaching method (Sierro et al., 2007).
This study also highlighted that their coexpression poten-
tiated Ca21 flux mediated by CXCR4 activation and delayed
ERK phosphorylation.
A follow-up study investigating CXCR4/ACKR3 hetero-

oligomerization confirmed the heteromer formation in
HEK293T cells using BRET (Levoye et al., 2009). However,
they showed a negative modulation of the Ca21 flux when
both receptors were coexpressed. In accordance with this
result, GTP binding potency of Gai upon CXCR4 activation
with CXCL12 decreased in cells coexpressing ACKR3.
Moreover, ACKR3 coexpression with CXCR4 in HEK293
cells induced a conformational change between the pre-
coupled CXCR4-YFP and Gai-RLuc. The same study also
demonstrated that knockdown of ACKR3 expression in
T lymphocytes resulted in more potent migration at lower
CXCL12 concentrations, addressing the scavenging func-
tion of ACKR3 (Levoye et al., 2009).
Another study also linked direct interactions of

CXCR4/ACKR3 with oligomerization-specific functional out-
comes (Decaillot et al., 2011). In this case, the evidence of
CXCR4/ACKR3 hetero-oligomerization comes from the coim-
munoprecipitation of overexpressed CXCR4-C9 and ACKR3-
FLAG in HEK293 cells. In the same study, coexpression of
ACKR3 with CXCR4 inhibited CXCR4/Gai-mediated in-
hibition of cAMP production. In addition, activation of
ACKR3 with CXCL11 restored CXCR4-dependent inhibition
of cAMP production. Moreover, expression of CXCR4 in-
creased the constitutive and ligand-induced recruitment of
b-arrestin to ACKR3 heteromers, enhanced b-arrestin–me-
diated ERK phosphorylation, and increased migration of rat
VSMCs (Decaillot et al., 2011).
Some caution must be taken when studying CXCR4/ACKR3

signaling, since their endogenous expression patterns can differ
in different cell types and might influence the outcome of the
experiments. Regarding drug development, one must acknowl-
edge the complexity of targeting CXCR4 in different diseases
and tissues, since heteromerization or cross-talk with other
receptors can strongly impact its signaling.

Location of CXCR4 and ACKR3 Can Influence
Receptor Signaling

Signaling of CXCR4 in Microdomains. As CXCR4 is
expressed in diverse tissues, different microenvironments
within different cell types play an important role in the
manner of CXCR4 signaling. CXCR4 localizes to membrane
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rafts (Mañes et al., 2000), which aremicrodomains enriched in
cholesterol, sphingolipids, and proteins (Brown and London,
1998). The presence of cholesterol in these rafts seems to play
an important role in CXCL12 binding (Nguyen and Taub,
2002), and the activation of CXCR4 can lead to cross-
activation of other membrane proteins, such as human
epidermal growth factor receptor 2 (HER2) and EGFR in the
raft (Conley-LaComb et al., 2016).
Upon activation of CXCR4, the receptor is rapidly internal-

ized and can be either recycled back to the membrane or
degraded at the lysosome (Marchese et al., 2003). Evidence
suggests that phosphorylation of specific residues is involved
in the determination between recycling and degradation
(Marchese and Benovic, 2001). In renal cell carcinoma cells,
CXCR4 moved to the cell nucleus after CXCL12 binding, and
this nuclear location led to an increased Matrigel matrix
invasion. In addition, histologic sections showed that CXCR4
was present in the nucleus only in metastatic renal cell
carcinoma lesions (Wang et al., 2009). This might have
important consequences for targeting CXCR4, since drugs
would need to penetrate into the nucleus to attack metastatic
cells. While the location of CXCR4 within a cell seems to be
important, the location of these CXCR4-expressing cells
within an organism might also influence outcomes. During
the development of the lateral-line primordium of zebrafish,
CXCR4 was present at the front cells while ACKR3 was at the
back. This differential spacing might contribute to the estab-
lishment of a CXCL12 gradient that is important for the
correct development of this species (Valentin et al., 2007; Donà
et al., 2013).
Depending on its location, CXCR4 can activate different

signaling pathways and can hence trigger different cellular
responses. This might explain how CXCR4 has so many
different roles in many organs and cell types and how its role
might change in a pathologic condition, such as cancer.
Signaling of ACKR3 in Microdomains. In contrast to

CXCR4, which is mostly expressed on the plasma membrane
and the early and recycling endosomes, ACKR3 is mainly
expressed on themembrane of endocytic vesicles in the resting
state (Zhu et al., 2012). Shortening the receptor’s C-terminal
tail in ACKR3–green fluorescent protein increasedmembrane
localization by up to 100% when the whole domain was
missing. Although truncating the C terminus did not alter
CXCL12 binding to the receptor, it significantly reduced the
scavenging of the ligand as well as b-arrestin recruitment
and activation of ERK1/2. In the presence of the domi-
nant negative mutant K44A dynamin, all ACKR3 was
located on the cell surface (Ray et al., 2012). This did not
alter constitutive b-arrestin recruitment, but upon CXCL12
treatment, b-arrestin recruitment significantly increased
and ERK phosphorylation lasted significantly longer. Thus,
ACKR3 can show thorough signaling when localized exclu-
sively to the plasma membrane without the chance to be
internalized (Ray et al., 2012).
Meanwhile, upon chemokine ligand treatment, ACKR3

membrane expression over time did not decrease, as is the
case for CXCR4, but after a small decrease, its presence on
the membrane was slightly restored and resisted the de-
pletion from the plasma membrane for a prolonged time.
Furthermore, through radioligand internalization, it was
demonstrated that ACKR3 brings its chemokine ligands
to degradation, confirming its role as a scavenger receptor

(Naumann et al., 2010). In platelets, where CXCR4 and
ACKR3 are both present, CXCL12 induced the internaliza-
tion of CXCR4 but, at the same time, the externalization of
ACKR3. This latter process was CXCR4-mediated, since block-
ing CXCR4 abolished ACKR3 externalization (Chatterjee et al.,
2014). The same study showed that ERK1/2 phosphorylation
was important for the cyclophilin A–mediated ubiquitina-
tion of ACKR3, an essential modification for the membrane
location of ACKR3.
Some studies have observed ACKR3 predominantly on

the membrane (Hattermann et al., 2012, 2014; Kumar
et al., 2012). For example, in MCF-7 breast cancer cells,
CXCR4 and ACKR3 were mostly observed on the mem-
brane, using immunofluorescence light microscopy and
electron microscopy. After CXCL11 or CXCL12 treatment,
receptors were internalized individually or in proximity. A
cross-talk between both receptors was also seen, since
CXCL11 could induce the internalization of CXCR4
(Hattermann et al., 2014).

Discussion
In this review, we summarized how CXCR4 and ACKR3

signaling can be influenced by their expression levels, local-
ization, and interacting proteins (cross-talk and oligomeriza-
tion) (a summary can be found in Tables 1 and 2). All of these
aspects have important consequences, especially when a
GPCR is being targeted for drug development.
Many of the examples discussed in this review investigated

CXCR4 and ACKR3 location and signaling in immortalized
cell lines using an expression of reporter/recombinant proteins
that was often much higher than endogenous expression
levels. It is evident that these studies explain several crucial
biologic outcomes that are governed by CXCR4 and ACKR3.
However, it is worth noting that overexpression of receptors
and/or downstream effectors might bias the receptor and
downstream signaling behavior. Chabre et al. (2009) pro-
posed, for example, a hypothesis for the apparent negative
cooperativity between two receptors in ligand binding exper-
iments: overexpression of receptors might lead to an insuffi-
cient amount of G proteins available for the receptor, causing
receptor heterogeneity; some receptors would be coupled to a
G protein, while others would not. These two states might
present different affinities for the ligand and hence create
an artificial negative cooperativity (Chabre et al., 2009). In
addition to this, interaction partners can modulate the
signaling properties of a receptor. Moreover, the cellular
content (i.e., types and amounts of effector proteins that a
receptor can activate) can also greatly influence the biologic
outcomes of a specific receptor or receptor oligomer activation.
Signaling pathways associated with the activation of CXCR4
and ACKR3 are vast. However, balance and dynamics of these
pathways can be different in each tissue type. Thus, choice of a
cell type while studying CXCR4 and ACKR3 oligomerization/
signaling is crucial, and there is a need for studies in a more
endogenous or disease-related context.
In various cell types, receptors can be found in different

cellular compartments. Spatial and temporal aspects of
chemokine receptor signaling may vary, depending on the
receptor location in different cell and tissue types. The location
of CXCR4 and ACKR3 can result in the activation of different
signaling pathways. In targeting such receptors, such as in
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cancer, knowing the cellular location of the receptor is
relevant—for instance, CXCR4 can localize and signal at the
nuclear membrane of metastatic cells (Wang et al., 2009).
Despite several reports using diverse types of assays, GPCR

oligomerization is still highly disputed. While certain reports
demonstrate oligomerization of a certain receptor, others may
dispute. This is mostly due to the type of assays that are used
and even the manner of setting up the experimental condi-
tions and analysis methods for a certain assay. Despite giving
valuable information on receptor-receptor interactions, en-
ergy transfer–basedmethods BRET and FRET lack the ability
to elucidate the kinetics of individual events. Since the
observed resonance energy transfer signal comes from all of
the receptors within a cell or a pool of cells, it is not possible
to resolve whether the observed signal is due to a stable or
transient interaction. With the help of advanced imaging
methods, it is now possible to track the movements and
interactions of single receptors with other receptors and
interacting partners with high spatiotemporal precision
(Sungkaworn et al., 2017). Such methods, combined with
fluorescent labeling of endogenous receptors with minimal
tags (Coin et al., 2013), can open a new avenue to study
receptor-receptor and receptor-effector interactions with
superior spatial and temporal resolution at endogenous
expression levels in biologically relevant cell types. It is also
worth recognizing the importance of knockout studies, as
these can demonstrate the role of receptors and/or effectors
in certain cellular signaling pathways and their consequent
biologic importance in both health and disease conditions.
Advancing CRISPR technologies have recently been used to
study signaling bias and cross-activation of signaling
pathways (Grundmann et al., 2018). Such studies can also
be extended toward GPCR oligomerization, i.e., knocking
out one of the heteromerizing partners, or knocking out a
downstream effector that is believed to be activated only in
the case of a heteromer activation, and studying its effects
on downstream signaling.
A heteromer can have completely different signaling

properties in comparison with the monomers (Milligan,
2009; Urizar et al., 2011). Thus, therapeutically targeting
one particular GPCR might be too simplistic. As evidence on
the biologic significance of class A GPCR heteromerization is
increasing, targeting the pathologically relevant heteromers
can be a novel approach to therapy. As allosteric modulators of
GPCR dimers, bivalent ligands that could specifically target a
heteromer might be an option for future investigation into
whether they have therapeutic potential. However, determin-
ing to what extent oligomerization is relevant in vivo yet
remains as a crucial question to be answered.
Overall, in this review, we focused on the advances in the

signaling properties of CXCR4 and ACKR3 in a health and
disease context. Previous studies shed light on distinct
outcomes of complex cell-type-dependent signaling, receptor-
receptor interactions, and receptor cross-talk. However, our
knowledge for an accurate picture of CXCR4/ACKR3-
mediated signaling is still not complete. Since model cells
and overexpressing systems might bias receptor location,
receptor-receptor interaction, and signaling outcome, choice
of experimental methods and cell types must be well consid-
ered. Yet, novel fluorescent labeling, advanced imaging, and
genetic engineering in model organisms and primary cells, as
well as computational and structural methods, will allow us to

study CXCR4 andACKR3 signaling in amore endogenous and
disease-related context in the near future.
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