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SUMMARY

To enable reliable cell fate decisions, mammalian
cells need to adjust their responses to dynamically
changing internal states by rewiring the correspond-
ing signaling networks. Here, we combine time-lapse
microscopy of endogenous fluorescent reporters
with computational analysis to understand at the sin-
gle-cell level how the p53-mediated DNA damage
response is adjusted during cell cycle progression.
Shape-based clustering revealed that the dynamics
of the CDK inhibitor p21 diverges from the dynamics
of its transcription factor p53 during S phase. Using
mathematical modeling, we predict and experimen-
tally validate that S phase-specific degradation of
p21 by PCNA-CRL4cdt2 is sufficient to explain these
heterogeneous responses. This highlights how
signaling pathways and cell regulatory networks
intertwine to adjust the cellular response to the indi-
vidual needs of a given cell.
INTRODUCTION

Mammalian cells adjust their fate and function to varying require-

ments during development and adult tissue homeostasis. To

enable appropriate decisions, cells integrate incoming signals

with information about their internal state and execute corre-

sponding response pathways. Relevant internal states include

cell cycle phase, interactions with neighboring cells or the activ-

ity level of other signaling pathways (Snijder and Pelkmans,

2011). Consequently, genetically identical cells may react differ-

ently to a given stimulus, leading to heterogeneous outcomes

during differentiation (Goolam et al., 2016), pathogenesis (Wein-

berger et al., 2005), or therapy (Cohen et al., 2008; Paek et al.,

2016). However, as both signal processing and the regulation

of cellular states are dynamic processes, it is not sufficient to

determine them at the time of a stimulus, but we need to follow

them over time in individual cells.

In this study, we use the DNA damage response (DDR) as a

paradigm to understand how individual cells adjust their re-
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sponses to dynamically changing internal states. DNA double

strand breaks (DSBs) compromise the integrity of the genome

and have detrimental consequences if left unrepaired (Ciccia

and Elledge, 2010). To counteract these lesions, cells evolved

sensitive sensing mechanisms that activate the DDR and induce

transient cell cycle arrest in G1 or G2 phase or terminal cell fates,

such as senescence and apoptosis (Kastenhuber and Lowe,

2017). A central hub of the DDR is the tumor suppressor p53.

This transcription factor is activated by damage-responsive ki-

nases and controls the cellular response by inducing the expres-

sion of its target genes (Riley et al., 2008). p53 itself is regulated

by feedback loops: in the absence of DNA damage, it is ubiquiti-

nated by the E3 ligase Mdm2 and degraded by the proteasome

(Haupt et al., 1997). Upon damage, posttranslational modifica-

tions of p53 and Mdm2 prevent their interaction and allow p53

to accumulate in the nucleus where it binds to target gene pro-

motors and induces their expression. Among them are negative

regulators, such as Mdm2 and the phosphatase Wip1, which

terminate the response. If damage persists, p53 accumulates

repeatedly in pulses of uniform amplitude and duration (Batche-

lor et al., 2009; Loewer et al., 2010; Purvis et al., 2012).

A prominent p53 target gene is the cyclin-dependent kinase

(CDK) inhibitor p21. It is crucial for arresting the cell cycle at

the G1-S transition upon DNA damage through inhibition of

CDK2/4 (Deng et al., 1995) and may contribute to the arrest in

G2 phase by inhibiting CDK1 (Bunz, 1998). Moreover, p21 is

essential for preventing endoreduplication during extended cell

cycle arrest (Toettcher et al., 2009) and for induction of cellular

senescence (Muñoz-Espı́n and Serrano, 2014). In addition to

its function as a CDK inhibitor, p21 also contributes to regulating

DNA replication by binding the proliferating cell nuclear antigen

(PCNA) and modulating its interaction with alternative DNA poly-

merases involved in trans-lesion synthesis (Mansilla et al., 2013).

In the present study, we aimed to understand how the dy-

namic p53-driven response to DNA damage is adjusted dynam-

ically to the internal state of individual cells. To this end, we

generated a live-cell reporter expressing fusion proteins of p53

and p21 with fluorescent proteins from endogenous gene loci.

Combining time-lapse microscopy, noninvasive cell cycle

profiling, and shape-based clustering, we identified heteroge-

neous p21 responses that were uncoupled from p53 dynamics.

We show that the observed heterogeneity in p21 levels is
commons.org/licenses/by/4.0/).
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Figure 1. Dynamics of p53/p21 Proteins Are Diverse after DNA Damage in Single Cells

(A) Endogenous reporter system to simultaneously measure p53/p21 in the same cells. Sequences coding for fluorescent proteins were inserted between the

coding sequences (CDSs) and 30 untranslated regions (30UTRs) using CRISPR/Cas9-mediated genome editing (see also Figure S1).

(B) Live-cell time-lapsemicroscopy images ofMCF10A cells expressing p21-mCherry/p53-mVenus at selected time points. Cells were imaged for 24 h, irradiated

with 5Gy ionizing radiation, and followed for additional 24 h. Two example cells with different responses are indicated with colored arrows (see also Video S1).

Scale bar, 30 mm.

(C) Four example time series demonstrating diverse p53 (green) and p21 (magenta) dynamics in individual cells. Dashed lines indicate the time of irradiation.

(D) Quantification of the number and timing of p53 and p21 pulses over the experimental period shows heterogeneous responses in cell populations. See also

Figures S2C–S2F for feature definition and dose-dependent analysis. Pulses occurring within 400 min (p53) and 600 min (p21) after irradiation are highlighted in

(legend continued on next page)
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determined by the initial cell cycle state at the time of damage

and its progression during the damage response. Throughmath-

ematical modeling and genome engineering, we show that the

underlying molecular mechanism depends on the interaction of

PCNA and p21 during S phase and subsequent CRL4cdt2-

mediated proteasomal degradation. Our results highlight how

signaling pathways and cell regulatory networks intertwine to

adjust the cellular response to the individual needs of a given cell.

RESULTS

p21 Dynamics after DNA Damage Diverge from p53
Dynamics in Single Cells
To monitor endogenous p53 and p21 protein levels in individual

cells over time, we applied Cas9-mediated genome engineering

in the nontransformed diploid breast-epithelial cell line MCF10A

to generate C-terminal fluorescent protein fusions (Figures 1A

and S1A). In addition, we tagged endogenous Cbx5 as nuclear

marker to facilitate automated cell tracking (Cohen-Saidon

et al., 2009; Strasen et al., 2018). Using p53 as a paradigm, we

validated that heterozygous insertions are sufficient for moni-

toring the dynamics of endogenous proteins, as expression

from differentially tagged alleles was highly correlated (Fig-

ure S1B). Accordingly, we observed high correlation between

the levels of p53-mVenus and total p53 in individual cells with

heterozygous insertions (Figures S1C and S1D). We further vali-

dated that fusion of mVenus to endogenous p53 did not alter

protein dynamics and cell cycle arrest upon irradiation (Figures

S1E, S1F, and S1H–S1I). When we engineered both p53 and

p21 in the same cell line, the p53 response was unaltered as

well, and we only observed a slight stabilization of p21 andminor

changes in cell cycle arrest upon damage induction (Figures S1G

and S1J).

Using live-cell microscopy, we monitored protein levels for

�20 h during proliferation before challenging cells with 5Gy

ionizing radiation and followed them for additional 24 h (Fig-

ure 1B). Before irradiation, we observed asynchronous pulses

of p53 accumulation as previously described (Loewer et al.,

2010). Infrequently, these pulses correlated with transient p21 in-

duction. Upon damage induction, p53 accumulated in almost all

cells and reached peak levels at about 4 h. The initial p53

response was followed by regular pulses of protein accumula-

tion (Figures 1B and 1C; Video S1). In contrast, we observed het-

erogeneous p21 responses post irradiation: in some cells, p21

accumulated right after p53 induction, while others showed a

delay of several hours before upregulating p21 protein levels

(Figures 1B and 1C).

To systematically analyze p53 and p21 responses, we ex-

tracted number and timing of accumulation pulses for thousands

of cells. In over 95% of cells, we observed p53 pulses within

400 min after irradiation, while a corresponding peak of p21
red and the integrated fraction of cells is indicated. p53 pulses with negative peak

text and STAR Methods for further detail (n = 2644 cells).

(E) Cells were stratified into four subgroups of different responses by stepwise bin

cell with color indicating Z-normalized fold-change. Cell numbers are indicated i

(F) Population level of subgroups. Lines indicate the median protein levels in each

magenta, p21). The number of cells in each subgroup is indicated. Results are re
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accumulation was present in only half of the cells (Figure 1D).

Moreover, most cells showed only one p21 pulse despite

repeated p53 pulses (Figures 1D and S2F). Similar homoge-

neous p53 and heterogeneous p21 responses were observed

upon higher irradiation doses, excluding that varying damage

levels caused diverging p21 dynamics (Figures S2A–S2F).

Heterogeneity in p21 Dynamics Is Determined by Cell
Cycle State and Progression
To gain deeper insights into heterogeneous p21 responses, we

grouped time-series data according to shape-based distance

(SBD) (Paparrizos and Gravano, 2015). SBD tolerates both

amplitude and time variances, allowing pairwise comparisons

of single-cell trajectories. Combining binary tree and k-centroid

clustering, we grouped cells into four subgroups (Figures 1E,

1F, and S2G). In this analysis, about 40% of cells reacted with

immediate accumulation of p21 post damage. These cells could

be further stratified into subgroups with different duration of p21

accumulation (Figure 1F). The remaining cells showed delayed

p21 responses and were further classified into subgroups ac-

cording to the timing of p21 accumulation (Figure 1F).

We next determined for each cell the cell cycle phase at time of

damage and at the end of the observation period. Cell cycle

stages at damage induction were estimated from the timing of

the last division before irradiation, which was identified as bisec-

tion of nuclear marker intensity (Figures 2A and S3A). We

confirmed this approach in an independent experiment using

5-ethynyl-2ʹ-deoxyuridine (EdU) labeling and staining of cell cy-

cle markers (Figure 2B). To determine cell cycle states at the end

point, cells were labeled with EdU during the last 30 min of the

experiment, and nuclear sizes as well as DNA contents were

measured using an intercalating dye. Based on these measure-

ments, we constructed a semisupervised classification process

(Figures 2A, 2C, and S3B–S3F) and validated it by comparison to

flow cytometry data (Figure S3G).

This classification indicated that cells showing an immediate

p21 response were mainly damaged in G1 or G2 phase (Figures

2D, S4A, and S4B), which was validated by 5-bromo-20-deoxy-
uridine (BrdU) staining (Figure S4E). Most of these cells remained

arrested in the initial cell cycle phase and showed sustained

accumulation of p21. Another part of cells damaged in G1 phase

progressed through the cell cycle and ended in either S or G2

phase. Interestingly, these cells showed only transient p21 re-

sponses (Figures 2D, S4A, and S4B). In cells progressing all

the way to G2 phase, we again observed increasing p21 levels

at the end point.

Based on our cell cycle estimation, most cells showing a de-

layed p21 response were damaged during S phase and arrested

in G2 phase (Figures 2D, S4C, and S4D). They were mainly

distinguished by the onset of p21 accumulation, which corre-

lated with the time of the last division before damage induction
time correspond to p53 pulses during normal cell cycle progression. See main

ary shape-based clustering (see STARMethods). Each line represents a single

n Figure 1F.

group over time, shaded areas indicate the 25th to 75th percentile (green, p53;

presentative for five independent replicates.
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Figure 2. p21 Dynamics Depend on Cell Cycle State and Progression

(A) Experimental integration of cellular dynamics and cell cycle progression. We estimated the initial cell cycle state by monitoring time of division before damage

induction. We then analyzed cell cycle states at experimental endpoints by measuring EdU incorporation as well as nuclear size and DNA content by Hoechst

staining. Finally, we combined cell cycle measurements with clustered single cell time series of p53 and p21 protein levels (see also Figure S3).

(B) Correlation between the time of division and cell cycle state under normal condition was confirmed by EdU labeling and immunofluorescence staining of cell

cycle markers. p21R/+/p53Y/+/cbx5C/C cells were imaged for 24 h and cell division events were recorded. EdU was added in the medium to label S phase cells

30 min before the end. Right after imaging, single cell immunofluorescence staining was performed to determine G1 phase (CyclinB1low) cells and G2 phase

(CyclinB1high) cells (n = 737, 923, and 644 for G1, S, and G2 phase cells).

(legend continued on next page)
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(Figures S4F and S4G). Our observation of reduced p21 levels

during S phase was consistent with previous reports in S phase

arrested or synchronized cells (Ciznadija et al., 2011; Gottifredi

et al., 2001, 2004) and could be validated in additional epithelial

cell lines (Figure S4H). Synchronization in G2 provided evidence

for a causative relationship between delayed p21 accumulation

and cell cycle state (Figure S4I).

Based on time of last division, we noticed that about 10% of

cells classified as having a ‘‘delayed’’ p21 response were

damaged in G1 phase. Re-examining their p21 response re-

vealed that these cells showed an immediate and sustained

response, albeit at lower amplitude, and remained arrested in

G1 (‘‘delayed 1,’’ Figures 2D and S4C. For about 160 cells, the

initial cell cycle phases could not be identified unambiguously,

as division times before damage were evenly distributed. Most

of these cells divided after damage. Their p21 response was

characterized by a low immediate response followed by

increasing p21 levels at later time points. Taken together, we

observed that p21 dynamics upon irradiation depend on the

initial cell cycle phase and cell cycle progression during the dam-

age response (Figure 2E).

Cell Cycle–Specific p21 Degradation Is Sufficient to
Explain Heterogeneous Responses upon Irradiation
Previous studies showed that p21 degradation is tightly regu-

lated during cell cycle progression (reviewed in Starostina and

Kipreos, 2012). To test whether cell cycle specific p21 degrada-

tion would be sufficient to explain the observed heterogeneity in

individual irradiated cells, we established a corresponding delay

differential equation model (Figure 3A; Table 1; STAR Methods):

d p21 tð Þ½ �
dt

=

8>>><
>>>:

m$ p53 t � tð Þ½ �n
qn + p53 t � tð Þ½ �n � d$ p21 tð Þ½ �; cell in G1 or G2

m$ p53 t � tð Þ½ �n
qn + p53 t � tð Þ½ �n � d$DS$ p21 tð Þ½ �; cell in S

In this model, p21 production is represented by a Hill function

with maximum production ratem, Hill coefficient n= 4 due to tet-

ramerization of p53 and activation threshold q. The time

delay t = 1:4 h reflects the duration of transcription and transla-

tion. Degradation of p21 is reflected by a first-order process,

which is increased between 25- and 100-fold during S phase

(factor DS). Background-subtracted p53 trajectories were taken

as input to fit the model to measured p21 data of thousands of

cells. For individual fits, we observed that our abstract model

was sufficient to reproduce p21 levels in G1 and G2 arrested
(C) Final cell cycle phases at 24 h post damage were determined by EdU labeling

by an edge detection algorithm (see also Figure S3B). As neither DNA content

(see also Figures S3C and S3D), we built a two parameter-based unsupervised c

(D) Identified subgroups of p53/p21 responseswere further stratified according to

indicates cell cycle properties for the corresponding subgroup, with the left side of

the right side the final cell cycle state. If a plot is restricted to a single cell cycle p

phases indicates cell cycle progression during the damage response. Please note

levels in each group over time, shaded areas indicate the 25th to 75th percentile (g

also Figure S4 for detailed analysis.

(E) Correlation between p21 dynamics and cell cycle progression. The percentag

52 Cell Reports 27, 48–58, April 2, 2019
cells (Figures 3B and 3C). However, we observed a systematic

deviation of the timing and amplitude of the p21 peak in the me-

dian of all fits (Figures 3B, 3C, and S5A). We therefore separately

fitted p21 dynamics for only the first 10 h after irradiation. This led

to a better reproduction of peak p21 levels but to larger devia-

tions at later times (Figures S5B and S5C), indicating that cells

react differently to the first and to later p53 pulses (Chen et al.,

2016). When we examined fits for cells in S phase, we found

that our model was able to reproduce p21 dynamics (Figures

3D and 3E). In particular, the delayed accumulation of p21 for

cells damaged in S phase was well reflected. Similarly, prompt

pulse-like p21 responses were observed for cells transitioning

fromG1 to S phase post damage, regardless of the precise value

of DS (Figure S5D). Distributions of the other fitted parameters

were overlapping for all cell cycle profiles (Figure S5E).

An alternative explanation for low p21 levels during S phase is

a decrease in p53-mediated p21 production (Beckerman et al.,

2009; Gottifredi et al., 2001; Mattia et al., 2007). Surprisingly,

the corresponding model fitted single cell data and population

averages equally well (Figures S5F–S5H; STAR Methods). We

only noted that the initial model better reproduced the steep

decrease of p21 frequently happening at theG1/S transition (Fig-

ure S5I). We could further improve its fit by implementing a bio-

logically plausible gradually increasing p21 degradation (Figures

S5J–S5L), while there was conceptually no further possibility to

increase the steepness of the p21 decrease in the alternative

model.

As our modeling efforts could not distinguish unambiguously

between the two possible explanations for heterogeneous p21

responses in S phase cells, we tested both experimentally. To

investigate p21 production, we inserted a destabilized red

fluorescent protein preceded by a porcine teschovirus-1 self-

cleaving2Apeptide (P2A) sequenceat its endogenous locus (Fig-

ure 3F). As the P2A sequence leads to separation of both

polypeptides during translation, the red fluorescent protein

(RFP) signal serves asa reporter for p21production.Using this re-

porter, we observed similar RFP accumulation in S and G1/G2

phase cells post damage, arguing against cell cycle specific

p21 production rates (Figure 3G). We validated this result using

single-molecule fluorescent in situ hybridization (Figure 3H).

Multiple cell cycle dependent degradation mechanisms exist

for p21 (Figure S6A) (Ng et al., 2003; Starostina and Kipreos,

2012) with PCNA/CRL4cdt2-mediated degradation responsible

for low p21 levels during S phase (Figure 3I) (Havens and Walter,

2009). To test whether this mechanism is sufficient to explain the

observed heterogeneity in individual irradiated cells, we pre-

vented the interaction between PCNA and p21 by mutating its

PCNA-interacting peptide box (PIP box, Galanos et al., 2016)
and measurements of nuclear size and content. S phase cells were determined

or nuclear size was sufficient to individually separate G1 and G2 phase cells

lassification to identify G1 and G2 phase cells.

initial cell cycle state and cell cycle progression. For each graph, the placement

the plot indicating the initial cell cycle state at the time of damage induction and

hase, the corresponding cells arrested after damage. A plot covering multiple

that cell cycle phases are not drawn to scale. Lines indicate the median protein

reen, p53; magenta, p21). The number of cells in each group is indicated. See

e of cells in each subgroup is indicated.
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Figure 3. S Phase-Specific Degradation Determines Heterogeneity of p21 Response

(A) Schematic representation of the implemented model with increased p21 degradation during S phase.

(B–E) Comparison of simulated (purple) and measured (magenta) p21 protein levels. Protein dynamics in single cells (left) and medians for multiple cells with the

same cell cycle characteristics (right) are shown. The number of cells analyzed in each category is indicated. Black dashed lines indicate the time of irradiation

(5Gy), blue dashed lines cell divisions. Shaded regions represent the standard error of the median.

(F) Endogenous reporter system to measure p21 production rate. A self-cleaving peptide was inserted between coding sequences of p21 and mCherry.

(G) p21 production rate remains high during S phase. Transcriptional reporter was imaged for 24 h, incubated in EdU-containing medium for 30min and subjected

to 5Gy irradiation, followed by another 24-h imaging and EdU detection. EdU signals were used to isolate S- and G1/G2 phase cells. Basal signals of mCherry

reflecting basal transcription of p21 were subtracted. The resulting levels indicate p21 production rate induced by irradiation. Cell numbers are indicated.

(H) smFISH measurements indicate similar RNA levels of S- and G1/G2 phase cells 4 h after irradiation. Cell cycle-specific RNA levels were determined by

smFISH and EdU labeling in wild-type MCF10A cells (see STAR Methods).

(I) Schematic illustration of PCNA-mediated degradation of p21 and an engineered model to interfere with this degradation (see also Figures S6B and S6C).

(J) p21PIPmut accumulated during all cell cycle phases upon damage. p21PIPmut and control cells (p21wt) were irradiated with 5Gy ionizing radiation and examined

after 5 h. Arrows indicate p21wt cells with delayed responses. Scale bar, 40 mm.

(K) p21PIPmut accumulated during S phase upon damage induction. S phase p21PIPmut cells and control cells (p21wt) cells were pulse-labeled with EdU, subjected

to 5Gy ionizing radiation and imaged for 24 h. Lines indicate the median protein levels of EdU-positive cells in each group over time, shaded areas the 25th to 75th

percentile. Cell numbers are indicated.

See also Figure S5.
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Table 1. Constraints and Start Values for Estimation of Model Parameters

Parameter Unit Constraints for Fit

Interval from which Start

Values for Fits Were Randomly Chosen

m ½m� = Ca:u:h
�1 0<m<100 Maxðp21 dataÞ ½100;2000�

q ½q� = Ca:u: 0< q<Max p53 datað Þ 0:25$Max p53 datað Þ;Max p53 datað Þ½ �
d ½d� = h�1 0< d<1:0 ½0; 1:0�
tS ½tS� = h 23< tS < 46 ½23; 46�
Ca:u: are arbitrary concentration units and tS indicates the beginning (for cells irradiated in G1 and progressing to S phase) or the end of S phase (for

cells irradiated in S phase and progressing to G2). Time tS is counted from the beginning of the experiment.
through genome engineering. As degradation of p21 during

S phase may be necessary for proliferation, we added a

small molecule-assisted shutoff (SMASh) tag, which degrades

p21PIPmut in presence of asunaprevir (ASV) to permit proliferation

(Figures S6B–S6E) (Chung et al., 2015). Before experiments, we

removed ASV to allow p21PIPmut to freely accumulate. Interest-

ingly, p21PIPmut showed a homogeneous response after damage

induction and accumulated immediately in S phase cells (Figures

3J and 3K; Video S2).

PCNA-Mediated Degradation Determines
Heterogeneous p21 Dynamics and Protects Genomic
Integrity upon DNA Damage
To determine how altered PCNA-p21 interactions influence the

damage response, we performed a double-pulse labeling exper-

iment with BrdU and EdU and groupedmutant cells according to

cell cycle progression (Figures 4A, 4B, S6F, and S6G). As ex-

pected, dynamics of mutant and wild-type p21 were similar in

G1 and G2 arrested cells (compare Figure 4B with Figure 2D).

In S phase, p21PIPmut accumulated immediately as described

above. Surprisingly, levels of mutated p21 peaked around 4 h

and subsequently decreased inmost cell cycle phases. To inves-

tigate if this was a consequence of pulsatile p53 dynamics or

indication of p21 degradation by alternative mechanisms, we

fitted our abstract mathematical model to the corresponding sin-

gle cell data. We were able to fit p21 dynamics from both G1/G2-

arrested cells and cells progressing through S phase with the

same equation and overlapping parameter distributions,

including only p53-mediated p21 production as well as unregu-

lated first-order degradation; therefore, we conclude that upon

irradiation, the contribution of other p21 degradation mecha-

nisms is neglectable in MCF10A cells (Figures 4C and S6H).

Next, we investigated how accumulation of mutated p21 dur-

ing S phase affected cell cycle progression and observed a

noticeable increase in the number of cells in G1 phase. This em-

phasizes the contribution of Ctd2-mediated degradation to rapid

removal of p21 around the G1-S transition (Barr et al., 2017) and

indicates a stronger G1 checkpoint in absence of p21-PCNA in-

teractions (Figures 4D and S6I). In contrast, the fraction of cells in

S phase was marginally lower in mutant compared with wild-

type cells, providing no sign for severely delayed S phase pro-

gression. Furthermore, we found no indication of increased

endoreduplication, which was suggested in previous studies

(Kim et al., 2008).

Despite a relatively minor effect on cell cycle progression, we

observed an increased frequency of chromosomal aberration
54 Cell Reports 27, 48–58, April 2, 2019
24 h after damage induction, most notably chromosome fusions

(Figures 4E and 4F). These aberrations led to increased forma-

tion of micronuclei after cells completed mitosis (Figure 4G).

Together, these results indicate that accumulation of mutant

p21 during S phase led to either decreased repair efficiency or

additional damage due to malfunctioning replication. This in-

crease in genomic instability led to an increased induction of ter-

minal cell fates, specifically senescence (Figure 4H).

DISCUSSION

Tomediate reliable cell fate decisions, cellular signaling needs to

efficiently process information in a noisy environment and inte-

grate it with dynamically changing internal states. Previous

studies showed that excitability in the p53 network allows to

sense DNA damage with high specificity, sensitivity, and robust-

ness by inducing uniform accumulation pulses of the tumor sup-

pressor (Batchelor et al., 2008; Mönke et al., 2017). A filter based

on posttranslational modifications subsequently differentiates

between transient damage during normal proliferation and sus-

tained damage upon external insults by keeping accumulating

p53 inactive and preventing expression of target genes, such

as p21 (Loewer et al., 2010). In this study, we highlight another

layer of regulation where the p53 response is shaped according

to the internal state of the cell. Despite relatively homogeneous

p53 dynamics upon ionizing radiation, p21 responses were

highly diverse, as has been previously reported for synchronized

cell populations (Ciznadija et al., 2011) or in cancerous MCF7

cells (Stewart-Ornstein and Lahav, 2016). Using a combined

computational and experimental approach to link signaling

dynamics to cell cycle state and cell fate determination in thou-

sands of unperturbed living cells, we show that S phase–specific

PCNA/CRL4cdt2-mediated p21 degradation is sufficient to fully

explain the observed heterogeneity.

Cells need p21 degradation for faithful repair and replication of

the genome, as inappropriate p21 accumulation during S phase

led to increased genomic instability. Due to modulating the bind-

ing of DNA polymerase-d and -ε as well as DNA methyltransfer-

ase-1 (DNMT1) to PCNA, high p21 levels may interfere directly

with replication (Abbas and Dutta, 2009; Cazzalini et al., 2010).

In addition, it was shown that exogenous overexpression of

p21 can lead to deregulated origin licensing and replication

stress (Galanos et al., 2016). Alternatively, p21 accumulation

may interfere with homology dependent repair, which relies on

CDK activity at multiple stages (Esashi et al., 2005; Huertas

et al., 2008; Ira et al., 2004).
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Figure 4. PCNA-Mediated Degradation Determines Heterogeneous p21 Response

(A) Double-pulse labeling experiment was performed to determine cell cycle progression in p21PIPmut cells. p21PIPmut cells were imaged for 24 h in the absence of

ASV, incubated in BrdU-containingmedium for 30min, subjected to 5Gy ionizing radiation and imaged for another 24 h, followed by EdU incorporation for 30min,

fluorescence bleaching, and single-cell immunofluorescence to detect BrdU and EdU signals (see also Video S2). Scale bar, 40 mm.

(B) p21PIPmut shows homogeneous dynamics. Cell cycle progression was determined by combining cell division analysis and quantification of BrdU and EdU

signals. The dynamics of p21PIPmut are independent of cell cycle state and cell cycle progression. See Figure 2D for detailed explanations. Cell numbers are

indicated.

(legend continued on next page)
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Interestingly, we observed a bifurcation in the response of

cells damaged in G1, as they either arrested or progressed to

S phase. This bifurcation was reflected in the corresponding

p21 dynamics, while the p53 response remained relatively ho-

mogeneous. Our analysis of kinetic patterns suggests that again

degradation rates might differ (Figure S4J). Recent research

showed that the ubiquitin ligases CRL4Cdt2 and SCFSkp2

together mediate p21 degradation before the G1-S transition in

undamaged cells (Barr et al., 2017). The increased fraction of

G1 cells observed in p21PIPmut cells indicates that upon damage

induction, CRL4Cdt2-mediated degradation contributes to re-

stricting the G1 checkpoint as well. In contrast, we did not

observe indications that alternative mechanisms such as

SCFSkp2- or Mdm2-mediated degradation during late G1 and

early S phase (Jin et al., 2003, 2008) contribute noticeably to

shaping p21 dynamics upon DNA damage.

Integrating information about the cellular state at the level of

target gene stability allows the p53 network to fine-tune its

response while maintaining robust activation of its many

response genes. It will now be interesting to systematically char-

acterize how other target genes such as pro- or antiapoptotic

proteins are regulated during cell cycle progression and the

DNA damage response. Understanding heterogenous p53 re-

sponses will be important in the context of cancer therapy as

well, as they correlate with drug resistance (Paek et al., 2016).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

p53 antibody (DO-1), mouse Santa Cruz Cat#sc-126; RRID: AB_628082

p21WAF1 antibody (Ab-1), mouse Calbiochem Cat#OP64; RRID: AB_213423

p21WAF1/Cip1 antibody (12D1), rabbit Cell Signaling Technology Cat#2947; RRID: AB_823586

BrdU antibody, rabbit Rockland Cat#600-401-C29; RRID: AB_10893609

Monoclonal CyclinB1 antibody (GNS1), mouse Thermo Fisher Cat#MA5-14319; RRID: AB_10987286

GAPDH antibody, rabbit Sigma-Aldrich Cat#G9545; RRID: AB_796208

Recombinant DNA

hCas9 (Mali et al., 2013); Addgene Addgene#41815

hCas9n (Mali et al., 2013); Addgene Addgene#41816

sgRNA cloning vector (Mali et al., 2013); Addgene Addgene#41824

pCS6-YFP-SMASh (Chung et al., 2015); Addgene Addgene#68853

sgRNA_AL This paper N/A

sgRNA_p53-T5 (guide sequence: GGAGAATGTCAG

TCTGAGTC)

This paper N/A

sgRNA_p53-T8 (guide sequence: TCCCCTGCCATT

TTGGGTTT)

This paper N/A

sgRNA_p53-T14 (guide sequence: TCTCCCTCCCC

TGCCATTTT)

This paper N/A

sgRNA_cbx5-T2 (guide sequence: TCTTTGTTTTC

CGCATCCTC)

This paper N/A

sgRNA_cbx5-T4 (guide sequence: AAACAGCAAA

GAGCTAAAGG)

This paper N/A

sgRNA_cbx5-T5 (guide sequence: ACAGCAAAGA

GCTAAAGGAG)

This paper N/A

sgRNA_p21-T2 (guide sequence: GGAAGCCCTAA

TCCGCCCAC)

This paper N/A

sgRNA_p21-T3 (guide sequence: GGCTTCCTGTG

GGCGGATTA)

This paper N/A

sgRNA_p21-T7 (guide sequence: CTGCAGTCCTG

GAAGCGCGA)

This paper N/A

sgRNA_p21Exon2-T2 (guide sequence: CGGCGGCA

GACCAGCATGAC)

This paper N/A

sgRNA_p21Exon2-T3 (guide sequence: GCATGTCCG

CACCTGTCATGC)

This paper N/A

pC2aN This paper N/A

pAAV-CBX5-CeSEPT This paper N/A

pAAV-p53-VSEPT This paper N/A

pAAV-p21-CSEPT This paper N/A

pDO-p21mut-mCherry-smash-p2a-neo This paper N/A

pDO-p21-P2A-mCherry-BSD This paper N/A

Chemicals, Peptides, and Recombinant Proteins

5-Bromo-20-deoxyuridine (BrdU) Sigma-Aldrich Cas#59-14-3

Asunaprevir (ASV) American Radiolabeled

Chemicals, Inc

Cas#630420-16-5

Anti-Evaporation Oil Ibidi Cat#50051

Rat Tail Collagen I Corning Cat#354236

(Continued on next page)
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Hoechst 33342 Invitrogen Cat#H3570

Propidium Iodide Acros Organics Cas#25535-16-4

RNase A AppliChem Cat#9001-99-4

DNase I Roche Cat#4716728001

FluoroBrite Thermo Fisher Cat#A1896701

HEPES Thermo Fisher Cat#A15630106

G418 Biochrom Cat#A2912

Lipofectamine 3000 Transfection Reagent Thermo Fisher Cat#L3000015

RO3306 Axon Medchem Cat# 1530

Neocarcinostatin (NCS) Sigma-Aldrich Cas#9014-02-2

Critical Commercial Assays

Phire Animal Tissue Direct PCR Kit Thermo Fisher Cat#F140WH

T7 Endonuclease I New England BioLabs Cat#M0302S

QIAquick Gel Extraction Kit QIAGEN Cat#28706

QIAprep Spin Miniprep Kit QIAGEN Cat#27106

QIAquick DNA Mini Kit QIAGEN Cat#51306

EdU Click-647 Carl Roth Cat#7777.1

Gibson Assembly� Master Mix New England BioLabs Cat#E2611L

Deposited Data

Single cell time series This paper https://doi.org/10.17632/zsd79s262s.1

Experimental Models: Cell Lines

Human: HEK293T ATCC CRL-3216

Human: MCF10A ATCC CRL-10317

Human: A549 ATCC CRM-CCL-185

Human: MCF7 ATCC HTB-22

Human: RPE1-hTERT ATCC CRL-4000

Human: MCF10A p53Y/+ / cbx5C/C This paper N/A

Human: MCF10A p53Y/R / cbx5C/C This paper N/A

Human: MCF10A p21R/+ / p53Y/+ / cbx5C/C

(also indicated as p21wt in Figure 4)

This paper N/A

Human: MCF10A p21PIPmut This paper N/A

Human: MCF10A p212a-R/+ / p53Y/+ / cbx5C/C

(transcriptional reporter)

This paper N/A

Oligonucleotides

see Table S1 This paper N/A

Bacterial and Virus Strains

Ad-cre virus stock Vector Biolabs Cat #1045

Software and Algorithms

Custom image analysis algorithms This paper N/A

FlowJo software FlowJo, LLC https://www.flowjo.com/

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

MATLAB MathWorks https://www.mathworks.com/

Mathematica Wolfram https://www.wolfram.com/mathematica/

Python https://www.python.org/ N/A

NIS-Elements Advanced Research Nikon https://www.nikoninstruments.com/

en_DE/Products/Software/NIS-Elements-

Advanced-Research
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Inverted fluorescence microscope Nikon Ti-E inverted

Biological irradiator Precision X-Ray X-RAD 320

Glass bottom microwell dishes MatTek Part No: P35G-1.5-14-C

m-Plate 24 Well Black ibidi Cat#82406

m-Dish 35 mm, high ibidi Cat# 81156
CONTACT FOR REAGENTS AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Alexander

Loewer (loewer@bio.tu-darmstadt.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
The female human non-transformed breast epithelial cell line MCF10A was maintained in Dulbecco’s Modified Eagle Medium sup-

plemented with 5%horse serum, 20 ng/ml EGF, 0.5 mg/ml Hydrocortisone, 100 mg/ml Cholera toxin and 10 mg/ml Insulin according to

established protocols (Debnath et al., 2003). The female human adenocarcinoma cell line MCF7 derived from breast epithelial tissue

was maintained in RPMI 1640 with 10% fetal calf serum; the male human carcinoma cell line A549 derived from lung epithelial tissue

and the female human osteosarcoma cell line U-2 OS derived from a sarcoma of the tibia, were maintained in McCoy’s 5A with 10%

fetal calf serum All media contained 2mM Glutamax, 100 U/ml penicillin and 100 mg/ml streptomycin. All cell lines were cultures at

37�C with 5% CO2 at saturated humidity.

METHOD DETAILS

Plasmids and cloning
Cas9 (Addgene plasmid # 41815), Cas9n (Addgene plasmid # 41816) and sgRNA cloning vector (Addgene plasmid # 41824) are gifts

from George Church’s lab (Mali et al., 2013). Wemodified the sgRNA cloning vector by inserting about 80 base pairs and an AgeI site

(the final product named sgRNA_AL) to reduce the cost and complexity for cloning further sgRNAs. All guide sequences were

selected using CRISPR Design tool (http://crispr.mit.edu). Efficiency of sgRNAs was tested using T7 endonuclease I assay in

HEK293T cells (Ran et al., 2013). Repair templates were generated using Gibson Assembly (New England Biolabs). The SMASh frag-

ment was amplified from pCS6-YFP-SMASh, a gift from Michael Lin (Addgene plasmid # 68853). All primer sequences are listed in

supplemental Table S1, vector maps and sequences are available upon request.

Cell line engineering
To tag endogenous loci, MCF10A cells were seeded in a 12-well plate at a density of 2.5x105 cells/well 24 hours prior to transfection

and transfected with 495 ng Cas9n or Cas9 plasmid, 495 ng sgRNA plasmids and 10 ng linearized repair template DNA using Lip-

ofectamine 3000 according to manufacturer’s recommendations. After 3 days, cells were transferred to 10 cm plates and selected

with G418 (400 mg/ml). For generating p21PIPmut cell line, 1 mM asunaprevir (ASV) was added in the medium from the time of trans-

fection to degrade stabilized mutant p21. After about 2 weeks, single-cell derived colonies were screened by PCRs using Phire

Animal Tissue Direct PCR Kit. Untagged alleles from heterozygotes were sequenced to ensure that no alterations occurred. Four

most-likely off-target regions were amplified and sequenced. Excision of selection cassettes was performed as previously described

(Rago et al., 2007). In brief, 5x105 cells of selected clones were plated in a 25 cm2 cell culture flask. 24 hour later, 1 mL of Ad-cre virus

stock (107 plaque forming units) was added to the flask and incubated for 24 hours. Then cells were rinsed with 1x HBSS, detached

with 1 mL of trypsin-EDTA, diluted to 50�100 cells/10 mL and seeded in 10 cm plates. After another two weeks, each colony was

moved into two separate wells for negative selection. G418-sensitive lines were carefully validated by cell cycle assay, microscopy

and western blot.

Time-lapse microscopy
1.5x105 cells were plated in 35 mm collagen-coated glass bottom dishes (MatTek), 35 mm m-dishes or 24-well m-plates (both ibidi)

two days before experiments. If applicable, 10 mM R03306 was added 16 h before the experiment for synchronization in G2-phase.

Two hours before imaging, cells were washed twice with 1xPBS and incubated in FluoroBrite supplemented with 0.5% horse serum

and growth factors (see above). If necessary, 1 mL Anti-Evaporation Oil (Ibidi) was added on the top of medium to prevent evapo-

ration. Dishes were placed in an incubation chamber with constant temperature (37�C), CO2 concentration (5%), and humidity. Cells
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were imaged every 15 min or 20 min on a Nikon Ti inverted fluorescence microscope with a Hamamatsu Orca R2 or Nikon DS-Qi2

camera and a 20x plan apo objective (NA 0.75) controlled by Nikon Elements software. Appropriate filter sets were used (mCerulean:

438/24 nm excitation (EX), 458 nm dichroic beam splitter (BS), 483/32 nm emission (EM); mVenus: 500/24 nm EX, 520 nm BS, 542/

27 nmEM;mCherry: 562/40 nmEX, 593 nmBS, 624/40 nmEM; Cy5: 628/40 nmEX, 692/40 nmEM; DAPI: 387/11 nmEX, 409 nmBS,

447/60 nm EM). Double strand DNA breaks were induced by X-ray irradiation at dose rate of 1Gy / 26 s (250 KeV, 10 mA).

Image analysis
As previously described (Finzel et al., 2016), cells were isolated and tracked from time-series images using custom-written MATLAB

scripts based on codes developed by the Alon lab (Cohen et al., 2008) and the CellProfiler project (Doan et al., 2016). In brief, we first

applied flat field correction and background subtraction to raw images. Then image registration was performed with a custom

Python3-based tool to compensate for movement from removing dishes for irradiation and/or endpoint assays. In brief, shifted pixels

between two images were identified from the maximum convolution calculated using fast Fourier transform method (scipy package

(Oliphant, 2007). The biggest common area was then cropped for all time points. We next segmented individual nuclei from nuclear

marker images using thresholding and seededwatershed algorithms. Segmented cells were then tracked in time series images using

a greedy match algorithm. Only cells trackable through the full period of experiments were considered. Cells were tracked in back-

ward direction from the last to the first-time point.

Single cell clustering
Similarity between trajectories was calculated using shape-based distance (SBD) as previously defined (Paparrizos and Gravano,

2015). In brief, p21 signals after irradiation were Z-normalized to remove scaling variance. The distance between each two pair of

trajectories was defined based on cross-correlation, which is able to remove shift variances. This resulted in a vector for

each cell, representing the similarity between it and all other cells (including itself). Based on these vectors, K-centroids clustering

(k = 2) and binary tree were performed and resulted in four subpopulations of trajectories with different shapes. All the scripts for

SBD-based clustering were written in MATLAB.

Feature analysis of single cell trajectories
The feature analysis of single cell trajectories was performed using self-written MATLAB scripts. As shown in Figure S2C, the steady-

state level measured during non-stressed periods was determined as basal level (e.g., C0
p53 indicates basal level of p53). Once the

protein level increased to as much as 1.3x the basal level, a ‘pulse’ was considered to form; once it went down to basal level and

accumulated again to 1.3x the basal level, second ‘pulse’ was considered to form and so on. This filter, which applies to both

p53 and p21, allowed capturing the main patterns while removing noise (e.g., T1st
p21 and T1st

p53 indicate first peak time of p21

and p53). In some cells, the sustained p21 may be too weak (< 1.3x) to be counted as a ‘pulse’. To determine the time when cells

start to respond, we defined reacting time as the time when protein levels reach the 15 percentiles of the difference between

peak and basal levels (Trct
p53). To determine how fast dynamics moved down, we defined the failing rate — the averaged rate dy-

namics moved from peak down to basal level (if not, endpoint level).

Cell cycle progression
To assess the initial cell cycle phases during live-cell imaging, cell division events were monitored and analyzed for a duration of

20�24 hours prior to irradiation, followed by DNA damage induction and imaging for additional 24 hours. The time of cell division

was used to estimate cell cycle phase at time of damage. Individual labeling experiments were performed to validate this estimation

(see Figure 2B for details). Final cell cycle measurement was performed as previously described (Gut et al., 2015). Briefly, 10 mMEdU

(EdU Click-647, Carl Roth GmbH + Co. KG) was added to cell cultures 30 minutes before the end of live-cell imaging and detected

immediately after imaging. EdU intensities were sorted and an edge detection algorithm was performed to identify S phase cells. In

order to distinguish G1 and G2 phase cells, Hoechst staining was performed to measure the DNA content and nuclear sizes, upon

which cells were classified into two groups (G1-phase and G2-phase) using unsupervised classification.

Considering that mutant p21may alter normal cell cycle progression in p21PIPmut cells, we performed double-pulse labeling exper-

iment instead. Briefly, p21PIPmut cells were incubated in 10 mM of BrdU and EdU for 30 min before and 24 hours after irradiation,

respectively. After live-cell imaging, cells were fixed with 2% paraformaldehyde, permeabilized with 0.1% Triton X-100 in 1xPBS

and blocked with 10% goat serum in 1xPBS. Then endogenous fluorescent fusion proteins were bleached with 3% H2O2 and

20 mM HCL (Lin et al., 2016) in order to free fluorescent channels for subsequent immunofluorescence staining. EdU detection

was performed following manufacturer’s instruction (EdU Click-647, Carl Roth GmbH + Co. KG). Then primary antibody against

BrdU (1:500, anti-rabbit, Rockland) in DNaseI (0.01 unit/ml) and secondary antibody (Alexa Fluor 488, 1:700, anti-rabbit) were

used to detect BrdU, followed by Hoechst staining and imaging. Before automated cell segmentation and tracking, endpoint images

were aligned to live-cell images by an image registration tool written in Python3.
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Flow cytometry-based cell cycle analysis
To validate endogenous reporters, wild-type MCF10A, p53Y/+ / cbx5C/C cells and p21R/+ / p53Y/+ / cbx5C/C cells were plated at a

density of 3�3.5x105 cells in 6 cm plates two days before experiments. Cells were exposed to 5Gy X-ray radiation, harvested at

indicated time points, washed with 1xPBS, fixed with ice-cold 80% Ethanol / 20% 1xPBS and stored at �20�C until all samples

were collected. During flow cytometry analysis, cells were washed with 1xPBS and stained with 25 mg/ml PI in 0.1% Triton

1xPBS with 0.2 mg/ml RNase A and analyzed using flow cytometry (Cytomics FC500, Beckman Coulter). Cell cycle phases were

determined based on the DNA content in FlowJo software (FlowJo, LLC).

Single-cell Immunofluorescence
Cells were plated at a density of 1.5x105 cells in 3.5 cm collagen-coated glass bottom dishes (MatTek) or at a density of 2x105 cells on

coated poly-L-lysine coverslips in 6well plates two days before experiments. After irradiation, cells were fixed at indicated time points

with 2% paraformaldehyde. Cells were permeabilized with 0.1% Triton X-100 in 1xPBS, blocked with 10% goat serum in 1xPBS,

incubated with primary antibody in 1% BSA in 1xPBS, washed with 0.1% Triton X-100 in PBS, and incubated with secondary anti-

body conjugated with Alexa Fluor 488 / 647 (Thermo Fisher Scientific) in 1% BSA in PBS. After washing, cells were counterstained

with 2 mg/ml Hoechst in 0.1% Triton X-100/PBS and imaged with a 20x plan apo objective (NA 0.75) using appropriate filter sets.

Automated segmentation was performed in MATLAB (MathWorks) with algorithms from CellProfiler (Carpenter et al., 2006). Manual

counting was performed blinded.

smFISH hybridization
MCF10A cells were cultured for 24 h on 18 mm uncoated coverglass (thickness #1). Cells were washed on ice, fixed with 2% Para-

formaldehyde for 10 min at room temperature and permeabilized over night with 70% Ethanol at 4�C. Custom probe sets for single

molecule FISH labeled with CalFluor-610, were designed using Stellaris RNA FISH probe designer (Biosearch Technologies) on the

reference sequences NM_000389.4. Hybridization was performed at a final concentration of 0.1 mM probe following manufacturer’s

instructions. Following hybridization procedure, cells were stained with EdU Click-488 ROTI kit for imaging (Carl Roth) for 15 min ac-

cording tomanufacturer’s instructions. Cover glasses weremounted on Prolong Gold Antifade (Molecular probes, Life technologies).

For single molecule RNA quantification, 21 z stacks of each cell were acquired with 300 nm step-width. Quantification of RNA counts

per cell was performed using FISH Quant (Mueller et al., 2013) and custom written MATLAB software. About 50 cells were analyzed.

Immunoblotting
Cells were plated at a density of 3.5x105 cells in 6 cm plates two days before experiments. After irradiation, cells were harvested at

indicated time points to extract proteins by lysis in the presence of protease and phosphatase inhibitors. BCA assay (Thermo Fisher

Scientific) was used to measure total protein concentrations. Equal amounts of protein were separated by electrophoreses on 10%

SDS polyacrylamide gels and transferred to nitrocellulose membranes (Thermo Fisher Scientific) by electroblotting (Bio Rad). We

blocked membranes with 5% non-fat dried milk, incubated them overnight with primary antibody, washed them, incubated them

with secondary antibody coupled to peroxidase (#31460, Thermo Fisher Scientific), washed again and detected protein levels using

chemoluminescence (ECL Prime, GE Healthcare).

Metaphase chromosome analysis
Cells were plated at a density of 5x105 cells in 10 cm plates two days before experiments. 30 min before irradiation, 10 mMEdU (Carl

Roth) was added. After incubation, EdU was removed, cells were washed and irradiated with 5Gy X-rays. 22 h after irradiation, we

added 100 mg/ml Colcemid (GIBCO) and 5 mM Caffeine and harvested cells 2 h later. Cells were pelleted by centrifugation, resus-

pend in 75mM KCl and incubated for 35 min at 37�C. After centrifugation, 10 mL fresh fixative (3 parts Methanol, 1 part 100% acetic

acid) was added dropwise while vortexing. After 10 min incubation, this step was repeated twice with intervening incubations at 4�C.
Chromosomes were spread by dropping resuspended cells to a coverslip. EdU staining was performed following manufacturer’s in-

structions (EdU Click-647, Carl Roth), DNA was stained with 2mg/ml Hoechst 33342 in 0.1% Triton/PBS. After final wash steps in

PBS, coverslips were mounted in Prolong Antifade.

Senescence-associated b-Galactosidase assay
0.3 3 105 cells were seeded 2 days before being irradiated with 5Gy. 3 days after irradiation, cells were fixed with 2% paraformal-

dehyde/0.2% glutaraldehyde (Sigma-Aldrich), washed in 1x PBS and incubated for 20 h in staining solution (150 mM NaCl, 40 mM

citric acid, 40 mM NaH2PO4, 2 mM MgCl2, 5 mM K4Fe(CN)6, 5 mM K3Fe(CN)6, and 1 mg/ml X-gal, all Carl Roth). Stained cells were

manually quantified.

Mathematical modeling
The model was implemented in WolframMathematica 11 by different delay differential equations (DDEs) depending on the cell cycle

characteristics of the considered cell, i.e., its initial cell cycle phase and its cell cycle stage at the end of the measurement.
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For cells that were irradiated in the G1 phase and progressed to S phase, the p21 dynamics was modeled by the following DDEs:

d p21 tð Þ½ �
dt

=

8><
>:

m$ p53 t � tð Þ½ �n
qn + p53 t � tð Þ½ �n � d$ p21 tð Þ½ �; t < tS

� d$ p21 tð Þ½ �; tRtS

(Model 1.1)
d½p21ðtÞ�
dt

=

8>>><
>>>:

m,½p53ðt � tÞ�n
qn + ½p53ðt � tÞ�n � d,½p21ðtÞ�; t < tS

m,½p53ðt � tÞ�n
qn + ½p53ðt � tÞ�n � d,DS,½p21ðtÞ�; tRtS

(Model 2.1)

where tS indicates the onset of S phase.

In model 2, p21 degradation is suddenly increased by the factor DS after the beginning of S-phase. However, as CRL4Ctd2 sub-

strates are degraded in sequential order with p21 being a less affine substrate (Coleman et al., 2015), it is reasonable to assume

a gradual increase of the degradation rate upon S-phase entry, which we implemented in the following model:

d½p21ðtÞ�
dt

=

8>>><
>>>:

m,½p53ðt � tÞ�n
qn + ½p53ðt � tÞ�n � d,½p21ðtÞ�; t < tS

m,½p53ðt � tÞ�n
qn + ½p53ðt � tÞ�n � d,DSðtÞ,½p21ðtÞ�; tRtS

(Model 3.1)

with

DSðtÞ= 50� 49,expð � 0:25,t + 0:25,tSÞ:
As we lacked quantitative information about the biological processes underlying such a gradual increase of the degradation rate, we

chose a simple saturation function for DSðtÞ that preserves continuity at the onset of S phase, i.e., DSðtSÞ = 1, and reaches a

maximum value of DS;N = 50, corresponding to the value of DS in model 2. An illustration of this function is shown in Figure S5J.

Mathematica 11 was also used to fit the model to the p21 data of single cells. Before performing the fits, the background, which

was estimated by the smallest measured value, was subtracted from the p21 and p53 data of each cell. We performed the fits using

the ‘NonlinearModelFit’ function with the ‘NMinimize’ method. For the minimization of the quantity c2 =
P
i

jri j 2, where the ri are re-

siduals giving the difference between each original data point and its fitted value, the Nelder-Mead algorithm (‘NelderMead’) was

used. We set the maximum number of iterations (‘MaxIterations’) to 2000 and the ‘AccuracyGoal’ as well as the ‘PrecisionGoal’

to 50. The constraints and the start values that were used to fit the model parameters are shown in Table 1 (see Table S2 for further

details):

For cells that were irradiated in S-phase and progressed toG2, we set the value of the degradation rate to d= 0:2 and did not fit it, as

otherwise the fitting procedure took very long and the algorithm tended to find solutions with dz0, which would not be realistic.

Furthermore, for model 2, we assumed that the degradation rate was DS = 50 times higher during S phase than in G1 or G2, unless

indicated otherwise. The time delay t was always set to t = 1:4 h, since we presumed that the delay in p21 expression due to the

duration of transcription and translation should be similar for every cell. In addition, we chose a hill coefficient of n= 4 for the p53-

dependent p21 activation, as p53 is a tetramer. In order to ensure a good fit quality and to make sure that our results did not depend

on the provided initial values for the fit parameters, we performed for each considered cell a fit with 20 different randomly chosen

initial values of the fit parameters and selected the best fit for averaging, unless indicated otherwise.

The following parameters were used for the presented single cell fits: m = 218:66, q = 209:84, d= 0:27 (Figure 3B);

m = 82:83, q = 232:46, d= 0:16 (Figure 3C); m = 399:73, q = 204:90, d= 0:77 , DS = 50, tS = 9:32 (Figure 3D); m = 28:08,

q = 152:11, d= 0:2 , DS = 50, tS = 12:84 (Figure 3E). m = 418:65, q = 196:18, d= 0:85 , tS = 8:33 / m = 27:88, q = 151:02,

d= 0:2 , tS = 12:74 (Figure S5F, G1-S / S-G2); m = 398:31, q = 204:76, d= 0:77 , tS = 8:92 (Figure S5I, model gradually

incr. deg.).

For p21PIPmut cells, we assumed unaltered p21 degradation and transcription rates during S phase and hence modeled the p21

dynamics for all cell cycle phases by

d½p21ðtÞ�
dt

=
m,½p53ðt � tÞ�4
q4 + ½p53ðt � tÞ�4 � d,½p21ðtÞ�: (Model 4)

In this case, we fitted the p21 dynamics only for the first 10 hours after the irradiation and assumed a slightly smaller time delay

of t = 1:2 h. Apart from that, the fits were performed in the same way as described in the previous paragraph (see Table S3 for further

details).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Quantitative analysis of single cell data was performed in MATLAB (Mathworks) andMathematica 11 (Wolfram). Details can be found

in each figure legend.

DATA AND SOFTWARE AVAILABILITY

Our custom analysis code is available from the lead contact upon reasonable request. Single cell trajectories are available for down-

load from Mendeley Data (https://doi.org/10.17632/zsd79s262s.1).
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