1 SUPPLEMENTARY MATERIAL

Figure S1. Origins density increases with sequencing depth. Origins density was calculated as the ratio of the total number of origins detected in a dataset divided by the size of the mappable part of the genome. Vertical dashed lines correspond to the coverage of the datasets used to conduct the evolutionary analysis.

Figure S2. Replication initiation landscapes in different cell types and for datasets generated in different laboratories: Cumulative proportion of SNS reads mapping into the x richest 100 kb regions of the genomes for SNS experiment performed in different cell lines and/or different laboratories. The black dotted line corresponds to the expectation if reads were distributed randomly over the genome. (A) For various human cell types. (B) For various mouse cell types and various replicates of the same experiments realized in two different laboratories.

4	-
2	2
•	•

Sample Id	Number of mapped reads	Number of Origins detected	% of Genome Covered	Mean origin length
Chicken, DT40 SRX4643655	173,295,362	68,068	6.0%	884
Mouse, mESC (Cayrou et al.) SRR2000505 SRR2000507 Overlap	43,870,450 5,676,763	203,809 52,913 35,545 (67%)	5.4% 1.4%	677 662
(Almeida et al.) SRR5650899 SRR5650900 Overlap	52,770,039 127,560,711	$156,242 \\ 225,251 \\ 129,015 \ (82\%)$	$3.9\% \\ 5.9\%$	660 689
Mouse, MEF (Almeida et al.) SRR5650895 SRR5650896 Overlap	41,459,153 41,383,367	61,591 98,656 46286 (75%)	$1.4\% \\ 2.5\%$	612 656
$\begin{array}{c} Human, H9\\ SRR494093\\ SRR494094\\ SRR494095\\ Overlap\end{array}$	$\begin{array}{c} 10,965,801\\ 43,875,325\\ 11,636,781 \end{array}$	$74,783 \\ 128,090 \\ 70,766 \\ 48,348 \ (64\%)$	2.1% 3.6% 1.9%	787 795 742
Human, Hela SRR494099 SRR494100 SRR494101 SRR494102 Overlap	8,571,107 45,915,571 46,607,229 17,238,919	68,204 151,396 152,159 85,870 63,730 (93%)	1.8% 3.9% 4.0% 2.4%	735 735 734 804
Human, IMR90 SRR494089 SRR494090 SRR494091 SRR494092 Overlap	4,067,936 44,539,716 13,173,025 38,851,752	39,427 166,496 87,690 143,440 30,953 (78%)	1.0% 4.3% 2.3% 3.8%	716 736 742 750
$\begin{array}{c} Human,\ iPS\\ SRR494096\\ SRR494097\\ SRR494098\\ Overlap\end{array}$	22,033,477 10,250,855 15,371,008	115,93567,10384,02049,116 (73%)	3.0% 1.8% 2.2%	732 751 747
Human, K562 SRR830646 SRR830647 SRR830648 SRR830649 SRR830650 Overlap	6,442,105 6,662,962 6,512,929 6,510,424 6,455,368	$\begin{array}{c} 39,300\\ 39,755\\ 39,096\\ 39,386\\ 39,248\\ 20,861\ (53\%)\end{array}$	$1.1\% \\ 1.2\% \\ 1.1\% \\ 1.2\% \\ 1.1\%$	819 826 825 827 825

Table S1. Summary of the SNS data meta-analysis. The overlap is defined as the intersection of all detections for a given cell line. The percentage of overlap is the number of overlapping origins divided by the smallest number of detected origins among replicates.

Sample Id	Number of mapped reads	Coverage (Reads per kb)	Number of Origins detected	% of Genome Covered by Origins	Mean origin length
Chicken, DT40 sample	30,276,092	28	33,489	3.0%	897
Mouse, mESC (Cayrou et al.) SRR2000505-7	49,859,260	24	205,881	5.5%	690
Human,H9 SRR494093-4-5	66,477,907	28	155,395	4.3%	791

Table S2. Summary of the SNS data used to conduct the evolutionary analysis. "Sample" for the DT40 corresponds to a subsampling of chicken SNS data to reach comparable sequencing depth as compared with other species. We performed 3 independent subsamplings, and checked that 80% of origins detected in a subsample were confirmed by detections in the original dataset of 68,068 origins. The SRR494093-4-5 sample is the combination of SRR49093, SRR49094 and SRR49095, and SRR2000505-7 the combination of samples SRR2000505 and SRR2000507.

Figure S3. Impact of GC content variations on Replication initiation landscapes. (A)-(C): Correlation between GC content and the number of SNS reads mapping into an origin in 100 kb windows in the mouse (A) human (B) and chicken (C) genomes. (D) Distribution of the regional GC content calculated on 100 kb windows. (E) Cumulative proportion of SNS reads mapping into the x richest 100 kb regions of the genomes after correcting for GC bias. Windows of the human and chicken genomes were sampled to match their GC content with the GC content of the mouse genome.

Figure S4. Extended replication origin sequence signature in human H9: Average nucleotide content in the 3000 bp region centred on the SNS peak (plain line). Genome-wide average nucleotide contents are indicated by broken lines. Note that the 95% confidence interval were so small that they were not distinguishable when plotted on the same figure. Grey lines present the total number of G4 motifs found in all origins for 5 bp windows. To achieve a bp resolution for G4 motifs , we summarize each G4 motif by the position of its middle nucleotide.

Figure S5. Density of genetic polymorphsism around origins. Base-specific SNP density (see Methods section) in the vicinity of all human SNS-peaks (plain line), in random genomic segments (broken lines) or in coding exons (dotted line). (A) Common $AT \rightarrow AT$ or $GC \rightarrow GC$ variants (DAF < 1%) (B) Rare $AT \rightarrow AT$ or $GC \rightarrow GC$ variants (DAF > 10%). (C-D) Indel density in the vicinity of human SNS-peaks (plain line) or random genomic segments (broken line). (C) Common Indels (DAF < 1%). (D) Rare Indels (DAF > 10%).

Figure S6. Density of genetic polymorphsism around mouse and chicken origins. Average SNP density in the vicinity of the SNS-peaks in mouse and chicken (plain lines). Broken lines indicate the genome-wide averages in each species.

cluster	kmer frequency logo	# rand segments in cluster	# oris in cluster
Human			
1	Seser	24853	4126
2	Ş ŞŞŞŞ	23825	12158
3	GITIT	32643	88254
4	SSSSSSSSSSSSS	22443	7558
5	EEEE	23709	4389
6	Setta	27733	38910
Mouse			
1	GGGGT G SSS	34014	25862
2	Zeta	34386	34088
3	FEEE	33445	20871
4	<u>ŠĒŽĪ</u>	38084	92151
5	GTTTT	31841	15762
6	ÇÇÇI	33360	17147
Chicken			
1	SSS	8028	0
2	G G G G G G G G	10141	2050
3	Č ÍŠÉŠ	10515	3029
4	SEAT	14704	29247
5	SEFT	11690	10787
6	ZZZZ	12868	22955

Table S3. Kmers (5-mers) composition of background clusters. Clusters are inferred on randomly selected segments and origins are assigned to the background clusters based on their composition (see Methods).

Species	G-quadruplex	CGI	TSS
Human	32% (9.2%)	13%~(2.8%)	11.3%~(3.6%)
Mouse	24.8% (11.3%)	8.9%~(1.8%)	9.2%~(2.1%)
Chicken	42.1% (10.1%)	39.6%~(6.7%)	10.2%~(2.5%)

Table S4. Association of origins with genomic elements. Percentage of origins that overlap, a TSS, a CGI or a G-quadruplex motif in human, mouse or chicken genomes. Figures in parenthesis give the expected value for random segments. For details on the randomization procedure, see the Method section.

10

Figure S7. Conservation of replication origin activity at homologous loci for all pairwise comparisons. See Fig. 7 for details. (A) Mouse origins (broken line), and the homologs of mouse origins in the human genome; (B) Mouse origins (broken line), and the homologs of mouse origins in the chicken genome; (C) Chicken origins (broken line), and the homologs of chicken origins (broken line), and the homologs of chicken origins in the mouse genome. (E) Human origins (broken line), and the homologs of human origins in the chicken genome.

	% of TSSs over	clapping a CGS			
	Human	Mouse	Chicken		
Human		93.4% (×1.6)	50.4% (×4.2)		
Mouse	94.1% (×1.5)		39.8% (×4)		
Chicken	47.1% (×1.6)	41.6% (×1.6)			
% of TSS functionally conserved					
Human		37.4% (×33.6)	21.5% (×15.4)		
Mouse	42.2% (×35.6)		17.5% (×20.7)		
Chicken	17.5% (×8.1)	12.8% (×11.6)			

Table S5. Conservation of TSSs accross species. Top: Percentage of TSSs that overlap conserved genomic segments (CGS). Bottom: percentage of functionally conserved TSSs (see Method for details). In parenthesis: conservation enrichment compared to the control experiment (see Randomization procedures in the Method section for more details).

Figure S8. Profile of sequence conservation around TSSs and replication origins in mouse. (A-B) Mouse TSSs. Black: TSSs less than 750 bp away from an origin. Blue: TSS that are not associated with an origin. The red dotted line presents the number of SNS peaks found around all TSSs (smoothed over 50 bp windows). All TSSs are oriented $5' \rightarrow 3'$ relative to the transcription unit. (A) TSS associated with a CGI (B) TSS not associated with a CGI. (C) Average PhastCons scores calculated on a 1400 bp region centred on human SNS Peaks depending on the origin association with TSSs and CGIs. The dashed line presents the genome-wide phastCons score average.

	Mouse - Chicken		Mouse - Human	
	37.1% (×3.4)	10.3% (×8.1)	87.3% (×1.3)	28.5% (×4.0)
CGI[-] TSS[-] CGI[+] TSS[-]	59.9%	4.9% 25.3%	82.2% 94.9%	45.0%
CGI[-] TSS[+]	52.7%	12.0% 23.5%	95.6%	35.8%
			90.170	47.070
	01.1	Л	C1 · 1	тт
	Chicken	- Mouse	Chicken	- Human
All	Chicken 63.1% (×1.8)	- Mouse 32.6% (× 2.9)	Chicken 77.3% (×1.9)	- Human 49.0% (×3.7)
All CGI[-] TSS[-]	Chicken 63.1% (×1.8) 51.4%	- Mouse 32.6% (× 2.9) 22.4%	Chicken 77.3% (×1.9) 64.4%	- Human 49.0% (× 3.7) 37.7%
All CGI[-] TSS[-] CGI[+] TSS[-]	Chicken 63.1% (×1.8) 51.4% 62.4%	- Mouse 32.6% (× 2.9) 22.4% 31.6%	Chicken 77.3% (×1.9) 64.4% 78.8%	- Human 49.0% (× 3.7) 37.7% 49.6%
All CGI[-] TSS[-] CGI[+] TSS[-] CGI[-] TSS[+]	Chicken 63.1% (×1.8) 51.4% 62.4% 66.7%	- Mouse 32.6% (×2.9) 22.4% 31.6% 33.6%	Chicken 77.3% (×1.9) 64.4% 78.8% 80.1%	- Human 49.0% (×3.7) 37.7% 49.6% 52.3%

Table S6. Conservation of the 25% strongest human origins according to their association with TSSs and CGIs: Percentage of origins overlapping conserved genomic segments, and percentage of functionally conserved origins.