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Supplementary Material & Methods

Patients samples selection requirements. The sample triplets retrieved at initial diagnosis (ID),
complete remission (CR) and relapse (REL) with the requirement of a minimal residual disease 
level at CR below 0.01. As the clinical protocol for adult and pediatric patients relapse time are 
different, the samples have been selected to evenly distribute into the categories of early (ER; 
time of REL < 700 days) and late relapse (LR; time of REL => 700 days) in order to have 
comparable clinical settings (Table S2a-b).

Alignments. Whole-Exome-Seq and Panel-Seq data have been aligned with bwa to the human 
genome build GRCh37.7528 using the bcbio-nextgen pipeline v0.9.1a-7da8dce 
(https://github.com/chapmanb/bcbio-nextgen) employing a series of tools (Table S9). RNA-
sequencing data were aligned with STAR-aligner (2-pass mode)29 to the same genome build and 
with the transcript annotation from Ensembl GRCh37 distributed by bcbio-nextgen. Samples 
failing quality control performed with RNA-SeQC59 were not used for expression analyses.

Mutation detection. ID and REL patient samples were whole-exome sequenced and compared 
to the matched CR sample to detect somatic mutations in ID and REL. The bcbio-nextgen 
pipeline was used to employ Mutect, Freebayes, Vardict, Varscan as mutation callers. Mutations 
(nucleotide polymorphisms) with the following criteria have been accepted: two out of four tools 
reported the mutation, variant allele frequency of 10% in either ID or REL, at least 10 reads at the
genomic position were aligned, at least 3 reads supporting the mutation and variant allele 
frequency at CR must be under 5% (estimated maximum of minimal residual disease). Mutations 
were annotated with GEMINI (within bcbio-nextgen). For the 3 (AE07, AE10 and AL31) patients 
that underwent allogeneic transplant and no matching sample of the transplant donor could be 
retrieved, the calling relapse mutations was limited to mutations observed at ID.

Mutation validation via panel-sequencing. We used customized biotinylated RNA oligo pools 
(SureSelect, Agilent, Santa Clara, California) to hybridize the target regions comprising 362 kbp. 
The panel was designed to cover all single mutations. Genes that were mutated recurrently 
according to our mutation detection have been re-sequenced entirely. For all single mutations we 
designed probes specifically for the variant position. We sequenced the libraries in pools of 16 to 
20 samples on a HiSeq2000 (100bp paired-end reads). We obtained an average coverage of 
30.1 Mio mapped reads/sample. We screened the called exon-based mutations in the panel-
sequencing data with the same (10%) alternate read frequency thresholds has been applied after 
correcting for cellular contents in order to obtain the final mutation set. The cellular contents were 
measured at sample collection using flow cytometry and/or MRD. It was additionally verified and 
corrected if necessary through the analysis of heterogeneous polymorphisms observed at CR (1).

Recurrent gene mutations and amino acid substitutions. The data of Figure 1 and Figure S1 
show the most recurrent mutations and amino acid substitutions filtered by the cancer gene list 
(see below). The genes MUC4, TTN, NBPF1, MUC12 have been blacklisted for all recurrence 
analyses due to their known high passenger mutation rate.

Copy number variation. The aligned WES sample trios have been used to employ copywriteR 
to calculate the log-ratio counts in bins of 20-50kb (shortest possible to obtain a MAD score 
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around 0.25) between ID or REL and CR. With CNVkit30, we called the copy number data using 
the log-ratio counts from copywriteR and single nucleotide variant (SNV) frequencies of SNVs 
being heterozygous in the matched CR sample and annotated in the EXAC database (all called 
segments are in 3c). CNA statistics have been calculated without samples that were too noisy or 
have received an allo-transplant (AE07_REL, AE10_REL, AL18_ID, AL18_REL, AL31_REL, 
PE07_ID, PE07_REL). Before proceeding to clonality analysis and chromosomal stats analysis, 
we corrected the b-allele frequency for sample purity.

Cancer gene prioritization. In order to incorporate prior knowledge about genes involved in 
cancer in various entities, we have created a cancer gene list based on multiple databases 
(IntOGen60, Tumorportal61, Cancer Gene Census62, GMALL panel (manually curated list of genes 
known to be frequently altered in acute leukemia; Table S10)

Clonality analysis. The variant allele frequencies (VAF), estimated blast contents and the called 
copy number distributions were used to perform a clonality analysis of each ID and REL sample 
pair. Pyclone32 was used to estimate the clonal composition of each sample and Schism33 was 
used to reconstruct the clonality tree for all samples (Figure S5). To incorporate all possible CNA 
calls, all sample data have been considered and CNAs have been manually double-checked for 
putative two-hit events for problematic samples (see copy number analysis). Cellular prevalences
of the cancer-associated genes can be found in Table S5 accompanied by the classification of the
mutations into activating and loss of function, which have been obtained using OncodriveROLE63 
via the Cancer Genome Interpreter64 platform can be found in. MRD markers were confirmed to 
persist for samples with a seemingly novel mutational phenotype.

Expression estimation and differential expression (DE). The aligned RNA-seq data have 
been used to employ Stringtie67 to estimate both annotated and possible novel transcripts where 
TPM (transcripts per million) and FPKM values were extracted. FPKM values were used with R 
Bioconductor Linear Models for Microarray (LIMMA) Voom package for DE analysis as LIMMA 
leverages the sample dependency in our dataset with its duplicate correlation feature. 
Additionally, we included the diagnosis and relapse time factors into the design (makeContrasts) 
to avoid the inflation of the variance due to time factor for each subtype. Finally, we filtered limma 
results by p-value <= 0.01 and abs(fold change) >= 1.5. For the DUX4-relapse ID versus REL 
comparison, the output of LIMMA Voom65 the mis-regulated genes have been filtered at q-value < 
0.1 and abs(fold change) >= 1.5. DUX4 RELvsID DE pathway enrichment analyses were 
performed using the DAVID online resource66 (Table S6a).

GSEA DUX4 relapse analysis was performed with GSEA java-application v3.067 in pre-ranked 
list mode for the Reactome pathways performing 1000 permutations and considering gene sets 
between 15 and 500 genes. As input we used all genes ranked by log-fold change DUX4 REL 
versus ID obtained by from the limma voom analysis.

Methylation data analysis. The ID and REL samples have been assayed with the Illumina 450k 
methylation array. All values have been normalized using the SWAN algorithm. The 3rd quartile of 
all CpGs standard variation served as cutoff for differential methylation analyses. In order to 
detect differentially methylated regions we used the bumphunter38 algorithm using the most 
variant quartile of CpG probes, which searches for differentially methylated regions in an 
annotation-unbiased manner. Separate bumphunter runs have been performed for ID and REL for
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the subtypes DUX4, NH-HeH and Ph-like using all subtype samples versus the rest of the cohort. 
Additionally bumphunter runs have been performed for ID vs REL samples for the subtypes 
DUX4, NH-HeH and Ph-like. The output regions have been filtered by p-value < 0.05 and p-value 
Area < 0.05. The ensembl gene annotations and variation build has been used to annotated 
close-by genes and regulatory elements. Genes annotated as protein coding and overlapping 
with the differentially methylated regions (DMR) or located at a maximum distance of 5000 bp 
upstream or 1000 bp downstream were considered for further analysis. Regulatory features were 
allowed to be up to 100 bp away from the DMR, except for the CTCF sites where overlap was 
required. We also performed a region-biased promoter methylation analysis using ID versus REL 
samples for the whole cohort and for the three main subtypes separately.

Differentially expressed and methylated (DEM) genes analysis. For each subtype, we 
retrieved the filtered results from the bumphunter runs for methylation data and the filtered results
from the limma voom runs for RNAseq data. We obtained the intersection, denominated 
thereafter as DEM genes. The genes were afterwards classified according to the two known 
methylation regulation mechanisms: The ‘Meth silencing’ classification for the genes with a 
decreased expression accompanied by an increased methylation status and the ‘Meth facilitating’ 
classification for the genes with an increased expression accompanied by a decreased 
methylation status. The DEM genes overlap within the top 1000 of both differentially expressed 
and differentially methylated analyses have been tested with Fishers’s exact test (see 4a). Genes 
with hypermethylation co-occuring with under-expression were classified as meth silencing and 
whereas genes with occurrence of hypomethylation and over-expression were classified as meth 
facilitating (4b).

Fusion detection. All reported gene fusions have been detected with FusionCatcher v0.99.7c 
beta (https://github.com/ndaniel/fusioncatcher)34 or deFuse v0.7.0 
(https://bitbucket.org/dranew/defuse)35 with default settings. The required fusion evidence has 
been set to a minimum of two supporting spanning reads for each fusion in each sample. In a first
step, we identified fusions with high read count and reported in BCP-ALL subgroups and in a 
second step novel fusions which are enriched in the molecularly defined BCP-ALL subgroups.

DUX4 classifier. We used the TPM expression values for the 82 samples passing quality control 
and divided them into DUX4 (n=23) and other (n=59). We then filtered the expression table for 
DUX4 protein coding DE genes (FDR < 0.1) and added 7 house-keeping genes (ACTB, GAPDH, 
RPLP1, LDHA, NONO, PGK1, PPIH). Thereafter, we kept the genes having expression values in 
min. 30% of the samples and empty values were filled with the smallest available value in the 
matrix of the matrix divided by 2. For each non-housekeeping gene, we created an 8-gene 
submatrix with the gene itself and the 7 housekeeping genes. This submatrix was used for 
training 20 random forest machine learning models, each using 80% of the samples (selected 
randomly, but stratified by class). The remaining 20% of the samples were then predicted two 
times: once using the unmodified submatrix samples (predA) and once proceeding a shuffling of 
non-housekeeping gene (predB). The two predictions were assessed with the f1-score and the 
accuracy decrease due to value shuffling was obtained by accuarcy(predA) - accuracy(predB). 
The mean decrease accuracy was obtained from the 20 iterations (MDEC score). Genes were 
ranked by maximum MDEC score and filtered for positive fold change between DUX4 sample 
expression and the remaining samples. The top 15 genes were used to validate the classifier in 
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an external BCP-ALL RNA-Seq cohort using hierarchical clustering.

Sample preparation for proteomic analysis. Patient samples were resuspended in lysis buffer 
containing 0.2 % DCA and 50 mM TCEP followed by incubation at 90 °C  for 1 hour. For filter-
aided sample preparation (FASP)68 lysates were mixed with 200 µl of exchange buffer (8 M urea, 
0.2 % DCA, 100 mM ammonium bicarbonate) in spin column filter units and centrifuged at 14,000
g for 10 minutes. After repeating this step twice and discarding the eluates, 100µl of alkylation 
solution (8M  urea, 50mM iodoacetamide, 100mM ammonium bicarbonate) were added and the 
samples were mixed at 300 rpm for 1 hour at 37 °C protected from light. Following centrifugation 
at 14,000g for 10min and addition of exchange buffer (200µl) the samples were washed three 
times with 100µl of digestion buffer containing 0.2% DCA and 50mM ammonium bicarbonate.  For
protein digestion, trypsin was added to the filter units at an enzyme/substrate ratio of 1:100 (w/w) 
and the samples were incubated over night at 37°C. Proteolytic peptides were collected by 
centrifugation at 14,000g for 10min followed by two washes with 50µl of peptide recovery solution
(50mM ammonium bicarbonate). Next, 200µl of ethyl acetate were added to the peptide-
containing filtrate, which resulted in the formation of an organic upper layer and an aqueous 
bottom layer. The aqueous layer was mixed with 2.5µl of TFA and the samples were sonicated for
10 seconds. After centrifugation of the filtrates at 16,000g for 10min, the upper organic layer was 
discarded and the last two steps were repeated twice. Afterwards, the samples were incubated at 
60 °C for 15 min to allow for evaporation of ethyl acetate. In order to remove residual solvent and 
volatile salts the samples were dried in a vacuum concentrator three times after adding 50 µl of 
50 % methanol.

Mass-spectrometric analysis. Peptides were resuspended in sample loading buffer (2% 
acetonitrile and 0.05% trifluoroacetic acid) and separated on an UltiMate 3000 RSLCnano HPLC 
system (Thermo Fisher Scientific) coupled online to a Q Exactive Plus mass spectrometer 
(Thermo Fisher Scientific). First, the peptides were desalted on a reverse-phase C18 pre-column 
(Dionex 5 mm long, 0.3 mm inner diameter) for 3 minutes. After 3 minutes the pre column was 
switched online with the analytical column (30 cm long, 75 μm inner diameter) packed in-house 
with ReproSil-Pur C18 AQ 1.9 μm reversed-phase resin (Dr. Maisch GmbH). Solvent A consisted 
of 0.1% formic acid in water, and solvent B consisted of 80% acetonitrile and 0.1% formic acid in 
water. The peptides were eluted from the column with solvent B (5% to 46% gradient) at a flow 
rate of 300nL/min over 106 min. The temperature of the pre-column and the column was set to 
60°C. MS data were acquired on the Q Exactive Plus instrument in data-dependent Top20 mode, 
where the most intense 20 precursors within the m/z range of 350–1600 Th were selected from a 
survey MS1 scan for MS2 fragmentation with an isolation window of 1.6 Th and dynamic 
exclusion of 25 seconds. Selected precursors underwent HCD fragmentation with normalized 
collision energy of 28. MS1 and MS2 scans were acquired at a resolution of 70,000 or 17,500 
with an Automatic Gain Control (AGC) target of 1E6 or 1E5, respectively. The maximum ion 
injection (IT) time of an MS2 scan was set to 50 ms.

MS data processing. Raw data from LC-MS/MS measurements were analyzed using the 
MaxQuant software69. MS/MS spectra were searched with the Andromeda engine70 against the 
UniProtKB/Swiss-Prot human database containing 20,170 protein entries (download date: April 
2017) and an integrated database containing frequently observed contaminants (245 entries). 
Precursor and fragment-ion mass tolerances were set to 6 and 20 ppm, respectively, after initial 

5



recalibration. Protein N-terminal acetylation and methionine oxidation were allowed as variable 
modifications. Carbamidomethylation of cysteine was defined as a fixed modification. Minimum 
peptide length was set to seven amino acids, with a maximum of two missed cleavages. The 
false discovery rate (FDR) was set to 1% at both the peptide and the protein level by using a 
forward-and-reverse concatenated decoy database approach. Label-free quantification was 
performed with the “match between run” option enabled71. Matching time window and alignment 
time window were set to 1 and 20 min, respectively.

In order to maintain high analysis quality, stringent filtering criteria were applied to data derived 
from patient sample preparations. First, samples with Pearson correlations between technical 
replicates less than 0.9 were removed. Next, Proteomics Quality Control (PTXQC)72 was applied 
in order to assess the overall qualities of the MaxQuant-processed results from the remaining 
patient samples. Samples with QC scores less than 0.6 or with protein hits less than 1200 were 
removed from the following analysis. Proteomic changes in the filtered samples were analyzed 
using the Perseus software73. Decoy proteins, potential contaminants and protein groups that 
were quantified in less than 75% of all patient samples were removed. Afterwards, missing values
were imputed with default settings. LFQ intensity differences between sample groups 
representing protein expression profiles at initial diagnosis (ID) and relapse (REL) were 
statistically evaluated. For this, the log-transformed LFQ intensity values were compared using a 
Student’s t-test with a significance threshold of p<0.05 and the respective LFQ intensity ratio 
thresholds were deduced by performing outlier analyses (p<0.05). In order to extract affected 
biological pathways, significantly regulated proteins were further subjected to Ingenuity pathway 
analysis74.

Sample classification of the main groups. The samples have been classified into subtypes. All 
samples having DUX4-fusions have been classified as a subtype. DUX4 samples without RNA-
seq data have been classified via the methylation data clustering. Ph-like samples have been 
classified via the published gene signature and CRLF2-, JAK2- and SH2B3-fusions. Two 
additional samples without RNA-seq data were classified as Ph-like based on their matched 
sample having a Ph-like expression, harboring CRLF2 mutations and clustering with the other Ph-
like samples in the methylation PCA analysis. Aneuploid samples were defined as samples 
having 3 or more whole-chromosomal aneuploidies. This group was further classified into low-
hypodiploid (LH), near-haploid (NH) and high hyperdiploid (HeH). The NH and HeH samples 
share a common expression signature and were therefore considered as one group for the study. 
We used reported differentially expressed genes75 to confirm the NH-HeH gene expression 
pattern, which is shared amongst our masked NH-HeH and high hyper-diploid samples (data not 
shown). All these assignments were exclusive to each other. 

Sample classification in-silico cross-validation of the main groups. For the four subgroups 
with most samples (Ph-like, DUX4, NH-HeH and low-hypodiploid), we performed an in-silico 
cross-validation of group assignment. We compared the amount of differentially methylated CpGs
and differentially expressed genes of the assigned groups to randomly chosen sample groups of 
equal size. The assumption is that a biological meaningful sample group will have a stronger 
signature and thus reveal a greater amount of significantly different (one-way anova p-value < 
0.01) entities when compared with the remaining cohort. This comparison was repeated for a 100
times in order to obtain an empirical p-value. For the gene expression data, we used all protein 
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coding genes for the comparison (Figure S7a). For the methylation data, we used 10’000 
randomly chosen CpGs for each iteration (Figure S7b).  
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Supplementary Figures

Figure S1: Mutational burden and gene mutation recurrence in adult and pediatric 
patients. The most recurrently mutated genes (n >= 3) associated to cancer and their 
occurrence in the pediatric and adult samples. The most recurrent genes have been 
prioritized by implication in leukemia and other cancer entities. The most frequently 
mutated genes associated with cancer (see methods) amongst adult and pediatric 
patients were KRAS (28% of patients), NRAS (20%), TP53 (18%), KMT2D (14%), IKZF1 
(12%), JAK2 (10%), CREBBP (10%) and FLT3 (10%). NT5C2 and SYK were exclusively 
mutated in the pediatric (n>=3) cohort samples and CREBBP and CHD2 (n>=3) in the 
adult cohort. 
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Figure S2: Gene expression, DNA methylation and somatic alteration signatures of the 
various BCP-ALL subtypes. The samples of all subfigures have been ordered by their 
BCP-ALL subgroup assignment. (a) and (b) show the expression and methylation 
signatures for the classified subgroups. The expression data show gene-centered fold 
change of log2 transcripts per million (TPM). The methylation is represented by the beta 
values. Both subfigures show the subtype-specific altered genes and CpGs respectively, 
grouped accordingly to subtype-specificity. (c) Genomic alterations in molecular subtypes 
(mutations, fusions, deletions and alternative transcripts; legend below) in ID and REL of 
adult and pediatric BCP-ALL. The percentage on the left shows the frequency of samples
bearing an alteration, and the bar plots show in which BCP-ALL subtypes they occur 
indicated by color-coding (legend above). The lowest part of each heatmap shows the 
analyses that have been performed for each sample. The black color stands for normal 
analysis, white stands for unavailable data and gray stands for limited analyses (see 
methods).
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Figure S3: Chromosomal status for 48 samples ID of the cohort, including 14 aneuploid 
patients, 10 of which were classified as NH-HeH and 4 of which were classified as LH.
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Figure S4: Clonal evolution of mutations of genes with volatile and stabilizing patterns. (a)
Clonal evolution of REL-specificof most recurrently mutated genes with a volatile pattern. 
(b) Clonal evolution of REL-specific mutations in genes identified by high recurrence in 
REL, high cellularity in REL-specific mutations or REL-specific double-hit: PTPN11, SYK, 
CXCR4, LAMA2, LAMA1, TACR1 and PRPS1 bearing a stabilizing pattern.
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Figure S5: This figure shows the clonal evolution trees between ID and REL for the 
patient PL11 calculated with PyClone and Schism. The GL node represents the germline,
the starting point. The greener the arrow, the more specific to ID, the bluer the arrow the 
more specific to REL. The darker the luminosity reflects the higher cellularity of the clone.
These highlighted genes represent genes in our curated cancer gene (Supplementary 
Table S10) and genes of which one copy has been lost according to the CNA analysis. 
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Figure S6: This figure shows the clonal evolution trees between ID and REL for all 
patients accordingly to Figure S5. Each page contains a plot for a patient, subdivided into
frequency plots (a) and the Schism evolutionarly tree (b). (a) The frequency plots 
represent, from left to right the variant allele frequency of the mutations, the cellularities 
as calculated by PyClone and lastly the clone-specific mean cellularities as a line plot 
between ID and REL. The triangles in the VAF and cellularity plots represent the 
highlighted genes in the legend. These highlighted genes represent genes in our curated 
cancer gene (Supplementary Table S10) list and genes of which one copy has been lost 
according to the CNA analysis. (b) The GL node represents the germline, the starting 
point. The greener the arrow, the more specific to ID, the bluer the arrow the more 
specific to REL. The darker the luminosity reflects the higher cellularity of the clone.
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Figure S7: Relapse-mutation protein-protein interaction network. The network shows the 
protein-protein interaction of the recurrently mutated and deleted genes at relapse as 
retrieved from Reactome FIViz Cytoscape plugin. Diamond-shaped nodes are so-called 
linker genes, connecting genes from the original query set. Solid lines are experimentally 
validated and dashed lines represent predicted interactions. The color of the circular 
nodes represents the class according to (Figure 2). 
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Figure S8: The expression of the protein products and mRNA transcripts of PGD, GPI, 
TKT and PGK1 at ID and REL of four metabolic genes. 
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Figure S9: Protein expression and pathway enrichment in the Ph-like relapse samples. 
The bar plot shows the top 10 ingenuity pathways for differentially expressed proteins in 
Ph-like relapse samples.
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