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Supplementary Material & Methods

Patients samples selection requirements. The sample triplets retrieved at initial diagnosis (ID),
complete remission (CR) and relapse (REL) with the requirement of a minimal residual disease
level at CR below 0.01. As the clinical protocol for adult and pediatric patients relapse time are
different, the samples have been selected to evenly distribute into the categories of early (ER;
time of REL < 700 days) and late relapse (LR; time of REL => 700 days) in order to have
comparable clinical settings (Table S2a-b).

Alignments. Whole-Exome-Seq and Panel-Seq data have been aligned with bwa to the human
genome build GRCh37.75% using the bcbio-nextgen pipeline v0.9.1a-7da8dce
(https://github.com/chapmanb/bcbio-nextgen) employing a series of tools (Table S9). RNA-
sequencing data were aligned with STAR-aligner (2-pass mode)® to the same genome build and
with the transcript annotation from Ensembl GRCh37 distributed by bcbio-nextgen. Samples
failing quality control performed with RNA-SeQC®> were not used for expression analyses.

Mutation detection. ID and REL patient samples were whole-exome sequenced and compared
to the matched CR sample to detect somatic mutations in ID and REL. The bcbio-nextgen
pipeline was used to employ Mutect, Freebayes, Vardict, Varscan as mutation callers. Mutations
(nucleotide polymorphisms) with the following criteria have been accepted: two out of four tools
reported the mutation, variant allele frequency of 10% in either ID or REL, at least 10 reads at the
genomic position were aligned, at least 3 reads supporting the mutation and variant allele
frequency at CR must be under 5% (estimated maximum of minimal residual disease). Mutations
were annotated with GEMINI (within bcbio-nextgen). For the 3 (AEO7, AE10 and AL31) patients
that underwent allogeneic transplant and no matching sample of the transplant donor could be
retrieved, the calling relapse mutations was limited to mutations observed at ID.

Mutation validation via panel-sequencing. We used customized biotinylated RNA oligo pools
(SureSelect, Agilent, Santa Clara, California) to hybridize the target regions comprising 362 kbp.
The panel was designed to cover all single mutations. Genes that were mutated recurrently
according to our mutation detection have been re-sequenced entirely. For all single mutations we
designed probes specifically for the variant position. We sequenced the libraries in pools of 16 to
20 samples on a HiSeq2000 (100bp paired-end reads). We obtained an average coverage of
30.1 Mio mapped reads/sample. We screened the called exon-based mutations in the panel-
sequencing data with the same (10%) alternate read frequency thresholds has been applied after
correcting for cellular contents in order to obtain the final mutation set. The cellular contents were
measured at sample collection using flow cytometry and/or MRD. It was additionally verified and
corrected if necessary through the analysis of heterogeneous polymorphisms observed at CR (1).

Recurrent gene mutations and amino acid substitutions. The data of Figure 1 and Figure S1
show the most recurrent mutations and amino acid substitutions filtered by the cancer gene list
(see below). The genes MUC4, TTN, NBPF1, MUC12 have been blacklisted for all recurrence
analyses due to their known high passenger mutation rate.

Copy number variation. The aligned WES sample trios have been used to employ copywriteR
to calculate the log-ratio counts in bins of 20-50kb (shortest possible to obtain a MAD score
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around 0.25) between ID or REL and CR. With CNVkit*, we called the copy number data using
the log-ratio counts from copywriteR and single nucleotide variant (SNV) frequencies of SNVs
being heterozygous in the matched CR sample and annotated in the EXAC database (all called
segments are in 3c). CNA statistics have been calculated without samples that were too noisy or
have received an allo-transplant (AEO7_REL, AE10_REL, AL18_ID, AL18_REL, AL31_REL,
PEO7_ID, PEO7_REL). Before proceeding to clonality analysis and chromosomal stats analysis,
we corrected the b-allele frequency for sample purity.

Cancer gene prioritization. In order to incorporate prior knowledge about genes involved in
cancer in various entities, we have created a cancer gene list based on multiple databases
(IntOGen®®, Tumorportal®, Cancer Gene Census®, GMALL panel (manually curated list of genes
known to be frequently altered in acute leukemia; Table S10)

Clonality analysis. The variant allele frequencies (VAF), estimated blast contents and the called
copy number distributions were used to perform a clonality analysis of each ID and REL sample
pair. Pyclone® was used to estimate the clonal composition of each sample and Schism* was
used to reconstruct the clonality tree for all samples (Figure S5). To incorporate all possible CNA
calls, all sample data have been considered and CNAs have been manually double-checked for
putative two-hit events for problematic samples (see copy number analysis). Cellular prevalences
of the cancer-associated genes can be found in Table S5 accompanied by the classification of the
mutations into activating and loss of function, which have been obtained using OncodriveROLE®®
via the Cancer Genome Interpreter® platform can be found in. MRD markers were confirmed to
persist for samples with a seemingly novel mutational phenotype.

Expression estimation and differential expression (DE). The aligned RNA-seq data have
been used to employ Stringtie®” to estimate both annotated and possible novel transcripts where
TPM (transcripts per million) and FPKM values were extracted. FPKM values were used with R
Bioconductor Linear Models for Microarray (LIMMA) Voom package for DE analysis as LIMMA
leverages the sample dependency in our dataset with its duplicate correlation feature.
Additionally, we included the diagnosis and relapse time factors into the design (makeContrasts)
to avoid the inflation of the variance due to time factor for each subtype. Finally, we filtered limma
results by p-value <= 0.01 and abs(fold change) >= 1.5. For the DUX4-relapse ID versus REL
comparison, the output of LIMMA Voom®® the mis-regulated genes have been filtered at g-value <
0.1 and abs(fold change) >= 1.5. DUX4 RELvsID DE pathway enrichment analyses were
performed using the DAVID online resource®® (Table S6a).

GSEA DUX4 relapse analysis was performed with GSEA java-application v3.0%" in pre-ranked
list mode for the Reactome pathways performing 1000 permutations and considering gene sets
between 15 and 500 genes. As input we used all genes ranked by log-fold change DUX4 REL
versus |ID obtained by from the limma voom analysis.

Methylation data analysis. The ID and REL samples have been assayed with the lllumina 450k
methylation array. All values have been normalized using the SWAN algorithm. The 3™ quartile of
all CpGs standard variation served as cutoff for differential methylation analyses. In order to
detect differentially methylated regions we used the bumphunter® algorithm using the most
variant quartile of CpG probes, which searches for differentially methylated regions in an
annotation-unbiased manner. Separate bumphunter runs have been performed for ID and REL for

3



the subtypes DUX4, NH-HeH and Ph-like using all subtype samples versus the rest of the cohort.
Additionally bumphunter runs have been performed for ID vs REL samples for the subtypes
DUX4, NH-HeH and Ph-like. The output regions have been filtered by p-value < 0.05 and p-value
Area < 0.05. The ensembl gene annotations and variation build has been used to annotated
close-by genes and regulatory elements. Genes annotated as protein coding and overlapping
with the differentially methylated regions (DMR) or located at a maximum distance of 5000 bp
upstream or 1000 bp downstream were considered for further analysis. Regulatory features were
allowed to be up to 100 bp away from the DMR, except for the CTCF sites where overlap was
required. We also performed a region-biased promoter methylation analysis using ID versus REL
samples for the whole cohort and for the three main subtypes separately.

Differentially expressed and methylated (DEM) genes analysis. For each subtype, we
retrieved the filtered results from the bumphunter runs for methylation data and the filtered results
from the limma voom runs for RNAseq data. We obtained the intersection, denominated
thereafter as DEM genes. The genes were afterwards classified according to the two known
methylation regulation mechanisms: The ‘Meth silencing’ classification for the genes with a
decreased expression accompanied by an increased methylation status and the ‘Meth facilitating’
classification for the genes with an increased expression accompanied by a decreased
methylation status. The DEM genes overlap within the top 1000 of both differentially expressed
and differentially methylated analyses have been tested with Fishers’s exact test (see 4a). Genes
with hypermethylation co-occuring with under-expression were classified as meth silencing and
whereas genes with occurrence of hypomethylation and over-expression were classified as meth
facilitating (4b).

Fusion detection. All reported gene fusions have been detected with FusionCatcher v0.99.7¢
beta (https://github.com/ndaniel/fusioncatcher)* or deFuse v0.7.0
(https://bitbucket.org/dranew/defuse)® with default settings. The required fusion evidence has
been set to a minimum of two supporting spanning reads for each fusion in each sample. In a first
step, we identified fusions with high read count and reported in BCP-ALL subgroups and in a
second step novel fusions which are enriched in the molecularly defined BCP-ALL subgroups.

DUX4 classifier. We used the TPM expression values for the 82 samples passing quality control
and divided them into DUX4 (n=23) and other (n=59). We then filtered the expression table for
DUX4 protein coding DE genes (FDR < 0.1) and added 7 house-keeping genes (ACTB, GAPDH,
RPLP1, LDHA, NONO, PGK1, PPIH). Thereafter, we kept the genes having expression values in
min. 30% of the samples and empty values were filled with the smallest available value in the
matrix of the matrix divided by 2. For each non-housekeeping gene, we created an 8-gene
submatrix with the gene itself and the 7 housekeeping genes. This submatrix was used for
training 20 random forest machine learning models, each using 80% of the samples (selected
randomly, but stratified by class). The remaining 20% of the samples were then predicted two
times: once using the unmodified submatrix samples (predA) and once proceeding a shuffling of
non-housekeeping gene (predB). The two predictions were assessed with the f1-score and the
accuracy decrease due to value shuffling was obtained by accuarcy(predA) - accuracy(predB).
The mean decrease accuracy was obtained from the 20 iterations (MDEC score). Genes were
ranked by maximum MDEC score and filtered for positive fold change between DUX4 sample
expression and the remaining samples. The top 15 genes were used to validate the classifier in

4


https://bitbucket.org/dranew/defuse
https://github.com/ndaniel/fusioncatcher

an external BCP-ALL RNA-Seq cohort using hierarchical clustering.

Sample preparation for proteomic analysis. Patient samples were resuspended in lysis buffer
containing 0.2 % DCA and 50 mM TCEP followed by incubation at 90 °C for 1 hour. For filter-
aided sample preparation (FASP)® lysates were mixed with 200 pl of exchange buffer (8 M urea,
0.2 % DCA, 100 mM ammonium bicarbonate) in spin column filter units and centrifuged at 14,000
g for 10 minutes. After repeating this step twice and discarding the eluates, 100pl of alkylation
solution (8M urea, 50mM iodoacetamide, 100mM ammonium bicarbonate) were added and the
samples were mixed at 300 rpm for 1 hour at 37 °C protected from light. Following centrifugation
at 14,0009 for 10min and addition of exchange buffer (200ul) the samples were washed three
times with 100pl of digestion buffer containing 0.2% DCA and 50mM ammonium bicarbonate. For
protein digestion, trypsin was added to the filter units at an enzyme/substrate ratio of 1:100 (w/w)
and the samples were incubated over night at 37°C. Proteolytic peptides were collected by
centrifugation at 14,0009 for 10min followed by two washes with 50ul of peptide recovery solution
(50mM ammonium bicarbonate). Next, 200ul of ethyl acetate were added to the peptide-
containing filtrate, which resulted in the formation of an organic upper layer and an aqueous
bottom layer. The aqueous layer was mixed with 2.5ul of TFA and the samples were sonicated for
10 seconds. After centrifugation of the filtrates at 16,0009 for 10min, the upper organic layer was
discarded and the last two steps were repeated twice. Afterwards, the samples were incubated at
60 °C for 15 min to allow for evaporation of ethyl acetate. In order to remove residual solvent and
volatile salts the samples were dried in a vacuum concentrator three times after adding 50 pl of
50 % methanol.

Mass-spectrometric analysis. Peptides were resuspended in sample loading buffer (2%
acetonitrile and 0.05% trifluoroacetic acid) and separated on an UltiMate 3000 RSLCnano HPLC
system (Thermo Fisher Scientific) coupled online to a Q Exactive Plus mass spectrometer
(Thermo Fisher Scientific). First, the peptides were desalted on a reverse-phase C18 pre-column
(Dionex 5 mm long, 0.3 mm inner diameter) for 3 minutes. After 3 minutes the pre column was
switched online with the analytical column (30 cm long, 75 uym inner diameter) packed in-house
with ReproSil-Pur C18 AQ 1.9 um reversed-phase resin (Dr. Maisch GmbH). Solvent A consisted
of 0.1% formic acid in water, and solvent B consisted of 80% acetonitrile and 0.1% formic acid in
water. The peptides were eluted from the column with solvent B (5% to 46% gradient) at a flow
rate of 300nL/min over 106 min. The temperature of the pre-column and the column was set to
60°C. MS data were acquired on the Q Exactive Plus instrument in data-dependent Top20 mode,
where the most intense 20 precursors within the m/z range of 350—1600 Th were selected from a
survey MS1 scan for MS2 fragmentation with an isolation window of 1.6 Th and dynamic
exclusion of 25 seconds. Selected precursors underwent HCD fragmentation with normalized
collision energy of 28. MS1 and MS2 scans were acquired at a resolution of 70,000 or 17,500
with an Automatic Gain Control (AGC) target of 1E6 or 1E5, respectively. The maximum ion
injection (IT) time of an MS2 scan was set to 50 ms.

MS data processing. Raw data from LC-MS/MS measurements were analyzed using the
MaxQuant software®. MS/MS spectra were searched with the Andromeda engine’ against the
UniProtKB/Swiss-Prot human database containing 20,170 protein entries (download date: April
2017) and an integrated database containing frequently observed contaminants (245 entries).
Precursor and fragment-ion mass tolerances were set to 6 and 20 ppm, respectively, after initial

5



recalibration. Protein N-terminal acetylation and methionine oxidation were allowed as variable
modifications. Carbamidomethylation of cysteine was defined as a fixed modification. Minimum
peptide length was set to seven amino acids, with a maximum of two missed cleavages. The
false discovery rate (FDR) was set to 1% at both the peptide and the protein level by using a
forward-and-reverse concatenated decoy database approach. Label-free quantification was
performed with the “match between run” option enabled’'. Matching time window and alignment
time window were set to 1 and 20 min, respectively.

In order to maintain high analysis quality, stringent filtering criteria were applied to data derived
from patient sample preparations. First, samples with Pearson correlations between technical
replicates less than 0.9 were removed. Next, Proteomics Quality Control (PTXQC)"* was applied
in order to assess the overall qualities of the MaxQuant-processed results from the remaining
patient samples. Samples with QC scores less than 0.6 or with protein hits less than 1200 were
removed from the following analysis. Proteomic changes in the filtered samples were analyzed
using the Perseus software’. Decoy proteins, potential contaminants and protein groups that
were quantified in less than 75% of all patient samples were removed. Afterwards, missing values
were imputed with default settings. LFQ intensity differences between sample groups
representing protein expression profiles at initial diagnosis (ID) and relapse (REL) were
statistically evaluated. For this, the log-transformed LFQ intensity values were compared using a
Student’s t-test with a significance threshold of p<0.05 and the respective LFQ intensity ratio
thresholds were deduced by performing outlier analyses (p<0.05). In order to extract affected
biological pathways, significantly regulated proteins were further subjected to Ingenuity pathway
analysis™.

Sample classification of the main groups. The samples have been classified into subtypes. All
samples having DUX4-fusions have been classified as a subtype. DUX4 samples without RNA-
seq data have been classified via the methylation data clustering. Ph-like samples have been
classified via the published gene signature and CRLF2-, JAK2- and SH2B3-fusions. Two
additional samples without RNA-seq data were classified as Ph-like based on their matched
sample having a Ph-like expression, harboring CRLF2 mutations and clustering with the other Ph-
like samples in the methylation PCA analysis. Aneuploid samples were defined as samples
having 3 or more whole-chromosomal aneuploidies. This group was further classified into low-
hypodiploid (LH), near-haploid (NH) and high hyperdiploid (HeH). The NH and HeH samples
share a common expression signature and were therefore considered as one group for the study.
We used reported differentially expressed genes’™ to confirm the NH-HeH gene expression
pattern, which is shared amongst our masked NH-HeH and high hyper-diploid samples (data not
shown). All these assignments were exclusive to each other.

Sample classification in-silico cross-validation of the main groups. For the four subgroups
with most samples (Ph-like, DUX4, NH-HeH and low-hypodiploid), we performed an in-silico
cross-validation of group assignment. We compared the amount of differentially methylated CpGs
and differentially expressed genes of the assigned groups to randomly chosen sample groups of
equal size. The assumption is that a biological meaningful sample group will have a stronger
signature and thus reveal a greater amount of significantly different (one-way anova p-value <
0.01) entities when compared with the remaining cohort. This comparison was repeated for a 100
times in order to obtain an empirical p-value. For the gene expression data, we used all protein
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coding genes for the comparison (Figure S7a). For the methylation data, we used 10’000
randomly chosen CpGs for each iteration (Figure S7b).



Supplementary References

59.

60.

61.

62.

63.

64.

65.

66.

67.

DelLuca, D. S. et al. RNA-SeQC: RNA-seq metrics for quality control and process
optimization. Bioinforma. Oxf. Engl. 28, 1530-1532 (2012).

Gonzalez-Perez, A. et al. IntOGen-mutations identifies cancer drivers across tumor types.
Nat. Methods 10, 1081-1082 (2013).

Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour
types. Nature 505, 495-501 (2014).

Futreal, P. A. et al. A census of human cancer genes. Nat. Rev. Cancer 4, 177-183 (2004).
Schroeder, M. P., Rubio-Perez, C., Tamborero, D., Gonzalez-Perez, A. & Lopez-Bigas, N.
OncodriveROLE classifies cancer driver genes in Loss of Function and Activating mode of
action. Bioinformatics 30, (2014).

Tamborero, D. et al. Cancer Genome Interpreter annotates the biological and clinical
relevance of tumor alterations. Genome Med. 10, 25 (2018).

Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large
gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44-57 (2008).
Subramanian, A., Kuehn, H., Gould, J., Tamayo, P. & Mesirov, J. P. GSEA-P: a desktop

application for Gene Set Enrichment Analysis. Bioinforma. Oxf. Engl. 23, 3251-3253 (2007).



68.

69.

70.

71.

72.

73.

74.

75.

Wisniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation
method for proteome analysis. Nat. Methods 6, 359—-362 (2009).

Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-
range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367—
1372 (2008).

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment.
J. Proteome Res. 10, 1794-1805 (2011).

Cox, J. et al. MaxLFQ allows accurate proteome-wide label-free quantification by delayed
normalization and maximal peptide ratio extraction. Mol. Cell. Proteomics mcp.M113.031591
(2014). doi:10.1074/mcp.M113.031591

Bielow, C., Mastrobuoni, G. & Kempa, S. Proteomics Quality Control: Quality Control
Software for MaxQuant Results. J. Proteome Res. 15, 777—787 (2016).

Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of
(prote)omics data. Nat. Methods 13, 731-740 (2016).

Kramer, A., Green, J., Pollard, J. & Tugendreich, S. Causal analysis approaches in Ingenuity
Pathway Analysis. Bioinforma. Oxf. Engl. 30, 523-530 (2014).

Holmfeldt, L. et al. The genomic landscape of hypodiploid acute lymphoblastic leukemia. Nat.

Genet. 45, 242252 (2013).



Supplementary Figures

Genes bearing most recurrent mutations across all patients

M~
B Ped.
WAt ©
0§
<5
™
N
" h‘ ‘I“‘II“ II‘ IIIIH
o
WO A NN ALNOMON-- AL X NNLIKMY X N
D CULLAAOXnAOQF>X S0 roe~py I OO0 0X><<aan0
Lo NdFUWUACAnIQPFHRFLIZEXSIENOLESTOIAXEO
SHFYXOEsSNAopgoLLtw-a A0 <uwEogs LO=2
O ¥ o ul = I o =z = WLy o
O a o N

Figure S1: Mutational burden and gene mutation recurrence in adult and pediatric
patients. The most recurrently mutated genes (n >= 3) associated to cancer and their
occurrence in the pediatric and adult samples. The most recurrent genes have been
prioritized by implication in leukemia and other cancer entities. The most frequently
mutated genes associated with cancer (see methods) amongst adult and pediatric
patients were KRAS (28% of patients), NRAS (20%), TP53 (18%), KMT2D (14%), IKZF1
(12%), JAK2 (10%), CREBBP (10%) and FLT3 (10%). NT5C2 and SYK were exclusively
mutated in the pediatric (n>=3) cohort samples and CREBBP and CHD2 (n>=3) in the
adult cohort.
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Figure S2: Gene expression, DNA methylation and somatic alteration signatures of the
various BCP-ALL subtypes. The samples of all subfigures have been ordered by their
BCP-ALL subgroup assignment. (a) and (b) show the expression and methylation
signatures for the classified subgroups. The expression data show gene-centered fold
change of log2 transcripts per million (TPM). The methylation is represented by the beta
values. Both subfigures show the subtype-specific altered genes and CpGs respectively,
grouped accordingly to subtype-specificity. (c) Genomic alterations in molecular subtypes
(mutations, fusions, deletions and alternative transcripts; legend below) in ID and REL of
adult and pediatric BCP-ALL. The percentage on the left shows the frequency of samples
bearing an alteration, and the bar plots show in which BCP-ALL subtypes they occur
indicated by color-coding (legend above). The lowest part of each heatmap shows the
analyses that have been performed for each sample. The black color stands for normal
analysis, white stands for unavailable data and gray stands for limited analyses (see
methods).
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Figure S3: Chromosomal status for 48 samples ID of the cohort, including 14 aneuploid
patients, 10 of which were classified as NH-HeH and 4 of which were classified as LH.

13



N}
\
\

scaled_celul

N\
iy
AN

scaled_cellu

larity

\
\

scaled_cellu

1_cellularity

scaled_ceilul

14

scaled_cellularity

scaled_cellularly

a. Clonal evolution of recurrently mutated genes with a volatile pattern

12

10

8 2 8 8

e
]

&
~

e 2 B8 B
E 58 8 B K

e
5

e
]

02

b. Clonal evolution of recurrently mutated genes with a stabilizing pattern

a6

a4

a2

a0

<02

a6

04

a2

a0

02

06

04

02

a0

02

06

a4

02

a0

02

genes = KRAS

genes = ZEB2

]
il

v

genes = TP53

genes = CREBBP

genes = ZNF483

genes = TACRL

-]
i

D

]

genes = NRAS

v

genes = IKZFL

genes = PAXS

genes = FPGS

¥

FE|

il

L

genes = JAK2

genes = KMT20D

genes = NT5C2

genes = AGBL1

\

genes = FLT3

genes = CRLF2

N

il

AN

genes = PTPN11

!

genes = PRPS1

il

[ B TR R Y R BN R Y R R R BN R R R R R BN DX Y TX B BY BN TX B TX B )

8

]

CEL RN D B EL Y T Y DY BN LY R LY B DY BN DL Y I B )

muaation_id
AED512 25378562 CIT KRAS
AED512 25398284 C/T KRAS
AED512 25398285 CIAKRAS
PEDT 12 75338262 CIAKRAS
PE1412 25378562 CITKRAS
AL03122539626L CIT-KRAS
AL28:1225398281 C/IT-KRAS
PED4 1225398281 CITKRAS
PE05 1225398284-C/G KRAS
PEOT- 1225398285 C/G KRAS
PE121225378561 GIAKRAS
PLO3:12 25396284:CIAKRAS
PLOT:12 25396281 CITKRAS
PL10:12-25398284:C/T-KRAS
AE2T1'115258745-C/G NRAS
AL181115258744 CIT NRAS
ALIT1115258748 CITNRAS
PEO11-115258747-CIT-NRAS
PED41°115258744-CIT-NRAS
PEOS1-115256530°G/TNRAS
PE0G1-115256746:CIANRAS
PLO1-1:115258748:CIANRAS
PLO2 1115256525 TIANRAS
PLOT-1115258745-C/G NRAS
AL0295054599 G/C.JAKZ
3395076360 A/G JAKZ
PLOG-9:5055786 CIA-JAK2
PLOG 95078360 A/G-JAK2
PL139°5078395:C/G:AK2
AED4 13 28608289 GTACTCATTATCTIG FLT3
L0613 28592642 CIGFLT3
AL2713 28597488 GIAFLT3
PED4 1328589753 AT FLT3
PL14:13 28608341 TICFLT3
AL09214514T550:TICZEB2
AL30:2145147550-TIC-ZEB2
PLO3-2145147550:-T/C-ZEB2
PL11-7 145147445 GIT ZEB2
PEOT 993639972 GIASYK
PLO1-9-93650098 CIASYK
PLO4 993641174 AIGSYK

mutation_id

AL04:17. 7578404 AIG TP53
AL10:17. 7578212, GIATPS3
AL26:177577538.C/T-TPE3
AL32177578203.CIT-TPS3
PEOL17.7577063 CICAG TPE3
PE03:17:7577093: C/ICGACCCT TPE3
PE03:17.7577006:TIG TP53
FE09.17 7574018 G/A TPS3
PE0O:17.7577001. GIGCCGGGTTGGGGC TPES
AL0Z.7:50468229 TCIT KZFL
ALD6T 50444402 GIA IKZF1
AL3LT 50455068 TIC IKZF1
AL33T 50436033 NGIKZFL
AL337 50450268 GIAIKZFL
AL337 50455061 GIT IKZFL

PE04 750468215 CIT:IKZFL

PLOS 750444482 G/C IKZF1
AED2 1249446462 GIGGGGGCCC KMT2D
AEDS 12 49416084.GIT KMT2D
AEDT 1249447824 AGIA KMT2D
ALD6:12:49447896:CICCA KMT2D
AL26:12.49420108:C/T KMT20
AL30:12:49425524.GIAKMT2D
PE0S:12 49428408:GGTCCCIG KMT20
AE10X:1314966:AIC:CRLF2
AL02X:1321364 GIACRLF2
AL18:X1314966 A'C.CRLF2
AL3IX:1314966 A'C.CRLF2

PE10:X 1314966:A/C CRLF2
PLOG X:1314966/AIC:CRLF2
AEDS:16:3768618.G/A.CREBBP
ALO2:16:3795277.CIA CREBBP
ALD3:16 3789628 C/G CREBEP
AL2T:16:3817735. TITGCGGGCC CREBBP
AL28:16:3TR9627.C/T CREBBP
AE2T:9:37015165:G/C PAXS
AL18:9:37020642 A/G PAXS
PE03:9:37015165:GIC.PAXS
PLO8 9:37002702:CIT.PAXS
PEDL10 104899222 C/T-NTSC2
PED210 104850753 CIA NTEC2
PE04:10 104852956 C/TNTSC2
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AL26:12:112926885 CIT PTPNIL
PLOT 12112686210 G/A PTPN1L
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PED5 X 106885621 AIG:PRPS1
PEDG X 106884165 AIG:PRPS1
PLOT 2:75426690:G/ATACRL
PL14:2:76347863 G/A TACRL



Figure S4: Clonal evolution of mutations of genes with volatile and stabilizing patterns. (a)
Clonal evolution of REL-specificof most recurrently mutated genes with a volatile pattern.
(b) Clonal evolution of REL-specific mutations in genes identified by high recurrence in
REL, high cellularity in REL-specific mutations or REL-specific double-hit: PTPN11, SYK,
CXCR4, LAMA2, LAMA1, TACR1 and PRPS1 bearing a stabilizing pattern.
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Figure S5: This figure shows the clonal evolution trees between ID and REL for the
patient PL11 calculated with PyClone and Schism. The GL node represents the germline,
the starting point. The greener the arrow, the more specific to ID, the bluer the arrow the
more specific to REL. The darker the luminosity reflects the higher cellularity of the clone.
These highlighted genes represent genes in our curated cancer gene (Supplementary
Table S10) and genes of which one copy has been lost according to the CNA analysis.
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PDZD?2 (cancer_gene)
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FRG1 (cancer_gene)
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Figure S6: This figure shows the clonal evolution trees between ID and REL for all
patients accordingly to Figure S5. Each page contains a plot for a patient, subdivided into
frequency plots (a) and the Schism evolutionarly tree (b). (a) The frequency plots
represent, from left to right the variant allele frequency of the mutations, the cellularities
as calculated by PyClone and lastly the clone-specific mean cellularities as a line plot
between ID and REL. The triangles in the VAF and cellularity plots represent the
highlighted genes in the legend. These highlighted genes represent genes in our curated
cancer gene (Supplementary Table S10) list and genes of which one copy has been lost
according to the CNA analysis. (b) The GL node represents the germline, the starting
point. The greener the arrow, the more specific to ID, the bluer the arrow the more
specific to REL. The darker the luminosity reflects the higher cellularity of the clone.
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Interaction network of recurrently mutated and deleted genes at relapse

Figure S7: Relapse-mutation protein-protein interaction network. The network shows the
protein-protein interaction of the recurrently mutated and deleted genes at relapse as
retrieved from Reactome FIViz Cytoscape plugin. Diamond-shaped nodes are so-called
linker genes, connecting genes from the original query set. Solid lines are experimentally
validated and dashed lines represent predicted interactions. The color of the circular
nodes represents the class according to (Figure 2).
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Protein and transcript expression changes froM ID to REL
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Figure S8: The expression of the protein products and mRNA transcripts of PGD, GPI,
TKT and PGK1 at ID and REL of four metabolic genes.
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Top 10 pathways of protein expression enriched in Ph-like relapse samples
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Figure S9: Protein expression and pathway enrichment in the Ph-like relapse samples.
The bar plot shows the top 10 ingenuity pathways for differentially expressed proteins in
Ph-like relapse samples.
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