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Abstract 

 

Rare diseases and their underlying molecular causes are often poorly studied, 

posing challenges for patient diagnosis and prognosis. The development of next-

generation sequencing and its decreasing costs promises to alleviate such issues by 

supplying personal genomic information at a moderate price. Here, we used 

crowdfunding as an alternative funding source to sequence the genome of Lil BUB, a 

celebrity cat affected by rare disease phenotypes characterized by supernumerary 

digits, osteopetrosis and dwarfism, all phenotypic traits that also occur in human 

patients. We discovered that Lil BUB is affected by two distinct mutations: a 

heterozygous mutation in the limb enhancer of the Sonic hedgehog gene, previously 

associated with polydactyly in Hemingway cats; and a novel homozygous frameshift 

deletion affecting the TNFRSF11A (RANK) gene, which has been linked to 

osteopetrosis in humans. We communicated the progress of this project to a large 

online audience, detailing the ‘inner workings’ of personalized whole genome 

sequencing with the aim of improving genetic literacy.  Our results highlight the 

importance of genomic analysis in the identification of disease-causing mutations 

and support crowdfunding as a means to fund low-budget projects and as a platform 

for scientific communication. 
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Introduction 

 

Rare diseases represent a challenge for the research community and a public health 

problem. Although each disease individually affects a small number of people (no 

more than 1 person per 1,000-2,000, depending on the country), more than 7,000 

different rare diseases have been reported. Therefore, it is estimated that the 

collective number of cases can be as high as 30 million in Europe and 25 million in 

the USA, representing 5-10% of the population1. Research on individual rare 

diseases has been traditionally neglected in favor of other, more common, medical 

conditions. Consequently, patients affected by these conditions often receive 

inadequate diagnostic and medical support, leading to so-called “diagnostic 

Odysseys”. 

 

Comprehensive genetic testing holds promise to help such patients by identifying the 

cause of their disease, as well as enabling more informed, personalized treatments 

and prognoses. However, despite more than 10 years since the sequence of the 

human genome was revealed, our capability to interpret the effects of genomic 

variation remains limited. As a result, testing of candidate loci identifies disease-

causing mutations for only a fraction of patients, and leaves a substantial number of 

unsolved cases. The increasing efficiency and decreasing cost of genome 

sequencing are expected to increase the number of available genomes, promising to 

improve the identification of disease-causing variants2 and further enhance our 

knowledge of the human genome. However, the next frontier lies on the inevitable 

challenges of evaluating hitherto unknown variants3, as well as communicating the 

potential and challenges of sequencing efforts to the patients and the general public, 

who often have no formal training in genetics, potentially leading to uncertainty and 

misunderstandings in their interpretation of the results4–6. 

  

Animals provide a valuable resource in this framework to better understand genetic 

diseases, with domesticated animals and pets in particular displaying a rich tapestry 

of traits that often share the same genetic cause as in human7–9. One such example 

is Lil BUB, a pet cat with several congenital malformations (Figure 1), whose special 

appearance and social media presence has granted her international fame and a 

fandom across the globe. Lil BUB was diagnosed with infantile malignant 

osteopetrosis, a very rare condition that, in humans, affects 1 in 250,000-300,000 

births. The disorder is caused by an impairment of osteoclasts, leading to an 

imbalance between the processes of bone resorption, performed by such cells, and 
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bone formation, controlled by osteoblasts10,11. Together, these two cell types 

constantly remodel bone tissue throughout life to ensure its proper growth, 

mechanical stability and physiological functions. Thus, impairment of osteoclast 

differentiation or loss of resorptive activity can lead to the accumulation of bone 

tissue, causing increased bone density, susceptibility to fractures, as well as several 

traits that are secondary to those bone changes. Genetically, the disease is 

heterogeneous and causal mutations for the recessive, more severe form has been 

found in seven genes, which differ somewhat in their clinical manifestations and 

patient prognosis10. Currently, the only curative therapy is transplantation of 

hematopoietic stem cells, although alternative treatments such as gene therapy or 

cytokine-replacement therapy have been reported10. In cats, reports of osteopetrosis 

are rare12,13, and no examples of the congenital form are known, although it has been 

shown that osteopetrosis can be acquired through infection with retroviruses14,15 .  

 

In addition, Lil BUB presents preaxial polydactyly, a condition characterized by the 

presence of an extra digit on the thumb side of the paw. This trait is not uncommon in 

cats, with a high occurrence in several breeds (e.g. Maine Coon, Pixie bob) and 

multiple outbred cats16,17. Three mutations on chromosome A2, in the regulatory 

(enhancer) region of the Sonic hedgehog gene, have been previously identified as 

dominant causal variants18. Of these, one is known to be prevalent in North American 

cats, including in a colony of polydactyl cats on Ernest Hemingway’s estate on Key 

West19. Additional mutations on this enhancer and the associated polydactyly have 

been reported to occur in chicken, dog, mouse or human18,20,21, highlighting the 

evolutionary conservation of this developmental pathway. 

 

The combined manifestation of congenital osteopetrosis and polydactyly, as 

observed in Lil BUB, is quite remarkable and has never been reported previously. To 

identify the underlying cause of the observed phenotypes, we performed a 

comprehensive genetic analysis for Lil BUB, and found that she is affected by two 

distinct mutations: a heterozygous mutation on the limb enhancer of the Sonic 

hedgehog gene; and a frameshift deletion affecting the TNFRSF11A (RANK) gene. 

We considered this a test case for precision medicine, since it would allow a more 

precise diagnosis and prognosis for Lil BUB and a general improvement of our 

understanding of the disease’s etiology. Due to the small-scale characteristics of the 

project, we determined to use a crowdfunding approach to finance the research. 

Moreover, we decided to communicate the planning, execution, and analysis of this 

study to the broader public using a range on online media platforms, to raise 
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awareness for rare diseases and explain the challenges, promises and steps 

involved in whole genome sequencing. Furthermore, our results highlight the 

importance of genomic analyses as a means to improve our understanding of 

developmental disease. 

 

Results 
 

Phenotypic description 

 

Lil BUB was found as a feral kitten that was abandoned by her mother in rural 

Indiana, USA and was subsequently hand-reared. She was born with several 

malformations, mainly related to skeletal growth and development. At the age of 7 

months, she stopped growing and remained the size of a kitten (adult weight: 1.8 kg; 

Figure 1A-C). This manifested as an extreme case of dwarfism, causing her limbs to 

be remarkably small in comparison to her body. From birth she was smaller than 

other cats and by 10 months her movements became severely restricted. Radiologic 

studies revealed opaque medullary cavities and widened metaphyses resulting in an 

"Erlenmeyer Flask Deformity" and bowing of long bones (Figure 1D). Multiple 

radiopaque and radiolucent transverse bands were present in the metaphysis, a 

typical sign of problems with bone resorption. Ribs and sternae were thickened and 

the epiphyses of the long bones were small, while adjacent physes were thin. 

Moreover, her skull and jaw remained underdeveloped, with her tongue and eyes 

displaying a normal size and thus protruding notably from the cranial cavities. The 

teeth did not erupt or are not present, except for one or two small crowns on the right 

maxilla. There is a complete absence of bony palate. Despite her jaws and teeth 

being underdeveloped, Lil BUB has no difficulty feeding and eats food (both wet and 

dry) with no problem.  

Based on her features and the radiological observations, she was diagnosed with a 

severe form of osteopetrosis, displaying similar features as described in human 

patients. Although this condition often co-occurs with additional symptoms that affect 

hormone and blood homeostasis, thyroid screening showed normal T4 (3.8 µg/ml) 

and Ca2+ (9.5mg/dl) levels and bloodwork showed no abnormalities, although 

enlarged platelets were noted. Lil BUB displayed low alkaline phosphatase levels 

(<20 IU/L; normal range 23-107 IU/L), which indicates low bone formation. However, 

in patients affected with osteopetrosis, these levels are often normal or even 

elevated because of the increased bone surface and varying total osteoblast 

numbers, and are thus unreliable biomarkers for osteopetrosis.. Of note, Lil BUB 
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received continuous treatment with an electromagnetic pulse device (Assisi loop) 

since the age of 22 months. Coinciding with the treatment, her condition improved, 

and Lil BUB regained her mobility.  

In addition to the traits associated with osteopetrosis, Lil BUB displays preaxial 

polydactyly affecting both forelimbs and hindlimbs (Figure 1C and D). A complete 

duplication of a normal biphalangeal thumb is observed in all paws, resulting in 22 

digits (6 on each forepaw and 5 on both hindpaws).  

 

 

Project funding and outreach aspect 

 

Given Lil BUB’s unique combination of osteopetrosis traits and polydactyly, we aimed 

to investigate whether her condition was an unusual form of (feline) osteopetrosis 

that included polydactyly, or if she was simultaneously affected by two rare 

conditions. We opted to perform whole genome sequencing to address this question, 

because a candidate gene approach did not seem feasible. We estimated that the 

financial requirements needed for such an endeavor would be moderate, and 

therefore decided to finance the project via crowdfunding22, with an initial goal of 

$6,500. We reasoned that Lil BUB’s recurrent engagement with the internet public 

presented a compelling case for “citizen science” that would benefit from alternative 

funding approaches, while simultaneously providing a platform to communicate 

genomic analyses to the broader public. 

 

For this purpose, we used the crowdfunding platform “Experiment.com”, a site that 

focuses exclusively on raising funds for research and science projects. During the 

fundraising period, our campaign attracted the attention of more than 25,250 people 

(Figure 2A). After the 45-day campaign, the project was successfully funded, raising 

a total of $8,225, 26% more than the initial goal. The project was supported by a total 

of 248 “backers”, representing a 1% of the page views at the crowdfunding site 

during this period. Backers donated $33.17 on average. During the campaign, page 

views and donations peaked when the project was mentioned by the official Lil BUB 

Facebook page or major media outlets, such as the Washington Post or Der Spiegel 

(Figure 2A and Supplementary Table S1).  

 

Beyond crowdfunding, we further used our social media networks to engage with the 

public and communicate the step-by-step progress of our research project. Our aim 
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was to provide comprehensive explanations to the biology behind the project to a 

non-scientific audience, which represents most of the funders. One example was a 

Reddit Ask Me Anything (AMA) session that, over the course of 24 hours, allowed us 

to provide answers to specific project-related questions from the audience. We also 

produced YouTube video blogs to disseminate our results in a visual, more 

accessible format. As a consequence of these efforts, traffic on our sites continued 

after the crowdfunding period, with almost 11,000 additional visitors to our 

crowdfunding site, more than 5,000 views of our research updates and 15,000 

visitors of our blog as of December 2018. We reached audiences from 109 countries 

on six continents, with approximately 50% of our websites’ traffic from the US and 11 

other countries (US, Germany, UK, France, Canada, Hungary, Australia, Spain, 

Brazil, Italy and India) making up for 90% of our readers (Figure 2B). 

 

 

Genome sequencing and initial analysis of informative variants 

 

To identify Lil BUB’s disease-causing mutations, we sequenced her genomic DNA 

using short-read sequencing technology. We mapped reads against the domestic cat 

reference genome (Felis_catus 6.2), obtaining ~50X coverage and, through 

comparison with the reference genome, identified a total of ~6 million SNVs and 

small insertions/deletions, as well as 424 larger structural variants (Figure 3A-C). 

However, the relatively large number of structural variants and their genomic 

distribution (Figure 3B) suggests that the great majority are likely false-positives due 

to problems in the genome annotation. We therefore did not follow up on those 

identified variants. Of note, we observed an excess of homozygosity throughout the 

entire genome, likely indicating inbreeding events over the course of multiple 

generations (Figure 3D).  

 

As a first step of analyzing Lil BUB’s genome sequence, we looked at known variants 

previously linked to distinct phenotypical traits in cats (Table 1). In most cases, the 

studied variants matched with Lil BUB’s phenotypical characteristics. For example, 

Lil BUB does not harbor any of the mutations known to cause retinal atrophy, feline 

hereditary myopathy, hypertrophic cardiomyopathy or albinism. We found, however, 

that Lil BUB is a carrier for the variant c.123delCA in the ASIP gene that has been 

linked with black coat colour23. In addition, she carries two variants that affect the 

pattern of her coat’s tabby markings24. Such markings consist of light background 

hair, interspersed by darker hair in specific patterns, of which mackerel and blotched 
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are the most frequent. In mackerel cats, the light and dark hairs form regular stripes. 

In contrast, the blotched pattern is characterized by disorganized stripes with the 

dark hair forming whorls. Lil BUB’s coat clearly displays the mackerel tabby pattern, 

although she is heterozygous for two distinct mutations (p.Trp841* and p.Thr139Asn) 

in the Taqpep gene that are associated with the blotched pattern. While our short-

read sequencing cannot discern whether both variants are on the same 

chromosome,  the co-occurrence of the two mutations with a mackerel pattern is 

consistent with published data, which found that 7 of 10 cats with the 

p.Trp841*/p.Thr139Asn mutations display this pattern24. 

 

In addition to visible traits, her genetic findings were also consistent with 

molecular/physiological traits. For example, Lil BUB did not have the mutation 

associated with hypokalemia (intermittent reduced potassium levels) in Burmese 

cats. Consistent with this, she did not show any hypokalemic symptoms and her 

bloodwork displayed normal potassium levels (4.3 mmol/l; clinical signs appear  

below 3 mm/l)25. Similarly, we found Lil BUB to have the haplotype associated with 

blood type A in cats26,27. While her blood type was unknown at the time of our initial 

sequencing analysis, further tests confirmed that she indeed has blood type A. A 

major unexpected finding from our initial variant analysis was that, despite her white 

gloving phenotype (white fur only on her paws), she did not carry the variant known 

to cause gloving in the Birman breed. Such result suggests the existence of 

additional uncharacterized variants for gloving, an hypothesis also supported by 

observations in other breeds, such as the Ragdoll, displaying “mitted” patterns in the 

absence of the Birman mutation28. 

 

 

Identification of disease-causing mutations 

 

Having performed this initial genotype-to-phenotype characterization, we next sought 

to identify the mutation(s) responsible for Lil BUB’s osteopetrosis and polydactyly 

traits. Initially, we chose a targeted approach and specifically analyzed the ZRS 

enhancer of the Sonic hedgehog gene, a genomic region associated to the 

appearance of polydactyly across mammals. We found that Lil BUB was 

heterozygous for an A to G mutation at chrA2:167,313,488, a variant previously 

described to cause the appearance of additional digits in Hemingway cats. We 

verified both the nature and the heterozygous state of the mutation using Sanger 

sequencing (Figure 4A and B). The affected enhancer is well-known for its 
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association with polydactyly, with mutations in humans, mouse and cats identified in 

different parts of the element, which cause ectopic expression of Sonic hedgehog 

during embryonic limb development, subsequently leading to the formation of 

additional digits (Figure 4C and D). 

 

Having identified a likely candidate for the polydactyly phenotype, we next searched 

for causes underlying her osteopetrosis. Although we initially considered the 

possibility that retroviral infection may have given rise to Lil BUB’s osteopetrosis, she 

tested negative for both feline leukemia virus (FELV) and feline immunodeficiency 

virus (FIV). In addition, several healthy siblings were born in the same litter, thus 

eliminating this as a plausible causal mechanism. We therefore focused on the 

analysis of her genome sequence. We filtered Lil BUB’s variants in order to retain 

SNVs and inDels that affect genes (~32k variants) and specifically focused on those 

with a known role in bone mass regulation and/or osteoclast differentiation in humans 

(Supplementary Table S2). Having thus narrowed the list to 12 candidate variants 

(Table 2), we further eliminated seven of these based on read coverage, mapping 

quality, and sequence complexity. We discarded three additional exonic variants, as 

manual inspection suggested that they were in fact intronic. This was subsequently 

confirmed by gene annotations in the genome builds 8.0 and 9.0.  

 

Of the two remaining variants, one involved ZMPSTE24, a gene that can cause 

mandibular defects in both human and mice when mutated29–31. While Lil BUB’s jaw 

is underdeveloped, providing superficial resemblance to the human and mouse 

ZMPSTE24 loss-of-function phenotypes, diverse evidences suggest that it is not the 

major causal mutation for her traits. First, there are multiple features, typically 

associated with human and mouse ZMPSTE24-deficiency, that are inconsistent with 

Lil BUB’s phenotype. These include spontaneous bone fractures due to decreased 

bone density, lipodystrophy (general fat loss, although this feature might be 

secondary to feeding difficulties), atrophy of the skin and loss of hair or sparse, brittle 

hair29,30,32,33. Second, the variant identified in Lil BUB (a T insertion at 

chrC1:30,324,507, causing a frameshift in the protein) appears to be in a 

heterozygous state. This contrasts with other studies showing that affected human 

patients are homozygous or compound heterozygous, while heterozygous individuals 

are reported to be healthy29,33,34. In addition, heterozygous Zmpste24 knockout mice 

are either indistinguishable from their wild-type littermates32 or develop much milder 

phenotypes30. For these reasons, we consider unlikely that Lil BUB’s ZMPSTE24 

mutation is causative for her skeletal malformations. 
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In contrast, several lines of evidence support that the mutation affecting the gene 

TNFRSF11A is likely the disease-causing variant for Lil BUB's osteopetrosis. 

TNFRSF11A codes for a transmembrane receptor, RANK, that is expressed on 

osteoclasts and osteoclast precursors. Activation of this receptor by its ligand RANKL 

is necessary for osteoclast differentiation, survival, and function, and is therefore 

essential for the process of bone resorption. The identified mutation is a homozygous 

deletion of an A in a CAT sequence in exon 8 (c.806delA; Figure 5A), causing a 

frameshift and subsequent premature truncation of the protein (p.His272Leufs*16; 

Figure 5B). This truncation removes the majority of RANK’s intracellular domain, 

including two regions that are essential for oligomerization of the receptor and signal 

activation, thus rendering the protein dysfunctional35. Due to the central role of RANK 

in osteoclast function, variants that truncate murine or human RANK cause 

autosomal-recessive osteopetrosis, characterized by a complete absence of 

osteoclasts (Figure 5C). Affected individuals display early onset osteopetrosis, 

sharing several phenotypic features with Lil BUB, such as growth arrest and small 

stature, Erlenmeyer flask bones, exophtalamus (protruding eyes), dysmorphologies 

of the skull and jaw, and – in mice - failure of tooth eruption36–40. Two variants in 

particular, the human p.Gly280* and p.Trp434* mutations, are of interest as they also 

truncate the intracellular domain of RANK and biochemical assays of the deleted 

regions confirmed their involvement in RANK function41,42. Moreover, the identified 

variant was not present in 131 cats sequenced by the 99 Lives Consortium - none of 

which has osteopetrosis (data accessed August 2018). Taken together, these data 

strongly suggest that the homozygous, truncating TNFRSF11A/RANK variant is the 

causative mutation for the osteopetrotic phenotype observed in Lil BUB. 

 

 

Discussion 

 

Genetic studies in livestock and pet animals can provide valuable insight into human 

disease, due to the evolutionary conservation of mammalian body plans and their 

gene regulatory networks43,44. Domesticated animals, in particular, often display a 

vast array of readily observable phenotypes as a result of inbreeding45,46, which 

causes a gradual increase in homozygosity and the accumulation of recessive traits. 

Additionally, rare spontaneous mutations that mimic human conditions have also 

been documented20,47,48. Recent improvements in sequencing technologies have 

boosted our capacity to analyze entire genomes, expanding the potential to identify 
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pathogenic mutations and constituting an important step towards disease 

management. Here, we demonstrate how personalized genomics and the 

conservation of mammalian disease phenotypes can be effectively linked, by 

sequencing the genome of a pet cat, Lil BUB, and identifying likely causal mutations 

of her polydactyly and osteopetrosis.  

 

Lil BUB displays an unusual combination of polydactylous and osteopetrotic traits. 

However, mapping the genetic mutation(s) responsible for these traits through 

breeding or pedigree analysis was not possible, as she is spayed and her parents 

unknown. Therefore, we opted to perform whole genome sequencing to identify 

potential causal variants. By doing so, we identified approximately 6 million single 

nucleotide variants in Lil BUB compared to the reference genome, obtained from a 

female Abyssinian cat. This number of variants is similar to that observed in other 

breeds sequenced at high coverage28. Interestingly, we observed a substantially 

higher degree of homozygosity throughout Lil BUB’s genome than expected, based 

on prior studies in both inbred and random populations. In such studies, average 

heterozygosity measurements at the population level ranged between 0.51 and 0.65 

(based on microsatellites) or 0.53-0.85 (based on short tandem repeat analysis49,50). 

Hence, our data suggests that multiple rounds of inbreeding occurred in Lil BUB’s 

ancestry, either as a result of a small cat population at her place of birth or because 

her ancestry is partially of a certain cat breed. 

 

In the case of the osteopetrosis, we excluded the possibility that retroviral infection 

may have given rise to the disease, and identified a mutation in TNFRSF11A, a gene 

well known to cause such abnormalities. The identified mutation was homozygous, 

consistent with the autosomal recessive osteopetrosis subtype typically associated 

with TNFRSF11A/RANK (Figure 5). Beyond the phenotypical similarities between Lil 

BUB and mice or humans with RANK mutations, the identified variant was absent in 

all other tested cats of the 99 Lives Consortium, further supporting a causal 

relationship. Unfortunately, functional validations, such as an in vitro osteoclast 

differentiation assay, are not possible in this case, given the large blood sample 

requirements.  

 

However, despite the overall similarity in phenotype with human and mouse RANK-

associated osteopetrosis, we noted some differences: while the spleen is typically 

enlarged in humans and mice, no hepatosplenomegaly was observed in Lil BUB’s 

case. Furthermore, human patients affected by RANK mutations often display severe 
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visual impairment, although Lil BUB’s vision seems to be unaffected. It is possible, 

however, that the described visual impairment is human-specific, as it has not been 

reported in mice38–40. Other Lil BUB´s features, such as severely hypoplastic jaw 

bones, have not been reported in human patients with RANKL-related autosomal 

recessive osteopetrosis, but pronounced mandibular hypoplasia was observed in 

cattle with CLCN7-related osteopetrosis, where it was paralleled by gingival 

hamartomas51. Thus, skull bones seem to be especially prone to species differences 

in autosomal recessive osteopetrosis. In addition, RANK-associated osteopetrosis 

can be linked with hypogammaglobulinemia and an increased risk of infections in 

some patients36,37. Although such parameters were not measured in Lil BUB´s 

bloodwork, the absence of remarkable recurrent infectious processes during her life 

suggests normal immunoglobulin levels. Lil BUB’s low alkaline phosphatase levels 

are notable since the enlarged osteopetrotic bone surface should lead to higher 

numbers of osteoblasts producing this enzyme. RANK has recently been identified 

as a coupling factor, which can stimulate osteoblast activity through binding to 

RANKL, thereby initiating reverse signaling52. Thus, a loss of RANK protein might 

explain this unusually weak bone formation, although cannot discern whether the 

identified frameshift mutation leads to a truncated, partly functional RANK protein or 

to a complete loss.ç 

 

Currently, the only known therapy for autosomal recessive osteopetrosis in humans 

is bone marrow transplantation, which has not been required in the case of Lil BUB 

due to the favorable evolution of her condition. Such improvement was noticed soon 

after receiving regular sessions of pulsed electromagnetic field therapy. However, 

currently a scientific basis for the use of this method to treat the disease is missing 

and, to date, no other validated cases of feline osteopetrosis exist to verify if the 

observed effects are reproducible.  

 

In contrast to osteopetrosis, polydactyly is a frequently observed trait in cats and the 

variant identified in Lil BUB has previously been documented in Hemingway cats, as 

well as other North American polydactyl breeds53. This non-coding mutation is 

assumed to result in polydactyly due to ectopic expression of the signaling molecule 

Sonic hedgehog in the anterior part of the developing limb buds (where it is normally 

not expressed). Interestingly, Hemingway cats are polydactylous mainly on the 

forelimbs53, while all four paws are affected in Lil BUB´s case. However, polydactyly 

has highly variable expressivity, even within a colony. At the same time, 

morphological variation of polydactyl cats is often reduced within breeding lines16,17,53, 
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suggesting the existence of possible modifier genes. Based on our data we cannot 

distinguish whether there is a genetic component for the four-pawed polydactyly in Lil 

BUB or if her phenotype is simply part of a natural spectrum associated with the 

Hemingway mutation.  

 

We also identified an additional mutation (in the ZMPSTE24 gene) that could 

potentially have modified the outcome of her skeletal traits, raising the possibility that 

other exist. We also eliminated non-exonic variants, which can also affect gene 

regulation and/or splicing and need to be considered if no plausible coding mutation 

is detected. In addition, given that gene annotation of the cat genome is still a work-

in-progress, it is possible that some variants currently annotated as non-coding will 

later be re-assigned, or vice versa,	
   as we noticed during the analysis of Lil BUB´s 

genome (see Methods). This underlines the importance of thorough and 

comprehensive genome annotation for personalized genomics. 

 

Finally, the efforts presented in this paper were also part of a public outreach project 

to demonstrate the use of personalized genomics: we raised funds for sequencing 

through a crowdfunding campaign and reported on various steps of sequencing and 

analysis on Twitter, through Facebook, blog posts and Reddit, as well as YouTube 

videos. Given the rise of direct-to-consumer genetic testing both for humans and, 

more recently, for pets54,55, we hope that our public engagement activities contributed 

to a broader understanding of how genetic information is obtained and what insights 

can (and cannot) be gained for a single individual case with unknown ancestry or 

family medical history.  
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Methods 

 

Ethics statement 

 

Blood samples from Lil BUB were collected by a licensed veterinarian, with the 

consent of her owner. According to the framework defined by the Directive 

2010/63/UE of the European Parliament and of the Council, no animal 

experimentation, only non-experimental clinical veterinary practice (taking biopsies 

and imaging for disease diagnosis) was performed. 

 

 

Sample collection, DNA extraction and sequencing 

 

A sample of EDTA anti-coagulated whole blood was collected during a routine 

veterinary visit and genomic DNA was isolated using standard procedures. The 

quality and integrity of the DNA was assessed using the A260/280 ratio and agarose 

gel electrophoresis. Libraries were then prepared using Truseq sample prep for Next 

Seq Version2: DNA was sheared to 300bp and 500bp with Covaris according to the 

protocol provided by Illumina, adaptors were ligated to the two libraries, and correctly 

sized fragments excised from gel. We performed paired end 2x 150bp sequencing of 

libraries on an Illumina NextSeq 500. 

 

 

Variant calling and analysis of variants 

 

We obtained a total of 144,172,364 and 310,362,266 reads for the two libraries 

(~500bp and ~250bp length, respectively). Reads were mapped against 

Felis_catus_6.2 using Bowtie2 and we were able to map 98.38% of reads, 

corresponding to 40x coverage. Non-uniquely mapping reads were placed in a 

random fashion by Bowtie2. We did not apply repeat masking and all mapped reads 

were used. Sequence read de-duplication, indel re-assembly and subsequent SNV 

calling was performed with Platypus56. In total, we identified 6.19 million SNVs and 

InDels, 4.4 million (65.4%) were intergenic and 1.75 million (34.6%) were located in 

annotated genes. Variants were visualized using IGV browser57. We used variant 

predictor SnpEff58 to determine the potential pathogenic effects of candidate 

osteopetrosis genes. To exclude that the identified TNFRSF11A variant was not 

simply a low frequency variant in cats, we interrogated the 99 Lives Consortium data: 
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in August 2018 we downloaded all variants identified in TNFRSF11A/RANK (this 

corresponded to the January 2017 variant analysis). The D3:81,422,862 variant was 

not present in 131 cats from this dataset.  
 

 

Evaluation of coding variants 

 

Due to the incomplete annotation of the cat genome, five variants affecting 

transcripts of bone disease related genes had to be evaluated individually. For this 

the most likely correct transcription and coding unit was evaluated by integrating all 

available gene prediction algorithms, sequence conservation, and expressed 

sequences in the UCSC genome browser for releases felCat5 and felCat8.0 of the 

Felis catus genome. Annotation inconsistencies of the TNFRSF11A transcript and 

coding sequence lead to ambiguities in the nomenclature of the frameshift variant. 

The most appropriate nomenclature is ENSEMBL c.806delA 

(ENSFCAT00000032280.1) and p.H270LfsX16 (ENSFCAP00000022567.1) in 

felCat5 or Augustus c.815delA (g12385.t1) and p.H272LfsX16 (g12385.t1_prot) in 

felCat8.  

 

 

Sanger sequencing of the ZRS region 

 

A fragment containing the ZRS region was PCR generated using primers that amplify 

a 2.8kb region surrounding the 800bp ZRS (fwd_primer: 

CCTTGAAGTGGAAATCTCTCCTG, rev_primer: 

ATCAATTGCGTGAAAACTGCAAGGG). The obtained PCR products were 

subcloned into a pTA-vector and four individual subclones were sequenced using six 

sequencing primers that together covered 2.7kb of the region: catZRSeq1: 

TTGATGGGGTTTTCCTCGAAC, catZRSeq2: TCAGCTTTATAGGCCTTCCCAG, 

catZRSeq3: CAAGACGCAAACCGCGGAG, catZRSeq4: 

GGGCGGATGCAGAGCTTG, catZRSeq5: TTAGTGAGATATGAGTCCATTTTCTGT, 

catZRSeq6: GAGCATAGCACACGGTCT.  

 

 

Data availability 
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Sequencing data was deposited in the Sequence Read Archive with accession 

number PRJNA512113. It is available using the following link: 

https://www.ncbi.nlm.nih.gov/sra/PRJNA512113 
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Figure 

 
 

Figure 1. Phenotypic traits of Lil BUB. (A) Appearance of Lil BUB shows small 
size compared to an average adult domestic short haired cat (B) Short skull and 
body size, as well as protruding tongue shown in lateral view (C) Polydactyly of the 
front paws (D) Radiographs of forelimbs show high bone mineral density and 
Erlenmeyer flask shape of long bones as well as extra digits  
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Figure 2. Web traffic on the homepages of the Lil BUBome. (A) Monthly number 
of visitors on the crowdfunding pages of the Lil BUBome at the experiment.com site 
between February 2015 and December 10, 2018 (left). It should be noted that for the 
three months with the highest number of visitors (April-June 2015) the height of the 
bars is not to scale. For these months we also show a daily breakdown of the site’s 
traffic (right), as well as the progress of fundraising during the crowdfunding period 
(April 15 to May 25, time highlighted in grey). On the days where we observed a 
spike in visitors, we also indicate what major media outlets or social media sites 
reported about the Lil BUBome. (B) Geographic distribution of visitors to the Lil 
BUBome’s Wordpress blog. 
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Figure 3. Variant detection in Lil BUB’s genome sequence. (A, B) Number and 
type of single nucleotide variants (A) and structural variants (B) detected in BUB’s 
genome relative to the reference cat genome, Felis catus v6.2, as determined using 
Platypus and Breakdancer tools, respectively. For each category, we indicate the 
number of observations in that category. The Circos plot for the structural variants 
shows the position and links of the detected structural variants.  (C) Filtering of single 
nucleotide variants to identify candidate mutations for osteopetrosis. (D) Percentage 
of heterozygous and homozygous single nucleotide variants in 50kb windows along 
each chromosome show the genome-wide pattern of loss of heterozygosity.  
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Figure 4. Polydactyly-associated mutations in the Sonic hedgehog limb 
enhancer. (A) A heterozygous A to G mutation at chrA2:167,313,488, in the limb 
enhancer of the Sonic hedgehog gene, as identified by whole genome sequencing in 
Lil BUB’s genome sequence. (B) Verification of Lil BUB’s mutation by Sanger 
sequencing, which showed the presence of a wild type allele (top), as well as a 
mutated allele (bottom). (C) Distribution of known polydactyly-associated mutations 
in the Sonic hedgehog limb enhancer in cats. (D) Developmental mechanism for 
polydactyly: The Hemingway-variant of the limb enhancer causes ectopic expression 
in the anterior part of the developing limb bud, giving rise to additional digits. 
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Figure 5. Osteopetrosis-associated variants in TNFRSF11A/RANK. (A) A 
homozygous 1-basepair deletion at chrD3:81,422,853, in exon 8 of TNFRSF11A 
(which codes for the protein RANK), as identified by whole genome sequencing in Lil 
BUB’s genome sequence. (B) Schematic structure of the RANK protein and known 
human and mouse mutations. The position of Lil BUB’s mutation is indicated by the 
star, and the two functional domains that are deleted due to the early truncation of 
the protein (the STAT-6 binding domain and the oligomerization domain) are also 
shown. (C) Developmental mechanism for osteopetrosis: bone formation and bone 
resorption are maintained by a balance of osteoblasts and osteoclasts, which 
express RANK-ligand (RANKL) and its receptor (RANK), respectively. A mutation 
that abolishes the function of RANK causes impaired bone resorption and thereby 
osteopetrosis and dwarfism. 
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Table 1. Status of known feline phenotype-associated variants in Lil BUB’s 
genomic sequence. 

 
 

Va
ria

nt
s

Br
ee
d

In
he

rit
an

ce
Ge

ne
Re

po
rt
ed

	v
ar
ia
nt

Lil
BU

B
Pu

bl
ica

tio
n

Co
at
	co

lo
r/
tr
ai
t	v

ar
ia
nt
s

bl
ac
k	
co
lo
ra
tio

n
m
u
lt
ip
le

A
R

AS
IP

c
.1
2
3
d
e
lC
A

H
E
T
	f
o
r	
C
A
	d
e
le
ti
o
n

E
iz
ir
ik
	e
t	
a
l,
	2
0
0
3

Ci
nn

am
on

m
u
lt
ip
le

A
R

TY
RP

1
c
.2
9
8
C
>
T

C
/
C

L
y
o
n
s
	e
t	
a
l,
	2
0
0
5
	a
n
d
	S
c
h
m
id
t-
K
ü
n
tz
e
l	
e
t	
a
l,
	2
0
0
5

Al
bi
no

S
ia
m
e
s
e

A
R

TY
R

c
.9
0
1
G
>
A

G
/
G

S
c
h
m
id
t-
K
ü
n
z
e
l	
e
t	
a
l,
	2
0
0
5

Al
bi
no

B
u
rm

e
s
e

A
R

TY
R

c
.6
7
9
G
>
T

G
/
G

S
c
h
m
id
t-
K
ü
n
z
e
l	
e
t	
a
l,
	2
0
0
5

Di
lu
tio

n
m
u
lt
ip
le

A
R

M
LP
H

c
.8
3
d
e
lT

n
o
	d
e
le
ti
o
n

Is
h
id
a
	e
t	
a
l,
	2
0
0
6

Do
m
in
an

t	W
hi
te
	(w

hi
te
	fu

r,	
bl
ue
	ir
is,
	h
ea
rin

g	
lo
ss
)

m
u
lt
ip
le

A
D

KI
T

F
E
R
V
1
	L
T
R
	i
n
	i
n
tr
o
n
1
	o
f	
K
IT

n
o
	i
n
s
e
rt
io
n

D
a
v
id
	e
t	
a
l,
	2
0
1
4

w
hi
te
	S
po

tt
in
g

m
u
lt
ip
le

A
D

KI
T

fu
ll
-l
e
n
g
th
		
F
E
R
V
1
	i
n
	i
n
tr
o
n
1
	o
f	
K
IT

n
o
	i
n
s
e
rt
io
n

D
a
v
id
	e
t	
a
l,
	2
0
1
4

(w
hi
te
)	g

lo
vi
ng

B
u
rm

a
n

A
R

KI
T

c
.1
0
3
5
_
1
0
3
6
d
e
lI
n
s
C
A

n
o
	d
e
l/
in
s

M
o
n
ta
g
u
e
	e
t	
a
l,
	2
0
1
4

B
lo
tc
h
e
d
	t
a
b
b
y
	

m
u
lt
ip
le

A
R

T
a
q
p
e
p

p
ro
te
in
	v
a
ri
a
n
ts
	r
e
p
o
rt
e
d
*

H
E
T
	f
o
r	
2
	o
f	
th
e
	v
a
ri
a
n
ts
:	
W
8
4
1
X
	a
n
d
	T
1
3
9
N

K
a
e
li
n
	e
t	
a
l,
	2
0
1
2

h
a
ir
le
s
s

S
p
h
y
n
x

A
R

K
R
T
7
1

c
.8
1
6
+
1
G
>
A

G
/
G

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
0

c
u
rl
y

D
e
v
o
n
	R
e
x

A
R

K
R
T
7
1

c
o
m
p
le
x
*
*

W
T
/
W
T

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
0

c
u
rl
y

S
e
lk
ir
k
	R
e
x

A
D

K
R
T
7
1

c
.4
4
5
-1
G
>
C

G
/
G

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
3

Di
se
as
e	
va
ria

nt
s	a

nd
	o
th
er
	tr
ai
ts

p
ro
g
re
s
s
iv
e
	r
e
ti
n
a
l	
a
tr
o
p
h
y

A
b
y
s
s
in
ia
n
s

A
D

CR
X

c
.5
4
6
d
e
lC

n
o
	d
e
le
ti
o
n

M
e
n
o
tt
i-
R
a
y
m
o
n
d
	e
t	
a
l,
	2
0
1
0

p
ro
g
re
s
s
iv
e
	r
e
ti
n
a
l	
a
tr
o
p
h
y

A
b
y
s
s
in
ia
n
s

A
R

CE
P2

90
IV
S
5
0
+
9
T
>
G

T
/
T

M
e
n
o
tt
i-
R
a
y
m
o
n
d
	e
t	
a
l,
	2
0
0
7

p
ro
g
re
s
s
iv
e
	r
e
ti
n
a
l	
a
tr
o
p
h
y

P
e
rs
ia
n
s

A
R

AI
PL
1

c
.5
7
7
C
>
T

C
/
C

L
y
o
n
s
	e
t	
a
l,
	2
0
1
6

fe
li
n
e
	h
e
re
d
it
a
ry
	m

y
o
p
a
th
y

D
e
v
o
n
	R
e
x
	a
n
d
	S
p
h
y
n
x
A
R

C
O
L
Q

c
.1
1
9
0
G
>
A

G
/
G

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
5

b
o
b
b
e
d
	t
a
il

Ja
p
a
n
e
s
e
	B
o
b
ta
il

H
E
S
7

c
.5
A
>
G

A
/
A

L
y
o
n
s
	e
t	
a
l,
	2
0
1
6

N
ie
m
a
n
n
-P
ic
k
-l
ik
e
	d
is
o
rd
e
r

s
in
g
le
	c
a
t

-
N
P
C
1

c
.1
3
2
2
A
>
C

A
/
A

M
a
u
le
r	
e
t	
a
l,
	2
0
1
7

o
s
te
o
c
h
o
n
d
ro
d
y
s
p
la
s
ia

S
c
o
tt
is
h
	f
o
ld

A
D

TR
PV

4
c
.1
0
2
4
G
>
T

G
/
G

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
6

G
a
n
g
li
o
s
id
o
s
is
	T
y
p
e
	1

n
o
t	
s
p
e
c
if
ie
d

A
R

G
L
B
1

c
.1
4
4
8
G
>
C

G
/
G

M
a
rt
in
	e
t	
a
l,
	2
0
0
8

b
lo
o
d
	t
y
p
e
	B

m
u
lt
ip
le

A
R

C
M
A
H

c
o
m
p
le
x
	h
a
p
lo
ty
p
e
*
*
*

b
lo
o
d
	t
y
p
e
	A
	h
a
p
lo
ty
p
e

B
ig
h
ig
n
o
li
	e
t	
a
l,
	2
0
0
7
	a
n
d
	O
m
i	
e
t	
a
l,
	2
0
1
6

h
y
p
e
rt
ro
p
h
ic
	c
a
rd
io
m
y
o
p
a
th
y

M
a
in
e
	C
o
o
n

A
D

M
Y
B
P
C
3

c
.9
1
G
>
C

G
/
G

M
e
u
rs
	e
t	
a
l,
	2
0
0
5

h
y
p
o
k
a
le
m
ia

B
u
rm

e
s
e

A
R

W
N
K
4

c
.2
8
9
9
C
>
T

C
/
C

G
a
n
d
o
lf
i	
e
t	
a
l,
	2
0
1
2

*
th
e
	r
e
p
o
rt
e
d
	v
a
ri
a
n
ts
	a
re
:	
p
.S
5
9
X
	,
	p
.W

8
4
1
X
,	
p
.T
1
3
9
N

*
*
	t
h
e
	r
e
p
o
rt
e
d
	v
a
ri
a
n
t	
c
o
n
s
is
ts
	o
f	
a
n
	8
1
-b
p
	d
e
le
ti
o
n
	(
c
.1
1
0
8
-4
_
1
1
8
4
d
e
l)
,	
8
-b
p
	i
n
s
e
rt
io
n
	(
c
.1
1
8
4
_
1
1
8
5
in
s
A
G
T
T
G
G
A
G
),
	b
a
s
e
	i
n
s
e
rt
io
n
	(
c
.1
1
9
6
in
s
T
))

*
*
*
	t
h
e
	h
a
p
lo
ty
p
e
	i
n
c
lu
d
e
s
:	
c
.-
2
1
7
G
>
A
,	
c
.-
3
7
1
C
>
T
,	
c
.-
7
0
in
s
a
a
c
g
a
g
c
a
a
c
c
g
a
a
g
c
tg
,	
c
.1
3
9
G
>
A
,	
c
.2
6
5
T
>
A
,	
c
.1
6
0
0
G
>
A
,	
c
.1
2
6
6
G
>
A
	+
	m

o
re
…

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/556761doi: bioRxiv preprint first posted online Feb. 22, 2019; 

http://dx.doi.org/10.1101/556761
http://creativecommons.org/licenses/by-nc-nd/4.0/


	
  

	
   26	
  

 
Table 2. Shortlisted candidate genes for Lil BUB’s osteopetrosis.  
Yellow indicate variants that pass quality filters but are discarded due to unclear 
annotation in cat genome. Green indicate variants that pass quality filters and further 
retained for examination. 
 

 
 
Table S1. A sample of media outlets that reported on about the sequencing of 
Lil BUB’s genome around the world. 
 
Table S2. Genes with known role in bone mass regulation and/or osteoclast 
differentiation in humans. 
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