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Background and Aims. Atherosclerosis as an inflammatory disease involved in the etiology
of cardiovascular disease worldwide, in our days demands an array of different therapeutic
approaches in order to soon be able to visualize an effective prevention. Based on an immu-
notherapeutic approach, we designed a non-invasive vaccine (HB-ATV-8), contained in a
micellar nanoparticle composed of lipids and a peptide segment derived from the C-termi-
nus of the cholesterol-ester transfer protein (CETP). Nowwe extend our successful proof of
concept from the rabbit to a porcine model and investigated its effect in an attempt to un-
doubtedly establish the efficacy of vaccination in a model closer to the human.

Methods. A preclinical trial was designed to study the efficacy of vaccine HB-ATV-8 in
pigs (Large White � Landrace). Male experimental animals were fed with standard diet
(control), high fat diet (HFD) or the same HFD but treated with HB-ATV-8 (HFD þ Vac-
cine) applied nasally for up to 7 months. All biochemical and enzymatic analyses were
performed in peripheral venous blood and thoracic aorta and liver samples examined us-
ing conventional, two-photon excitation and second harmonic generation microscopy to
identify atherosclerotic and hepatic lesions. mRNA concentrations for KLF2, ACTA2,
SOD1, COL1A1 genes and protein levels for PPARa and ABCA1 were quantified in aorta
and liver respectively using qPCR and Western blot analysis.

Results. The administration of vaccine HB-ATV-8 induced anti-CETP IgG antibodies
and reduced atherosclerotic and hepatic lesions promoted by the high fat diet. In addition,
plasma triglyceride levels of vaccine treated pigs fed the HFD were similar to those of
control group, in contrast to high concentrations reached with animals exclusively fed
with HFD. Moreover, HFD promotes a tendency to decrease hepatic PPARa levels and
increase in aorta gene expression of KLF2, ACTA2, SOD1 and COL1A1, while vaccine
application promotes recovery close to control values.

Conclusions. Vaccine HB-ATV-8 administration constitutes a promissory preventive
approach useful in the control of atherogenesis and fatty liver disease. The positive results
obtained, the non-invasive characteristics of the vaccine, the simple design employed in
its conception and its low production cost, support the novelty of this therapeutic strategy
designed to prevent the process of atherogenesis and control the development of fatty
liver disease.
� 2019 IMSS. Published by Elsevier Inc. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Atherosclerosis is considered an inflammatory disease of
the arterial wall that leads to cardiovascular disease
(CVD), a common cause of death in the world according
to WHO (1). Epidemiological studies have indicated that
among the main risk factors associated with atherosclerosis
there is an increased plasma level of low density lipopro-
teins cholesterol (LDL-C) associated to a decreased plasma
concentration of high density lipoprotein cholesterol (HDL-
C) (2e4). Nevertheless, the relationship between the con-
centration of the different plasma lipoproteins and its prob-
ability to develop atherosclerosis, is still unclear (5,6).
Considering that a reduction of CVD nowadays should be
directed towards prevention rather than treatment, there
has been an important effort to reinforce measures mainly
directed to a change in lifestyle and eating habits in order
to impede the onset of atherosclerosis (7,8). Although this
approach should be considered central in all prevention ef-
forts, it has contributed little to the prevention of CVD in
most countries of the western world (9,10).

From the pharmacologic point of view, although statins
for years have offered a way to decrease the plasma concen-
tration of LDL-C by acting upon the biosynthesis pathway
of cholesterol, this approach has not been successful
enough based on the fact that the number of deaths related
to CVD associated with atherosclerosis continues to in-
crease (11,12). Therefore, treatment of atherosclerosis
exclusively based on a cholesterol lowering therapy still
has to prove a significant efficacy in reducing CVD.

In consequence, considering this process is characterized
by the accumulation of fat in the intima of arteries where
innate and adaptive immunity play an important role in
the process of atherogenesis (13,14), modulation of the im-
mune response has attracted attention as a strategy for its
prevention and treatment helping to restore the homeostasis
of lipid metabolism and counteract an inflammatory state
(15,16). In this sense, the study of several possibilities that
contemplate potential proteins have been identified for their
ability to decrease morbidity and mortality associated with
the progression of atherosclerosis (17,18). Among the
diverse strategies employed, the cholesteryl-ester transfer
protein (CETP) has been studied as a potential therapeutic
target (19e21). CETP promotes the mobilization of
cholesteryl-esters, triglycerides and phospholipids between
HDL and lipoproteins containing apolipoprotein B (ApoB)
(LDL and VLDL) (22). Corresponds to a 66e74 kDa
plasma glycoprotein that is mainly expressed in the liver
and secreted into the bloodstream where it becomes associ-
ated to lipoproteins (23). Population studies have shown
that a decreased concentration and/or reduced CETP activ-
ity are associated with increased HDL-C levels (23e25),
and although several studies present a less clear correlation
(26,27), most of them show that subjects presenting a low
plasma CETP concentration show a lower probability to
develop a cardiovascular event. In support of these findings,
there are several reports indicating that a group of Japanese
subjects while lacking CETP, present high HDL-C levels,
low LDL-C levels and a low incidence of CVD (21,28).

The nasal administration of vaccine HB-ATV-8
composed of a micellar nanoparticle preparation has been
designed as an immunotherapy to decrease CETP activity
in vivo. Vaccine nanoparticles incorporate a 12 amino acid
synthetic peptide corresponding to the C-terminal domain
of CETP added of an N-terminal cysteine and a key mixture
of lipids including caldarchaeol (29,30). As previously re-
ported by us, the use of lysophosphatidylcholine allows
the peptide to be kept in a key a-helical conformation
(31,32), achieving at the same time structural stability
and immunogenicity (33,34). Therefore, here we present
an easy, cheap and efficient way to produce immunoge-
nicity by applying a nanoparticulate preparation on the sur-
face of the nasal mucosa.

Previous work from our group employing cholesterol-
fed rabbits demonstrated that the nasal administration of
vaccine HB-ATV-8 significantly reduces atherosclerotic le-
sions in the aorta, decreasing in parallel the presence of
non-alcoholic fatty liver disease (NAFLD) in association
with liver fibrotic lesions (16). This data might be consid-
ered important taking into account that CVD has been
shown to be the leading cause of death in patients with
NAFLD (35,36).

Now, before initiating the clinical phases for vaccine
HB-ATV-8 to define safety and efficacy, we have extended
our proof of concept to an animal model closer to human
and studied the effect of therapeutic vaccine HB-ATV-8
in the pig as the experimental animal. Since the pig closely
resembles the human in many traits including its anatomy,
physiology, biochemistry and ultimately lifestyle (37e39),
it has been considered for years an excellent non-primate
model to study atherosclerosis. Therefore, the present study
has been conducted for seven months employing pigs in an
attempt to closely resemble conditions for the development
of atherogenesis and fatty liver in the human.
Materials and Methods

Vaccine HB-ATV-8

Vaccine HB-ATV-8 (Patents US9539312, MX347400 B)
contains as immunogen a synthetic peptide that corresponds
to the carboxy-end amino acids H486eS496 of CETP
(29,30). This peptide conjugated into a micellar nanopar-
ticle system includes three of the four key residues that sup-
port lipid binding and transfer capacity (40). Micelles are
composed of lipids derived from the cell membrane of
Thermus aquaticus, mainly caldarchaeol. L-a-Phosphatidyl-
choline (PC) and 1-lauroyl-2-hydroxy-sn-glycero-3-
phosphocholine (lyso-C12PC) (31,32). These components
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have been shown function as humoral adjuvants promoting
a strong cytotoxic T-cell immune response characterized by
a long-term memory (41e43).

Experimental Animal Procedures

The present study includes fifteen castrated male pigs
(Large White x Landrace) housed at the Specific Pig facil-
ity (Barcelona, Spain). All animal procedures and experi-
ments were performed in accordance with the Guide for
the Care and Use of Laboratory Animals (NIH) and
approved by the Deparment d’Agricultura, Ramaderia, Pes-
ca, Alimentaci�o i Medi Natural, de la Generalitat de Cala-
lunya, and the Specific Pig Ethics Committee. The qualified
staff of Specific Pig fed the animals, nasally administered
the vaccine, collected blood samples, monitored their well-
being, sacrificed the animals and collected tissues at the end
of the experiment.

Pigs were housed at 10e24�C on a 12:12 h light/dark cy-
cle in 3.32 m2 pens (3e4 animals/pen) with a dry, non-
toxic, absorbent and pathogen-free bed. The animals had
free access to water and fed once daily. At the beginning
of the protocol the average weight of animals corresponded
to 40 kg. The study was based on three experimental
groups: Control group (CT, n 5 3) corresponds to pigs
fed a standard diet (Porcs creixement 1, Pinallet) composed
of 15.8% calories from protein, 3.5% from carbohydrates,
and 3.7% from fat were kept for 4 (n 5 1) and 7 months
(n 5 2). High-Fat Diet group (HFD, n 5 6) corresponds
to pigs fed a high-fat atherogenic diet (HFD) (SDS,
824100 Porcine Western, Dietex, France) for 4 (n 5 4)
and 7 months (n 5 2). The diet contained 44% calories
from fat (15% lard and 2% cholesterol), 16% calories from
protein, and 40% calories from carbohydrates. High-Fat
Diet þ Vaccine HB-ATV-8 group (HFD þ Vaccine,
n 5 6) corresponds to pigs fed the high-fat atherogenic diet
that received vaccine HB-ATV-8 (300 mg) nasally adminis-
tered twice a week for 4 (n 5 4) and 7 months (n 5 2).
Blood samples from each experimental animal were taken
Figure 1. Experimental design. Control group (CT, n 5 3); one animal from this g

group (HFD, n 5 6); four animals from this group sacrificed at month 4 and the r

Vaccine, n 5 6); four animals from this group sacrificed at month 4 and th

HFD þ vaccine group were administered with vaccine HB-ATV-8 twice a week
every four weeks, and the experiment followed in two
stages (4 and 7 months) as mentioned above where a certain
number of animals at these specific times were anesthetized
by intramuscular administration of ketamine (10e33 mg/
kg) and midazolam (0.3e0.5 mg/kg), and euthanized with
a sodium pentobarbital overdose (50e80 mg/kg, IV).
Figure 1 summarizes the experimental protocol followed.
Plasma Lipid Profile and Enzyme Activity Measurements

Fifteen milliliters of peripheral venous blood were
collected from the cranial vena cava at the beginning of
the study and in a monthly basis till the end of the experi-
ment. Serum and plasma-EDTA samples were used for
biochemical and enzyme activity measurements, and the re-
maining biological material stored at ‒80�C until analysis.
Zoologic Veterinaris laboratory (Barcelona, Spain) per-
formed all lipid and enzymatic measurements. The lipid
profile was measured by enzymatic methods following the
manufacturers’ instructions (Gernon platform, Ral, Spain).
Plasma enzyme activity for aspartate aminotransferase,
alanine aminotransferase, alkaline phosphatase and total
protein concentration were measured by standardized and
commercially available colorimetric assays (Gernon
platform).
Histological Examination

At the time of euthanasia, the thoracic aorta and liver sam-
ples from the right lobule were collected and a portion of
these samples fixed in 10% formaldehyde. Samples were
embedded in paraffin and stained with hematoxylin-eosin
(H&E) and Masson’s trichrome stain. The remaining tissue
was frozen in liquid nitrogen and stored at e80�C until
further analysis. Histological results were obtained by re-
viewing five different optical fields of view where percent-
ages represent the frequency of the characteristics observed
within each group.
roup sacrificed at month 4 and the remaining two at month 7. High-fat diet

emaining two at month 7. High fat diet þ vaccine treatment group (HFD þ
e remaining two at month 7. Blood samples were taken every month.

.
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Classification of atherosclerotic lesions was performed
according to the guidelines of the American Heart Associ-
ation (AHA) (44). The six aortic lesion types defined by the
AHA are: (type I) isolated macrophage foam cells; (type II)
intracellular lipid accumulation; (type III) type II changes
and small extracellular lipid pools; (type IV) type III
changes and presence of an extracellular lipid core; (type
V) presence of a lipid core and a fibrotic layer or multiple
lipid cores and fibrotic layers, areas of calcification; (type
VI) all previous findings plus the presence of areas of he-
matoma/hemorrhage and thrombus.

Liver sections were evaluated considering histopatholog-
ical characteristics for NAFLD: steatosis, inflammation,
ballooning, and fibrosis (45,46) and data reported as pres-
ence or absence of these characteristics.

Two-photon Excitation Microscopy and Second-harmonic
Generation Microscopy

Two-photon imaging was performed using a galvanometer-
based scanning system LSM 710-Zeiss and a Ti: sapphire
laser (Coherent) employing a wavelength of 850 nm
(2.5% of laser power) for H&E stained aorta and liver
slides. Second-harmonic generation imaging was per-
formed using a wavelength of 900 nm (12% of laser power)
and a BP 420e480 nm filter (Zeiss). Images were acquired
using water immersion objectives; C-Apochromat 10x and
W Plan-Apochromat 20x, with a 40x optical zoom for liver
slices.

Anti-CETP Titer Determination

IgG antibody titer for CETP was measured by ELISA.
Briefly, plates were coated with CETP synthetic peptide
H486-S496, blocked and incubated with pig serum
(1:100), a goat horseradish peroxidase-conjugate anti-pig
IgG, and tetramethylbenzidine. OD was measured at
450 nm.

Protein Expression Analysis

Liver samples were homogenized in cold RIPA buffer
(Thermo Fisher Scientific, MA, USA) supplemented with
protease inhibitors (Roche, Rotkreuz, Switzerland). Total
protein concentration (serum and liver extracts) was
measured using the DC Protein Assay (Bio-Rad, CA,
USA). Serum proteins were separated by SDS-PAGE using
8% gels and transferred to PVDF membranes (Immobilon-
P, Millipore, MA, USA) to be analyzed by Western blot.
Blots were incubated overnight with rabbit anti-CETP
(Thermo Fisher Scientific, MA, USA) or mouse anti-
ACTB antibodies (Santa Cruz Biotechnology, CA, USA).
Also, membranes for liver extracts were incubated with
mouse anti-PPARa, anti-ABCA1 and anti-GAPDH anti-
bodies (Santa Cruz Biotechnology, CA, USA). Immuno-
reactive proteins were visualized with the Immobilon
Western Chemiluminiscent HRP reagent (Millipore, MA,
USA). Blots were quantified using the Image J software
(http://rsb.info.nih.gov/ij/) and results presented as the
CETP/ACTB (b-actin) ratio for serum protein and PPARa
or ABCA1/GAPDH ratio for liver extracts.

Quantitative PCR Measurements

Total RNAwas extracted from the thoracic aortas with Tri-
zol reagent (Thermo Fisher Scientific, MA, USA). 1 mg of
total RNA was used to synthesize cDNA using the iScript
cDNA synthesis kit (Bio-Rad, CA, USA) and cDNA diluted
to perform qPCR experiments. Expression of Kr€uppel-like
factor-2 (KLF2), smooth muscle alpha (a)-2 actin (ACTA2),
superoxide dismutase 1 (SOD1), collagen type I alpha 1
(COL1A1) and the housekeeping gene ACTB was deter-
mined by qPCR using the PowerUp Sybr Green Master
Mix 2X (Applied Biosystems, CA, USA) on an ABI
PRISM 7000 Sequence Detection cycler. Primer sequences
are reported as supplementary material as well as relative
levels of mRNA calculated as 2‒DDCt (Supplementary
Table 1).

Statistical Analysis

Data are expressed as mean�S.E.M. Statistical differences
among study groups were calculated using ANOVA or
Kruskal-Wallis tests, depending on the distribution of vari-
ables. p values #0.05 were considered significant. Analysis
of data was performed with the SPSS v20 program (SPSS,
Chicago, USA).
Results

The nasal administration of vaccine HB-ATV-8 induced the
formation of anti-CETP IgG antibodies in the group of pigs
fed a HFD where the rise in antibody titer became evident
after the fourth month of treatment and remained at a high
level until the end of the study (Figure 2A). Although the
CETP serum concentration was kept at the same level
throughout the study in the three groups of experimental an-
imals (Figure 2B), the body weight of pigs fed a HFD was
higher compared to those fed a standard diet regardless of
whether they received the treatment or not (Figure 2C).

Since it is known that CETP is able to modify the serum
level of the different types of lipoproteins by mobilizing
cholesteryl-esters and triglycerides, we evaluated if the
administration of vaccine HB-ATV-8 altered the serum
level for these lipids. As expected, it was found that HFD
fed pigs showed a steady increase of total cholesterol,
LDL, HDL cholesterol and triglycerides (Figure 3). Inter-
estingly, the only parameter that was significantly modified
by the administration of vaccine HB-ATV-8 corresponds to
triglycerides that remained at levels similar to the control
group (Figure 3D). The serum level for total proteins and

http://rsb.info.nih.gov/ij/


Figure 2. Effect of vaccine HB-ATV-8 administration on IgG anti-CETP antibody production and CETP plasma concentration. (A) Plasma IgG anti-CETP

level of pigs from the three experimental groups. (B) Serum CETP concentration from the three experimental groups using Western blot analysis (data ex-

pressed as CETP/ACTB ratio). (A) and (B) Data represented as mean � S.D. (C) Body weight. Control group (CT, n 5 3); high-fat diet group (HFD, n 5 6);

and high-fat diet group þ vaccine (HFD þ Vaccine, n 5 6). Data represented as mean � S.E.

Figure 3. Effect of vaccine HB-ATV-8 administration on serum lipid profiles during the 7 months of treatment. (A) Total cholesterol; (B) HDL-C; (C) LDL-

C, and (D) Triglycerides. Control group (CT, n 5 3); one animal from this group sacrificed at month 4 and the remaining two at month 7. High fat diet group

(HFD, n 5 6); four animals from this group sacrificed at month 4 and the remaining two at month 7. High fat diet þ vaccine treatment group (HFD þ Vac-

cine, n 5 6); four animals from this group sacrificed at month 4 and the remaining two at month 7. Data represented as mean � S.E.
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the activity for liver function enzymes such as transami-
nases and alkaline phosphatase remained stable without
statistically significant differences among groups
(Supplementary Table 2).

At the end of the experiment, thoracic aorta and liver
samples were prepared and examined by conventional light
microscopy together with two-photon excitation and second
harmonic generation microscopy. Figure 4 shows
Figure 4. Vaccine HB-ATV-8 prevents the formation of atherosclerotic lesions in

aorta of a representative pig from each experimental group. Control group (CT),

cine). (A) Hematoxylin-eosin stain. (B) Masson’s trichrome stain. (C) Two-phot

scopy images.
representative images for samples of the thoracic aorta of
pigs belonging to each one of the three experimental groups
studied. As expected, aortas from pigs fed the standard diet
showed a normal vessel structure. In contrast, pigs fed a
HFD show lipid droplets and foam cells in the media and
the intima layers of the aorta and an increase of vascular
smooth muscle cells (VSMC) in the intima layer
(Figure 4A and B) and present type II and III atherogenic
duced by a HFD. Microscopic analysis of tissue sections from the thoracic

high fat diet group (HFD), and high fat diet þ vaccine group (HFD þ Vac-

on excitation microscopy images. (D) Second-harmonic generation micro-
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lesions (Table 1). Moreover, collagen sheets observed in a
widely distributed and spaced fashion, when studied with
Masson’s trichrome stain show a disordered and unevenly
spaced arrangement. This can be clearly observed when
the same samples are analyzed by two-photon excitation
and second harmonic generation microscopy (Figure 4C
and D). Using these imaging techniques, the connective fi-
ber disorder found in aortas of pigs fed a HFD becomes
evident denoting an important disarray among the different
cell types that compose the vessel wall (Figure 4C and D).
In contrast, the group of pigs that received the same HFD
but was treated with vaccine HB-ATV-8 exhibit a decreased
presence of lipid droplets and foam cells in the intima and
media layers, and a smaller number of VSMC in the intima
layer, similar to that shown in animals from the control
group. More importantly, by two-photon excitation and sec-
ond harmonic generation microscopy, a better ordered and a
less spaced collagen fiber array together with a close to
normal cellular architecture is observed (Figure 4C and
D). Moreover, 50% of HB-ATV-8 treated pigs do not show
any atherosclerotic lesions in their aortas and the remaining
50% only presented type I atherosclerotic lesions, in
contrast to animals from the HFD group that showed type
II or type III lesions (Table 1).

In order to obtain a better understanding at the molecular
level of the histology changes observed with treatment, we
analyzed the aortic expression of several genes known to be
involved in vascular function such as the Kr€uppel-like
factor-2 (KLF2), smooth muscle alpha-actin-2 (ACTA2), su-
peroxide dismutase 1 (SOD1) and collagen type I alpha 1
(COL1A1) (Figure 5). KLF2 corresponds to an atheropro-
tective transcription factor that regulates expression of
several vasoactive endothelial genes involved in the regula-
tion of normal constriction/dilation of VSMCs (47),
whereas SOD1 protects cells against cytotoxicity by scav-
enging superoxide radicals while being also involved in
endothelial function by protecting nitric oxide release
(48). COL1A1 has been studied on the fact that corresponds
to the most abundant protein associated to collagen fibrils
(49). Furthermore, ACTA2 has been employed as a cell
marker for smooth muscle and associated to several
Table 1. Effectiveness of vaccine HB-ATV-8 in decreasing aortic atherosclerotic

treatment

Lesion type

CT

4 months

(n [ 1)

7 months

(n [ 2)

Total

(n [ 3)

4 months

(n [ 4)

TI 0 0 0 0

TII 0 0 0 3 (75)

TIII 0 0 0 1 (25)

CT, control group fed a standard diet; HFD, group fed a high fat diet; HFD þ V

The histological classification of atherosclerotic lesions was carried out accordin

Data in parenthesis represent percentage frequency within the specific number o
occlussive diseases (50,51). So, consistent with tissue dam-
age observed in our histology analysis associated to the
HFD, there is a tendency for mRNA levels of these four
genes to be upregulated in the aorta when compared to tis-
sue from the control group (Figure 5). Interestingly, in all
cases when gene expression is studied in the HFD group
that received vaccine HB-ATV-8, the tendency is to go back
to levels found associated to aortas from the control group
(Figure 5).

We next assessed whether pigs fed a HFD present the
typical hepatic alterations observed in NAFLD. Figure 6
shows sections of liver tissue from experimental animals
of each group, displaying areas of hepatocytes around the
central lobular vein. Hepatic tissue from control pigs pre-
sents the normal lobular histological characteristics. In
contrast, hepatocytes from livers coming from pigs fed a
HFD show microvesicular fat accumulation and signs of
ballooning and inflammation. Interestingly, when the
HFD þ Vaccine group was examined, the frequency of
these pathological features was considerably reduced
(Table 2). It is important to mention that when compared
to our previous findings employing a rabbit model (16),
the current results show a less dramatic effect that might
be related to the fact that the porcine model is considered
refractory to develop not only fatty liver disease but also
atherosclerosis in the same way as humans do (52). Never-
theless, when liver slides are studied by two-photon excita-
tion and second harmonic generation microscopy,
experimental animals from the HFD þ Vaccine group, in
comparison to the group that did not receive the vaccine,
showed a decreased collagen deposition around the perisi-
nusoidal and periportal areas and in general less fibrosis
showing images close to the ones found in control tissue
(Figure 6C and D).

Again, in order to initiate the exploration at the molecu-
lar of events that might be taking place with the administra-
tion of vaccine HB-ATV-8, we measured in liver tissue
protein expression for the ATP-binding cassette transporter
(ABCA1) defined as a cholesterol transporter that plays an
important role in the homeostasis of cholesterol in the liver
(53), and PPARa, reported to mediate fatty acid metabolism
lesions induced by a high fat diet measured at 4 and 7 months of

HF HF DVACCINE

7 months

(n [ 2)

Total

(n [ 6)

4 months

(n [ 4)

7 months

(n [ 2)

Total

(n [ 6)

0 0 3 (75) 0 3 (50)

1 (50) 4 (66.6) 0 0 0

0 1 (16.7) 0 0 0

accine, group fed a high fat diet þ nasal administration of vaccine.

g to the American Heart Association guidelines (44).

f experimental animals studied in each group.



Figure 5. Vaccine HB-ATV-8 global effect on gene expression of KLF2, ACTA2, COL1A1 and SOD1 measured by qPCR in thoracic aorta samples. Control

group (CT, n5 3), high fat diet group (HFD, n5 6), and high fat diet þ vaccine treatment group (HFD þVaccine, n5 6). Data presented as fold change with

respect to actin expression. Data represented as mean � S.E. *p !0.05.
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in the hepatocyte (54). Our analysis shows that although
ABCA1 apparently is not significantly modified neither
on animals fed with a HFD nor animals fed the HFD plus
vaccine administration, there is a tendency for PPARa to in-
crease in pigs fed a HFD that received the vaccine when
compared to the HFD and control groups (Figure 7). These
findings might support the possibility that a molecular
compensatory effect at the cellular level might not only
be carried out by the anti-CETP antibody but also by the
peptide itself or one of the lipid components of vaccine
HB-ATV-8.
Discussion

Since immunomodulation of key proteins that control the
metabolism of cholesterol has been proposed as a prophy-
lactic tool to treat atherosclerosis, vaccine HB-ATV-8 has
been designed as a therapeutic strategy to reduce the devel-
opment of atherosclerosis by generating autoantibodies
against CETP. With support on our successful proof of
concept carried out in the rabbit, vaccine HB-ATV-8 now
has been tested in a porcine model. The pig as an experi-
mental animal has gained interest in recent years since it
has been shown that the evolutionary distance among many
animal models used today, especially between rodents and
humans, is a distant one (37). Preclinical studies performed
in murine models can be useful in identifying new
biochemical mechanisms or molecules and provide a
platform for pharmacological development; nevertheless,
as shown in the literature in many cases translation to a
clinical setting has proven to be a difficult one. In contrast,
the pig and the human share many characteristics, such as a
similar anatomy and cardiovascular physiology, a situation
that explains why cardiac output, mean arterial pressure and
stroke volume are almost equivalent (55). Although the pro-
cess of atherogenesis in pigs is difficult to develop given
that many strains of farm pigs along time have been nor-
mally selected for an increase in protein deposition rather
than fat accumulation (56), a HFD supplemented with
cholesterol eventually promotes the development of artery
lesions similar to those observed in the atherosclerotic dis-
ease in the human (5,57,58). Therefore, taking into account
these considerations, the pig model can be considered an
optimal model for the study of atherosclerosis and associ-
ated diseases such as NAFLD (59). Employing this experi-
mental model and the use of a novel nanoparticle
composition that serves as an immunogen when placed in
the nasal mucosa, our study shows that modulation of the
immune response continues to be a promising approach
in the prevention of atherogenesis.

The present study shows that intranasal administration of
vaccine HB-ATV-8 induces anti-CETP IgG antibodies, in
turn reducing in parallel the presence of atherosclerotic le-
sions and hepatic damage in pigs fed a HFD. These results
are also related to the fact that serum triglycerides remain at
control values, in contrast to the not treated animal group
fed a HFD. Even though triglycerides are not considered



Figure 6. Vaccine HB-ATV-8 reduces hepatic inflammation and fibrosis induced by a HFD. Images show the central lobular vein from a liver sample of a

representative pig from each experimental group. Control group (CT), high fat diet group (HFD), and high-fat diet þ vaccine group (HFD þ Vaccine). (A)

Hematoxylin-eosin stain. (B) Masson’s trichrome stain. (C) Two-photon excitation microscopy images. (D) Second-harmonic generation microscopy images.

Arrow shows the presence of fibrosis.
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atherogenic, it is well known that serum levels for this fam-
ily of lipids are considered as a biomarker for CVD risk.
This can be partially explained by their direct association
with remnant lipoproteins and ApoCIII, a proinflammatory
and proatherogenic apolipoprotein that inhibits the binding
of ApoE and ApoB to proteoglycans and hepatic receptors,
preventing clearance of these type of lipoproteins and there-
fore favoring their accumulation in the endothelium
(60e63).
During an early stage of atherogenesis, cholesterol and
other lipids penetrate the intima of arteries where their
accumulation induce an inflammatory state and the activa-
tion of the immune system. As a consequence, macro-
phages infiltrate the tissue, start internalizing cholesterol
and originate the formation of foam cells (44). Subse-
quently, foam cells are lysed, releasing lipids that further
accumulate in the extracellular matrix. To decrease toxicity
due to the extracellular deposition of lipids (64,65), VSMCs



Table 2. Vaccine HB-ATV-8 reduced hepatic inflammation and fibrosis induced by a high fat diet measured at 4 and 7 months of treatment

Histologic lesion

CT HF HF D vaccine

4 months

(n [ 1)

7 months

(n [ 2)

Total

(n [ 3)

4 months

(n [ 4)

7 months

(n [ 2)

Total

(n [ 6)

4 months

(n [ 4)

7 months

(n [ 2)

Total

(n [ 6)

Steatosisa 0 0 0 1 (25) 1 (50) 2 (33.3) 1 (25) 1 (50) 2 (33.3)

Ballooning 0 1 1 (33.3) 3 (75) 1 (50) 4 (66.7) 1 (25) 2 (50) 3 (50)

Inflammation 0 0 0 4 (100) 2 (100) 6 (100) 1 (25) 2 (100) 3 (50)

Fibrosis 0 0 0 4 (100) 2 (100) 6 (100) 2 (50) 1 (50) 3 (50)

CT, Control group fed a standard diet; HF, group fed a high-fat diet; HFD þ Vaccine, group fed a high fat diet þ nasal administration of vaccine.

Data represent number of cases by each category and data in parenthesis percentage frequencies.

Fibrosis reported in these samples was mainly portal or perisinusoidal and portal/periportal fibrosis.
aMicrovesicular steatosis.
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migrate and begin internalizing excess lipid in support of
macrophage function. Although VSMCs are responsible
for remodeling the arterial wall, a prolonged state of oxida-
tive stress causes their trans-differentiation to macrophage-
type cells (66). These cells are able to phagocytize and pre-
sent antigens, favoring the inflammatory state (67,68).
Moreover, the structure of the arterial wall specifically de-
pends on a delicate equilibrium between the synthesis and
degradation of extracellular matrix proteins such as
collagen and elastin, where an acute change in this equilib-
rium might play an important role during the process of
atherogenesis. In this sense, an uncontrolled degradation
of proteins of the extracellular matrix carried out by prote-
ases such as metalloproteinase-1 and -9, might induce
further vascular damage. This in turn promotes atherogen-
esis through the trans-endothelial migration of leukocytes,
migration and proliferation of VSMCs, neovascularization,
vascular cell apoptosis, and finally the formation of a neo-
intima that might progress until the rupture of the aortic
Figure 7. Vaccine HB-ATV-8 effect on hepatic PPARa and ABCA1 concentrati

control animal and two representative samples from the HFD and HFD þ vacci

ABCA1 and PPARa with GAPDH. Control group (CT, n 5 3), high fat diet gr

Vaccine, n 5 6). Data represented as mean � S.E.
wall takes place (69). Together with cells of the immune
system involved in atherosclerosis such as monocytes con-
verted into macrophages, new studies have pointed to mast
cells and stellar cells as critical cell types important in
collagen degradation and smooth muscle survival (70).
Mast cells produce and release matrix metalloproteases
together with proinflammatory molecules such as interferon
and interleukin-6 inhibiting the proliferation of smooth
muscle cells and also promoting the process of apoptosis
(70e73).

Since the use of two-photon excitation and second har-
monic generation microscopy has been extremely useful
to study the extracellular matrix and to visualize collagen
fibers in association to a classical light microscopy, the
study of viable arteries ex vivo gives us a better understand-
ing of the functionality and dynamic behavior of the artery
wall (74,75). During the course of our study, we observed
that vaccinated animals fed a HFD did not show the clear
disarray of extracellular matrix observed in the aortas of
on. (A) Western blot analysis of samples obtained from one representative

ne groups. (B) Semicuantitative protein correlation between expression of

oup (HFD, n 5 6), and high fat diet þ vaccine treatment group (HFD þ
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animals that were only fed a HFD without vaccination. This
phenomenon is shown to be accompanied by an increased
expression of KLF2, ACTA2, COL1A1 and SOD1 mRNA’s
in the aortas of animals fed exclusively the HFD. Interest-
ingly, this increase in mRNA levels is reversed close to con-
trol values in animals fed a normal diet when the HFD plus
vaccination group is studied, suggesting that vaccine HV-
ATV-8 might be also considered as a modulator of anti-
atherosclerotic signals. It is well known that a HFD induces
vascular dysfunction upregulating pathways associated to
the production of reactive oxygen species (ROS), oxidative
stress, and release of proinflammatory adipokynes/cyto-
kynes (76e78). KLF2 inhibits both the expression of in-
flammatory cytokynes and the production of adhesion
molecules such as VCAM-1 and E-selectin, known to be
critical for leukocytes recruitment and extravasation
(79,80). In addition, aortas from pigs fed a HFD show a
disordered pattern of collagen fibrils, that to a certain
extent, is less apparent in aortas isolated from animals fed
the HFD plus vaccination, also in agreement with results
showing a tendency to present a lower mRNA concentra-
tion and synthesis of type I collagen. Interestingly, during
the development of an atherosclerotic plaque, the extracel-
lular matrix composition of a vessel undergoes pronounced
changes, where VSMCs initially showing a contractile
phenotype are transformed to present a synthetic phenotype
with the consequent increase in the deposit of types I and
III collagen, elastin and fibronectin (49).

On the other hand, steatohepatitis and atherosclerosis
share several characteristics such as lipid accumulation
and the development of an inflammatory state (45,81). Dur-
ing the present study, pigs fed a HFD in addition to the
presence of atherosclerotic changes, also developed hepatic
disease characterized by microvesicular steatosis,
ballooning, cellular inflammation, and fibrosis. Two-
photon and second harmonic generation imaging clearly
show the enormous difference in collagen deposition
observed in liver tissue obtained from the group of animals
exclusively fed the HFD and those treated simultaneously
with vaccine HB-ATV-8. In general, experimental animals
fed the HFD independently if they received or not the vac-
cine, do not show macrovesicular steatosis. This phenome-
non is most probably due to the relatively short period of
time used to carry out the study before animal sacrifice
(56). Nevertheless, the presence of inflammation and
fibrosis was less evident in the HFD þ Vaccine group in
comparison to HFD fed pigs.

The tendency for PPARa to increase in liver cells of an-
imals fed a HFD that received the vaccine supports an
explanation for the reduced level of plasma triglycerides
found in this group of animals. PPARa considered a tran-
scription factor that regulates the expression of genes
involved in VLDL production, lipid trafficking and
triglyceride-rich lipoprotein clearance, apparently helps
suppress the acute-phase response and inflammation in
the liver (82e84) and in conjunction with PPARb/d, shown
to improve steatosis, inflammation and fibrosis in pre-
clinical models of NAFLD (83,85).

Since our findings show that vaccine HB-ATV-8 de-
creases fat accumulation and most probably an inflamma-
tory state in the artery wall and liver, it is important to
point out that even though an auto-anti-CETP antibody titer
was clearly detected around 4 months of treatment, at this
time the effect was already observed. We also hypothesize
that in addition to the regulation of lipid transport carried
out by CETP due to the effect of the auto-anti-CETP anti-
body, there might be additional protective mechanisms that
could be also related to a direct effect given by one of the
components of the vaccine preparation, such as the peptide
itself. This possibility is supported by studies of a series of
peptides that promote the efflux of cholesterol from cells
(86). Our group has also shown using cultured macro-
phages, a decrease in foam cell formation and down-
regulation of CD36 and ACAT-1 when the peptide itself
is tested (87,88). Evidence also shows that several other
peptides interacting with endothelial cells, VSMCs, mono-
cytes and/or macrophages, might be used for therapeutic
purposes in the control of atherosclerosis (89e91). Since
the HFD group independently if vaccinated or not maintain
the same gain in body weight along the study, we speculate
that vaccine HB-ATV-8 might also promote the accumula-
tion of lipids in other tissues such as the adipose tissue.
Current experiments are being carried out to establish this
possibility.

Among the series of drugs offering to decrease the risk
of cardiovascular disease by increasing the serum concen-
tration of HDL-C, several CETP inhibitors obtained by
chemical synthesis have been studied (92). Several other
strategies include the use of fibrates (93) and antioxidants
(94), but at the end also apparently ineffective to decrease
the risk of CVD. Considering CETP as a plasma protein
that transfers cholesteryl-esters among lipoproteins, specif-
ically HDL to VLDL and LDL, it has been described as a
molecule that promotes atherogenesis; therefore, the poten-
tial inhibition of its activity by new molecules has attracted
attention in an effort to increase HDL-C and decrease cor-
onary artery disease (95). Nevertheless, the use of these
chemically synthesized compounds in the strategy to inhibit
CETP has shown to be troublesome (92,95,96). Torcetrapib
was the first CETP inhibitor to be tested in Phase 3 clinical
trials, but had to be prematurely terminated due to a series
of cardiovascular problems and mortality associated with
non-cardiovascular events (97e100) such as infection and
off-target aldosteronism as presented in the ILLUMINATE,
RADIANCE and ILUSTRATE trials (97,100,101). These
studies showed an increase in HDL-C and a decrease in
LDL-C but no impact in the presence of atheroma lesions
(100,102).

During the Phase 2 clinical trial of CETP inhibitor dal-
cetrapib, the study had to be stopped due to off-target side
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effects and ineffectiveness shown by a non-significant ef-
fect on plasma LDL-C levels despite a moderate increase
in HDL-C (103). Also, the OUTCOMES phase 3 trial had
to be halted due to a lack of clinically meaningful efficacy
(104). Although evacetrapib also improved lipoprotein
biomarker distribution, treatment did not result in a lower
rate of cardiovascular events among patients with high-
risk vascular disease (105). So far, anacetrapib seems to
show a better effect on various coronary events studying pa-
tients presenting atherosclerotic vascular disease but only
under intensive statin therapy (106). Taken these data
together, due to the presence of side effects and off-target
activity, there seems that chemically synthesized CETP in-
hibitors need more time to be completely understood.

The example of torcetrapib could be considered a proto-
typical one since we now know that CETP binding sites for
this molecule are shared with proteins of the Plunc family
including an isoform of CETP named by our group as CET-
PI and identified as a lipopolysaccharide binding protein
(107). According to our results, an non-specific binding
phenomenon might have been directly related to sepsis
and the mortality rate shown in the ILLUMINATE trial
(108e110) since torcetrapib might have had an unknown
secondary effect disabling the main function of CETPI
directly related with the inactivation of LPS in plasma.

In contrast to the several strategies discussed in this
study used to inhibit the function of CETP, the induction
of an immune response by self-generating anti-CETP anti-
bodies shows many advantages above other approaches to
treat the process of atherogenesis (20,111e113). The pre-
sent investigation studying a porcine model corroborates
our previous reports showing that intranasal therapeutic
vaccine HB-ATV-8 is effective in the control of the process
of atherogenesis and the development of fatty liver disease,
associated to important advantages such as simplicity of
design and application combined to a low production cost.
Conclusion

Considering that for many years no new synthesis of lipid
metabolism modulator molecules have been successfully
introduced into clinical practice, the immunological
approach using the generation of autoantibodies against
key proteins involved in the physiopathology of atheroscle-
rosis have come into play. Among the several immunolog-
ical approaches used to inhibit CETP function, vaccine HB-
ATV-8 seems to be the only one that offers non-invasive
intranasal vaccination employing a micellar nanoparticle
preparation composed of a mixture of common lipids and
a peptide together with the use a simple delivery device.
Since vaccination ameliorates atherosclerotic and hepatic
lesions caused by a HFD improving triglyceride meta-
bolism and promoting atheroprotective and anti-
inflamatory signals, vaccine HB-ATV-8 offers a brand
new approach to prevent the process of atherogenesis and
associated NAFLD in the human.
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