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Abstract

Background: Copy Number Variations (CNVs) have becoming very significant variants, representing a major source
of genomic variation. CNVs involvement in phenotypic expression and different diseases has been widely demonstrated
in humans as well as in many domestic animals. However, genome wide investigation on these structural variations is still
missing in Felis catus. The present work is the first CNV mapping from a large data set of Next Generation Sequencing
(NGS) data in the domestic cat, performed within the 99 Lives Consortium.

Results: Reads have been mapped on the reference assembly_6.2 by Maverix Biomics. CNV detection with cn.MOPS and
CNVnator detected 592 CNVs. These CNVs were used to obtain 154 CNV Regions (CNVRs) with BedTools, including 62
singletons. CNVRs covered 0.26% of the total cat genome with 129 losses, 19 gains and 6 complexes. Cluster Analysis and
Principal Component Analysis of the detected CNVRs showed that breeds tend to cluster together as well as cats sharing
the same geographical origins. The 46 genes identified within the CNVRs were annotated.

Conclusion: This study has improved the genomic characterization of 14 cat breeds and has provided CNVs information
that can be used for studies of traits in cats. It can be considered a sound starting point for genomic CNVs identification
in this species.

Keywords: CNV, CNVR, Cn.MOPS, CNVnator, NGS, Felis catus, Cat breeds

Background
Short Tandem Repeats and Single Nucleotide Variants
(Single Nucleotide Polymorphism – SNPs, as they are
known) have been widely used in the study of the gen-
ome diversity and inherited diseases for a long time.
Other structural and more complex variants - like Copy
Number Variants (CNV) - were also known [1], and the
recent advances in genome technologies, especially the
development of array platforms and next generation se-
quencing, has allowed more global analyses of CNVs at
a genome-wide level. These variants consist of changes
in copy number of DNA sequences in comparison to a
reference genome, including duplications (gain state)
and deletions (loss state). The absence of variations is
defined as normal state [2]. Conventionally, CNVs are
defined as 1 Kb to several Mb in length, therefore being

distinct from the smaller structural variants as indels
and are more variable than SNPs, which vary by a single
base pair [3].
An early study of the completed human genome for

large-scale copy-number variants (LCVs) identified ap-
proximately 200 polymorphisms within the genomes of
20 normal individuals [4]. In another study, the regions
including LCVs overlapped with genes involved in hu-
man disease syndromes and cancer, such as CMT4B2
gene (Charcot-Marie-Tooth disease type 4B2) and DPY,
LRP12, FOG2 genes (squamous cell carcinoma) [5].
CNVs not only influence human phenotypes but are also
related to genome evolution. The location and frequen-
cies of the human and chimpanzee CNVs have been
compared and duplications and deletions of genes with
functions related to cell proliferation and inflammatory
response have been found. In particular, a loss of the
chimpanzee TBC1D3 gene, compared to the eight para-
log copies of this gene in the human reference individ-
ual, may reflect a positive selection and adaptive
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phenotypic differentiation during primate evolution [6].
These studies used array-based comparative genomic
hybridization methods (array CGH, aCGH), which
lacked sensitivity to detect a wide range of CNVs [7].
The introduction of SNP high density genotyping and

Next Generation Sequencing (NGS) approaches, together
with the development of new bioinformatics tools, has led
to better strategies for CNV detection [8, 9]. The 1000 Ge-
nomes Project Consortium (2010), using 179 low coverage
whole genome human sequences, identified 28,025 struc-
tural variants, suggesting that CNVs represent 4.8–9.5% of
the human genome [9]. NGS is also an alternative tool for
genotyping CNVs associated to diseases, such as inherited
kidney diseases [10].
Genome-wide studies to detect CNVs have been ex-

tended to domestic animals. CNVs have been shown to
affect phenotypes such as pigmentation, morphology
and production traits [11, 12]. CNVs have also been sug-
gested to be responsible for complex disease traits such
as periodic fever syndrome in Shar-Pei dogs [13] and ca-
nine squamous cell carcinoma of the digit [14].
NGS has supported the discovery of CNVs in animals

too, providing higher sensitivity and allowing their iden-
tification at a genome-wide level in cattle [15], chickens
[16], mice [17] and dogs [18]. Recently, CNV detection
with NGS data has been used for association studies on
production traits in livestock, such as fatty acids dynam-
ics in beef cattle [19].
The genome assembly of the domestic cat is based on

approximately 3× Sanger sequencing and ~ 14× short-
read Illumina-based NGS. This assembly_6.2 and the
re-sequencing of additional breed individuals have iden-
tified a wealth of genetic variation within the cat genome
which led in turn to the development of a successful
DNA 63 K array [20]. However, an analysis of large
structural variants as CNV in the domestic cat across
breeds and individuals has not been attempted. New cat
genomes are now available from the 99 Lives cat genome
sequencing project, which has produced high quality
NGS data of 30× coverage, using similar techniques and
technologies [21–24]. In such a context, the present
study is the first genome-wide CNV detection in the do-
mestic cat and is based on the sequence data from the
cat 99 Lives Project. Ultimately this work is meant to as-
sist the evaluation of cat breeds and to be used for the
association of CNVs to breed-specific phenotypes, in-
cluding disease phenotypes.

Materials and methods
Samples
Forty-two whole genome sequences representing 14 dif-
ferent cat breeds were available from the 99 Lives Cat
Genome Sequencing Initiative (http://felinegenetics.mis-
souri.edu/99lives) [21]. The genome sequences were

produced as previously described [22] and sequencing
data are available at NCBI BioProject PRJNA308208.
The represented breeds, the number of individuals per
breed and additional sequencing information are re-
ported in Table 1.
The genome data for all the cats were produced by

Illumina-based short-read technology using PCR-free li-
braries of ~ 350 bp and/or ~ 550 bp. Most genomes are
at ~30× coverage, with 100–150 bp paired end reads. All
the reads were mapped to the cat reference assembly_6.2
by Maverix Biomics (http://www.ncbi.nlm.nih.gov/as-
sembly/320798) [25].

CNVs detection
Two programs using Read Depth (RD) based methods,
cn.MOPS [26] and CNVnator [27], were employed to
detect CNVs in the cat genomic data. Cn.MOPS and
CNVnator software support the readily available bam
files for the analysis and are considered the most suit-
able tools for Illumina sequencing data [28].

Cn.MOPS
The CNVs were firstly identified using the R “cn.MOPS”
routine. The output was filtered to exclude false calls
following the software manual indications, so only losses
with median in the expected log fold change < − 1 and
gains with median > 0.6 were considered, as described in
detailes by the authors [26]. Window Length (WL) was
set at 5 Kb.

CNVnator
The second CNV detection method utilized CNVnator.
The filtering was carried out considering only CNVs
with size ≥1 Kb, zero mapping quality (q0) < 0.5 and
Pval1 < 0.001. Since the sequences used for the analysis
had ~20× - 30× coverage, the WL was set at 100 bp as
suggested by the authors [27].

Consensus mapping of CNV, CNVR and data analysis
To reduce the false positive calls from each of the detec-
tion method, the CNVs obtained from cn.MOPS and
CNVnator were compared using the -intersectBed com-
mand of Bedtools software [29]. Only CNVs that overlap
for at least 80% (consensus_CNVs) were considered true
calls and included in further analyses. When a different
loss/gain state was identified by the two software for a
specific CNV, a visual inspection of the sequence read
depth was carried out for that CNV to identify the true
state. Particularly, samtool -view option (http://sam-
tools.sourceforge.net/) was used to extract the CNV se-
quence, including 50 K bp of the flanking regions, and
the read depth was visually inspected with the Golden
Helix GenomeBrowse. This allowed to identify false and
true positive calls and assign the true CNVs state.
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Table 1 List of the main cat breeds used in the study and number of individuals per breed

Breed Sample/
Breed

Library Run Accession Location

ABYSSINIAN (4) ABY_1 ~ 350 bp SRR5373742 USA

ABY_3 SRR6997541 Italy

ABY_4 ~ 350 bp Under release USA

BENGAL (2) BEN_1 ~ 550 bp SRR5366704 USA

BEN_2 Under release Switzerland

BIRMAN (6) BIR_1 SRR5055405 Asia

BIR_2 ~ 350 bp Under release USA

BIR_3 Under release Sweden

BIR_4 Under release Sweden

BIR_5 Under release Sweden

BIR_6 Under release Sweden

BRITISH SHORT HAIR (2) BSH_1 ~ 550 bp SRR5358834 Western

BSH_2 ~ 550 bp SRR5358833 Western

BURMESE (5) BUR_1 ~ 550 bp SRR5373736 Western

BUR_2 ~ 550 bp SRR5055402 Asia

BUR_3 ~ 550 bp SRR5055400 Asia

BUR_4 ~ 350 bp Under release USA

BUR_5 ~ 350 bp Under release USA

DEVON REX (2) REX_1 ~ 550 bp SRR5373726 Western

REX_2 ~ 550 bp SRR5373735 Western

EGYPTIAN (1) EGY_1 ~ 350 bp Under release USA

MAINE COON (2) MCO_1 Under release Switzerland

MCO_2 Under release USA

NAPOLEON (3) NAP_1 ~ 550 bp SRR5373738 Western

NAP_2 ~ 550 bp SRR5373737 Western

NAP_3 ~ 550 bp SRR5373734 Western

ORIENTAL SHORT HAIR (8) OSH_1 ~ 550 bp SRR5358555 Asia

OSH_2 ~ 550 bp SRR5358556 Asia

OSH_3 ~ 550 bp SRR5358554 Asia

OSH_4 ~ 550 bp SRR5358559 Asia

OSH_5 ~ 550 bp SRR5358558 Asia

OSH_6 ~ 350 bp Under release USA

OSH_7 ~ 350 bp Under release USA

OSH_8 ~ 550 bp SRR5358557 Asia

PERSIAN (1) PER_1 SRR5055403 Western

RAGDOLL (2) RAG_1 SRR5055399 Western

RAG_2 SRR5055396 Western

SPHYNX (1) SPH_1 ~ 350 bp Under release USA

SIAMESE (4) SIA_1 Under release Asia

SIA_2 ~ 550 bp SRR5363128 Asia

SIA_3 ~ 550 bp SRR5363127 Asia

SIA_4 ~ 550 bp SRR5363129 Asia

Genova et al. BMC Genomics          (2018) 19:895 Page 3 of 13



CNV regions (CNVRs) for all the cats were obtained by
merging consensus_CNVs using the -mergeBed command
of Bedtools [29]. In order to validate the CNVRs identified
and to exclude any possible false positive call, all the iden-
tified CNVRs were validated by the visual inspection. The
sequence read depths of all the cats pertaining to a CNVR,
and thus showing a CNV in that region, were compared
to the ones of two cats showing CNV normal state for that
region. Only losses or gains with clear boundaries were
considered true CNV calls, contributing to CNVRs. All
singleton CNV calls were also visually validated to exclude
false positive calls and then considered as CNVRs. All the
CNVRs boundaries were validated and re-assigned with
visual inspection: for both sides, the initial descending bp
and the initial ascending bp positions were identified as
boundaries for losses and gains respectively.
Genes within the CNVRs were identified using the anno-

tation of the NCBI Felis catus assembly_6.2 gene dataset
and the Bedtools -intersectBed command was used to cata-
logue genes in the corresponding regions. Gene Ontology
Terms (GO) and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway analyses were performed with the
DAVID Bioinformatic Database (https://david.ncifcrf.gov/
tools.jsp). GeneCards database (www.genecards.org) was
consulted to obtain information on the function of the
identified genes. Imprinted Gene database (www.geneim-
print.com) was used to identify imprinted genes among the
ones located within the identified CNVRs.

Cat population analyses
Structure and genomic diversity among all the cats were
examined using Principal Component Analysis (PCA) and
a clustering analysis, grouping the individuals according to
their CNVR similarities [30]. A scoring matrix of the
CNVRs was developed by encoding a value of ‘0’ or ‘1’ ac-
cording to the presence or absence of any mapped CNV
in the corresponding CNVR. The matrix considered only
the 92 CNVRs shared by two or more individuals. A hier-
archical agglomerative clustering, based on Unweighted
Pair-Group Average method (UPGMA), was applied to
the scoring matrix using the pvclust function from the
pvclust R package [31]. Multiscale bootstrap resampling
was performed to calculate the Approximately Unbiased
P-value (AU-P) using 10,000 bootstraps to assess the ro-
bustness of branches. The AU-P and Bootstrap Probability
value (BP-P) are presented for each node, as well as the
edge numbers. The PCA was performed with Past3 soft-
ware using the same matrix of the clustering analysis [32].

Results
CNVs detection with cn.MOPS
After filtering, 2282 CNVs were identified using cn.MOPS
software. A mean of 23 CNVs/cat was observed. The
Siamese cat sample SIA_4 showed 585 CNVs and was

excluded as an outlier. Therefore, 1697 CNVs were con-
sidered for downstream analyses.

CNVs detection with CNVnator
After editing, CNVnator detected 285,533 CNVs. A
mean of 5827 CNVs/cat was reported and the Siamese
cat sample SIA_4 was also confirmed as an outlier. The
Siamese cat sample SIA_2 was the cat with the highest
number of CNVs (9413) while 4405 CNVs were counted
in the Birman cat sample BIR_2, which was the one with
the lowest number of CNVs. After the SIA_2 outlier ex-
clusion, 234,484 CNVs were considered in downstream
analyses.

Consensus mapping of CNV, CNVR and data analysis
Comparing cn.MOPS and CNVnator detections, a total
of 999 consensus_CNVs was obtained, representing 59%
of the 1697 CNVs identified by cn.MOPS. Out of the
147 consensus_CNVs with different state, 78 were iden-
tified by visual inspection as true call and their state was
assigned according to their read depth respect to the
flanking regions (Additional file 1: Table S1).
The CNVRs were then identified using the 930 remaining

consensus_CNVs. Each of the 389 identified CNVR (in-
cluding 269 singletons) was visually validated to identify
false positive calls, including all detected singletons. An ex-
ample for the CNVR validation is shown in Additional file 2:
Figure S1 at chrD1:10,624,001-10,645,000 where the com-
parison with the reference genome and two normal state
cats, ABY_1 and BEN_1, clearly allows to identify true
CNV calls. A total of 154 CNVRs were, containing 589 vali-
dated consensus_CNVs, were confirmed. Among those, 62
were identified as singleton. Table 2 summarizes the statis-
tics of consensus_CNVs found in each breed.
The size of the singleton regions (62 CNVRs) ranged

from 5 Kb to 283 Kb, while the remaining 92 CNVRs
ranged in size from 5 Kb to 529 Kb. The 154 CNVRs and
are graphically represented in Fig. 1 and reported in
Additional file 3: Table S2 and Additional file 4: Table S3.
Considering the length of the cat autosomes mapped

with Felix catus vs 6.2 assembly (about 2.2 Gb), the
CNVRs covered about 0.26% of the cat genome. A total
of 129 loss, 19 gain and 6 complex regions were identi-
fied. The statistics and the contribution of each breed in
relation to singletons are reported in Fig. 2. All breeds
show to have at least one singleton CNVR with the NAP
showing the largest number.
The contribution of every individual to each CNVR is

reported in Additional file 4: Table S3. Two CNVRs
were in common to the 66% of the cats: the first on
chrD4:83,618,990-83,634,627, shared by 28 cats of 10
breeds and the second on chromosome chrA1:89,919,
879-89,940,219, shared by 27 cats of 13 breeds. The
CNVRs identified in at least 10 individuals were 13,
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Table 2 Descriptive statistics of validated copy number variant (consensus_CNVs) identified for each breed

Breed N. of
samples

Tot N. of CNV (*) Min N. of CNV
per sample

Max N. of CNV
per sample

Tot N.
Losses

Tot N.
gains

Tot N. of Chr
with CNV

ABY 3 46 (15.3) 13 17 42 4 13

BEN 2 29 (14.5) 12 17 25 4 14

BIR 6 95 (15.8) 11 20 88 7 16

BSH 2 19 (9.5) 9 10 17 2 7

BUR 5 78 (15.6) 10 20 67 11 16

EGY 1 19 19 19 18 1 14

MCO 2 24 (12) 12 12 23 1 9

NAP 3 53 (17.6) 16 20 47 6 14

OSH 8 136 (17) 10 28 117 19 17

PER 1 11 11 11 10 1 7

RAG 2 17 (9) 4 14 16 1 9

REX 2 22 (11) 10 12 19 3 12

SIA 3 21 (7) 4 12 17 4 11

SPH 1 19 19 19 15 4 11

Total 41 589 521 68

(*) average number of CNV per Breed

Fig. 1 Physical distribution of the Copy Number Variants Regions (CNVRs) according to states (gain, loss and complex) on the Felis catus
vs 6.2 assembly
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while 26 CNVRS were present in only two cats. A total
of 16 CNVRs were found in only one breed (ABY, BIR,
BSH, BUR, MCO, NAP and OSH) as reported in
Table 3.
In Fig. 3 the distribution of the CNVRs across the gen-

ome is reported together with the proportion of coverage

within each chromosome. The number of CNVR per
chromosome spans from 2 (chrE1) to 21 (chrA1) while
the proportion of the total CNVR per chromosome spans
from 0.05% (chrC2) to 0.69% (chrB3).
In Fig. 4 the distribution of CNVRs by five size classes

is reported. Only one CNVR, a gain, showed a size large

Fig. 2 Summary of the number of singletons for each breed and breed contribution to the total number of detected singletons

Table 3 CNVRs found in only one breed

Chr Start End Length Breed Samples (*) State Genes Function

chrA1 117,723,730 117,738,524 14,794 ABY 2 (67) Loss PCDHB6, PCDHB10, PCDHB12 Neural cadherin-like cell adesion protein

chrB2 74,110,332 74,120,349 10,017 BIR 2 (25) Loss SH3BGRL2 SH3 Domain Binding Glutamate Rich Protein
Like 2

chrD1 103,586,099 103,601,179 15,080 BIR 3 (60) Loss LOC101085660 Olfactory Receptor 5G3-like

chrD4 83,882,234 83,893,715 11,481 BIR 5 (83) loss

chrE1 56,306,407 56,332,265 25,858 BIR 3 (60) Loss

chrB2 96,292,366 96,391,191 98,825 BSH 2 (25) Loss

chrB3 70,859,943 71,389,394 529,451 BUR 2 (25) Gain AVEN Apoptosis and Autophagy Pathways

CHRM5 Muscarinic receptor

EMC7 Membrane Protein binding carbohydrates

RYR3 Ryanodine receptor for calcium release

chrB4 109,221,798 109,251,945 30,147 BUR 3 (60) Loss

chrE2 28,876,777 28,888,767 11,990 BUR 3 (60) Loss

chrA1 82,527,688 82,544,767 17,079 MCO 2 (100) Loss

chrC2 116,748,111 116,766,145 18,034 NAP 2 (25) Loss PLSCR4 Phospholipids migration by calcium ions
binding

chrA2 121,965,379 121,983,429 18,050 OSH 2 (25) Gain ZNRF2 Maintenance of neural transmission

chrB1 139,721,970 139,739,225 17,255 OSH 2 (25) Loss CB1H4orf22 Cilia and flagella associated protein 299

chrB2 110,152,121 110,360,880 208,759 OSH 2 (25) Loss

chrB4 89,793,534 89,841,761 48,227 OSH 2 (25) Loss FAM19A2 TAFA family, regulators of immune and
nervous cells

chrC2 17,974,294 17,988,686 14,392 OSH 2 (25) Loss

*Number of samples defining the CNVR and proportion on total number of cats per breed (%)
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than 500 Kb (chrB3:70,859,943-71,389,394, 520 Kb),
while 67 are smaller than 20 Kb.
Considering the assembly_6.2 annotation, 46 genes

were located within the CNVRs (Additional file 3: Table
S2 and Additional file 4: Table S3) and 13 mapped in
CNVRs identified in only one breed (Table 3).
All the 46 identified genes were submitted to the Da-

vid Bioinformatic Database but for only 25 genes the

GO terms and KEGG metabolic pathways were available
as reported in Additional file 5: Table S4.
The GO terms and the KEGG pathway clusters, result-

ing from the DAVID classification database, are reported
in Table 4. Only two clusters have a P-Value lower than
0.05 and correspond to a biological process term (G-pro-
tein coupled receptor signaling pathway) and a KEGG
pathway (Olfactory transduction).

Fig. 3 Distribution of CNVRs across the genome

Fig. 4 Distribution of CNVR size by class
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Cat population analyses
Both the PCA and the cluster analysis depicted a similar
population stratification based on different breeds
(Figs. 5, 6).
Figure 5 shows the population stratification based on

geographical origin (A) and on breeds (B). The principal
components explained the 9.62 and 8.63% of the vari-
ance for PC1 and PC2 respectively. The breeds were
grouped according to their geographical origin as fol-
lows: i) Asian Breeds - SIA, OSH, BUR, BIR and SPH; ii)
Western Breeds - ABY, MCO, BSH, PER and RAG; iii)
Mediterranean breed - EGY; iv) Mixed breeds – BEN,
REX and NAP.

The clustering in Fig. 5-a shows two main groups of
individuals represented by Asian breeds (green) and
Western breeds (red). In Fig. 5-b a clear separate cluster-
ing is shown for BIR, BUR and OSH that are part of the
Asian breeds group in Fig. 5-a. Among the Western
breeds the BSH the PER and the RAG cluster very
closely (Fig. 5-a).
The CNVR clustering tree also presented close associ-

ations for individuals belonging the same breed and for
breeds with similar origins (Fig. 6).
The breeds clustered well according to the geograph-

ical origin, except for very few cases (RAG_2 and ABY_4
for the Western breeds; SIA_3 for the Asian breeds). For

Table 4 Genes clusters according to DAVID database classification

Category Term Count P-Value Genes

GOTERM_BP GO:0007186~G-protein coupled receptor signaling pathway 3 9.14E-02 LOC101101252, LOC101084174,
LOC101083150

GOTERM_MF GO:0005509~calcium ion binding 3 1.35E-01 MICU1, ANXA10, RYR3

GOTERM_MF GO:0004984~olfactory receptor activity 3 1.27E-01 LOC101101252, LOC101084174,
LOC101083150

GOTERM_MF GO:0004930~G-protein coupled receptor activity 3 1.82E-01 LOC101101252, LOC101084174,
LOC101083150

GOTERM_CC GO:0016021~integral component of membrane 5 6.06E-01 ANTXRL, LOC101101252, RYR3,
LOC101084174, LOC101083150

GOTERM_CC GO:0005886~plasma membrane 3 6.28E-01 LOC101101252, LOC101084174,
LOC101083150

GOTERM_CC GO:0005737~cytoplasm 4 6.07E-01 ELP4, SYDE2, PAX6, ARNTL2

KEGG_PATHWAY fca04740:Olfactory transduction 8 1.10E-05 LOC101095519, LOC101089503,
LOC101101252, LOC101084174,
LOC101089105, LOC101083150,
LOC101083405, LOC101086964

*CC cellular component, MF molecular function

A B

Fig. 5 Scatter plot showing groups of stratification

Genova et al. BMC Genomics          (2018) 19:895 Page 8 of 13



breeds with only one representative, the distribution was
based on their geographical origins: Persian (PER_1)
within the Western breed group while Egyptian (EGY_1)
and Sphynx (SPH_1) within the Eastern breed group.
Additionally, cats pertaining to the same breeds tend to
cluster together as, e.g. the Burmese cats. Clustering
with AU-P values > 90 were identified for several group-
ings of breeds, as for groups of individuals sharing the
same geographical origins.

Discussion
Genome-wide mapping of CNVs has allowed new in-
sights into genomic variation. Different techniques based
on different approaches have been developed with the
aim of more efficient and accurate CNV detection [28].
While aCGH has been used to detect CNVs for several
years, the advent of NGS technologies has improved the
global detection and analysis of CNV data. In humans,
as in domestic animals, different CNV analyses have
already been performed and have demonstrated the
strong relationship between the presence of CNVs and
phenotypic diversity, evolution and the onset of several
diseases [33, 12]. Although the examination of repetitive
elements was carried out in cats [25] and a preliminary
annotation of the whole genome reference sequence

(Felis catus assembly_6.2) has revealed that repetitive el-
ements comprise about 55.7% of the whole genome, no
formal studies focusing on CNVs have been performed
[34].
This is the first CNV detection in the domestic cat

and also the first one using NGS data. CNVnator and
cn.MOPS software were selected to identify the CNVs.
Both packages are based on the Read Depth (RD)
method, which has been suggested as the most suitable
for Illumina sequencing data [28]. Compared to other
methods, the RD method does not require a reference
sample and is based on coverage of the sequencing data.
This represents an important advantage as, during the
detection, the software compares reads within the same
sample and also among all the samples. Moreover, the
RD method uses a negative binomial distribution statis-
tical model [28] and has the advantage of setting the WL
depending on the number of reads. The difference be-
tween the two software programs is based on the RD
method pipelines described by [35]. Cn.MOPS is based
on a Bayesian approach that measures the depth of
coverage at each genomic position, across multiple sam-
ples, thus increasing the statistical power and decreasing
the false discovery rate in the detection. CNVs and noise
identification are achieved using mixture components

Fig. 6 Clustering analysis using CNVRs. Colored rectangles correspond to geographical origin
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and Poisson distribution [26]. In contrast, CNVnator
uses the mean-shift approach [36] and CNV detection is
made more accurate through GC and multiple-band-
width partitioning corrections [35]. The significant dif-
ference in the number of detected CNVs between the
two packages is based on the different approach for de-
fining a single CNV. In cn.MOPS, copy number of adja-
cent windows are compared and those with the same
copy number sequence are joined into one single CNV.
The length of the final CNV is given by the sum of the
two adjacent copy number sequences. The more adja-
cent segments with high or low copy number call are
joined, the higher will be the confidence in the detec-
tions. CNVnator does not use this overlapping approach,
which explains the large discrepancy in the number of
CNVs detected by the two packages. Ten or more CNVs
detected with CNVnator correspond to one CNV de-
tected with cn.MOPS. For this reason, it was decided to
obtain CNVRs after the selection of CNVs in common
to the two software.
The number of analyzed individuals is comparable or

superior to those used in previous studies on horses (16
individuals [37]), pigs (20 individuals [38]) and dogs (34
individuals [39]). The number and the mean lengths of
CNVs are in accordance to those found in dogs, where
1748 CNVs with a mean length of 194,559 bp were iden-
tified [40], and in other studies using cn.MOPS [41] and
CNVnator software [17].
The present CNV detection revealed a higher number

of loss regions compared to gain and complex regions.
This could be explained by the difference within breeds
of the same species, as already reported for Holstein cat-
tle, where the number of loss regions is consistently
higher than in other cattle breeds [42, 43]. Moreover,
even though CNVnator is still the most used software
for CNV detection, it is known to have a major defi-
ciency in terms of detecting gain regions [27]. This could
also explain the identification of 147 CNVs with differ-
ent state when the output of the two software packages
was compared. Nevertheless, the visual inspection ap-
proach used in this study to validate all the CNVRs, al-
lows to overcome the problem of having different calling
state between the cn.MOPS and CNVnator software.
Additionally, it further reduces the false positive calls
that may occur when using only one of the software for
the CNV detection. In fact, the visual inspection leads to
a full validation of the called CNV, improving the true
calls obtained by comparing the results of the two call-
ing algorithms. Visual inspection was also used to re-
assign the boundaries at each single CNVR, allowing to
further refine the genome proportion covered by CNVR.
The singletons detected in this study represent the 41%
of the total CNVRs, a lower proportion compared to
those reported in other studies [44–46].

The proportion of validated non singleton CNVRs
after visual inspection was 77%. This proportion of true
calls is in accordance to the findings of [47] who identi-
fied a concordance for the 80% of mapped CNV using
two sequencing data runs.
Grouping the individuals according to their CNVR

similarities, both the PCA and the clustering analyses
showed cats belonging to the same breed tended to clus-
ter together as well as cats sharing the same geograph-
ical origin. The Western and Eastern breeds were
distinct in both of the analyses and resembled the results
obtained in previous studies of cat phylogenies [20, 48].
However, the Devon Rex cats, a breed developed in the
United Kingdom [49], neither cluster nor have apparent
correct historical origins, which are suggested as Eastern
in this study. Depending on breeding associations, the
genetic contributions of some cat breeds can be varied
as different associations allow for different outcrosses
for a given breed. Thus, some of the variation in the
breed and individual associations may be due to histor-
ical breeding differences.
The Bengal breed is a hybrid, developed from crossing

spotted cats from India, Egyptian Maus or Abyssinians
with the Asian leopard cat (Prionailurus bengalensis).
Thus, the convoluted genetics of an individual cat of the
Bengal breed could easily result in placement nearly any-
where within the cat genetic spectrum. As previously
stated [50], the Abyssinian, which is one of the oldest
cat breeds, has mysterious origins that are not clearly
defined.
The gene annotation performed in this study showed

that 19% of the CNVRs harbor genes. This proportion is
lower than the ones found in studies developed in other
species [8, 40, 46]. This is likely due to the more incom-
plete information in the cat gene annotation, compared
to other species.
The LOC101085660, LOC101095519, LOC101101252

and LOC101089105 genes encode for olfactory receptors
and were found in CNVRs of several breeds. As previ-
ously shown in humans [51], it may be related to signifi-
cant variability in olfactory capabilities, an important
sensorial attribute in predators.
The RYR3 gene in the Burmese cat was found differen-

tially expressed in adipose tissue in cats during winter/
short days and summer/long days [52].
The SYDE2, PAX6, ELP4 and the CHRM5 genes, have

been found in genomic regions that have been recog-
nized to be under positive selection in cats during their
domestication [53]. Interestingly, the PAX6 and the
ELP4 genes were found by the same authors as genes
underlying segmental duplication in the domestic cat
genome, as occurring in this study.
The PTCHD3 gene was found in the CNVR (complex)

at chrB2:2,291,441-2,347,122 in 5 breeds (BEN, BIR,
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OSH, RAG, SPH). This gene has been previously found
in a rare CNV in humans [54] where the CNV homozy-
gous deletion was not associated to an abnormal pheno-
type. More recently, [55] have found this gene as
associated with diabetes in humans and [56] have classi-
fied the gene as a potential imprinted gene. The
PTCHD3 gene is not yet included in the Imprinted
Genes database (www.geneimprint.com), as no other
gene found in the CNVRs here reported. The presence
of imprinted genes in CNVRs has already been shown in
other species such as in cattle [57]. The regulation of the
gene expression is mainly determined by the genetic im-
printing and it could be interesting to further investigate
this aspect in cat too.

Conclusions
The CNV calling performed in this study represents the
first effort for the detection of genomic structural vari-
ation in the domestic cat. The clustering among the cat
breeds that was possible to obtain in this study using
CNVRs, complement findings of other studies based on
other type of markers, leading to a closer insight of com-
mon and proprietary functional aspects of each popula-
tion. Further studies based on further resequencing and
on novel NGS technologies, might disclose other in-
sights on CNV in Felis catus species and could comple-
ment the results obtained with the mapping performed
in this study. Since CNV are well known to be related to
gene expression regulation, also in complex diseases, this
first mapping is meant to be the first information on a
class of genomic variants that can be related to recorded
phenotypes in cat populations.
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