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Abstract The interaction between members of a gene
network has an important impact on the variation of quanti-
tative traits, and can inXuence the outcome of phenotype/
genotype association studies. Three genes (Ppd-H1,
HvCO1, HvFT1) known to play an essential role in the reg-
ulation of Xowering time under long days in barley were
subjected to an analysis of nucleotide diversity in a collec-
tion of 220 spring barley accessions. The coding region of
Ppd-H1 was highly diverse, while both HvCO1 and HvFT1
showed a rather limited level of diversity. Within all three
genes, the extent of linkage disequilibrium was variable,
but on average only moderate. Ppd-H1 is strongly associ-
ated with Xowering time across four environments,
showing a diVerence of Wve to ten days between the most

extreme haplotypes. The association between Xowering
time and the variation at HvFT1 and HvCO1 was strongly
dependent on the haplotype present at Ppd-H1. The inter-
action between HvCO1 and Ppd-H1 was statistically sig-
niWcant, but this association disappeared when the analysis
was corrected for the geographical origin of the accessions.
No association existed between Xowering time and allelic
variation at HvFT1. In contrast to Ppd-H1, functional vari-
ation at both HvCO1 and HvFT1 is limited in cultivated
barley.

Introduction

The timing of Xowering is a key component of plant adap-
tation and so represents a major objective for crop breed-
ing. Although some major genes have been identiWed in
the control of Xowering time in crop species (Cockram
et al. 2007; Hay and Ellis 1998; Laurie 1997), the molecular
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dissection of Xowering time in the leading plant model
Arabidopsis thaliana has shown that a complex network of
regulatory pathways is involved (reviews: Ausin et al.
2005; Hay and Ellis 1998; Henderson and Dean 2004;
Imaizumi and Kay 2006; Mouradov et al. 2002; Putterill
et al. 2004). Among the crop species, the best understood
system is rice, where Wve heading date genes (Hd1–Hd5)
have been successfully tagged or isolated, and the DNA
structures of these genes show a remarkable level of simi-
larity to those in A. thaliana (Kojima et al. 2002; Lin et al.
2003; Yamamoto et al. 1998; Yano et al. 2000, 2001).
Two environmental cues are involved in the determination
of the Xowering time of barley. One of these, temperature,
acts through the vernalisation pathway; the other is day-
length, acting through the photoperiod sensitivity Ppd
genes. One of the latter, Ppd-H1, has recently been cloned
(Turner et al. 2005). As it represents a homolog of A. thali-
ana PRR7, it may be involved in the functioning of the cir-
cadian clock (Nakamichi et al. 2005). The barley
homologs of CONSTANS (HvCO1, 7HS; GriYths et al.
2003) and FLOWERING LOCUS T (HvFT1 synonym of
Vrn-H3, 7HS; Faure et al. 2007; Turner et al. 2005; Yan
et al. 2006) both act downstream of Ppd-H1, 2HS (Turner
et al. 2005). In rice, these genes are represented by Hd1
and Hd3a, respectively. In A. thaliana, the circadian clock
regulated CO encodes a B-box-type zinc Wnger transcrip-
tional activator (Putterill et al. 1995), which interacts with
a transcription factor complex to induce the expression of
FT (Ben-Naim et al. 2006; Cheng and Wang 2005; Kard-
ailsky et al. 1999; Suarez-Lopez et al. 2001). While the
CO gene product acts exclusively in the photoperiodic
pathway (Yanovsky and Kay 2002), the FT product is
involved in other Xowering pathways as well (Abe et al.
2005; Ausin et al. 2005; Kardailsky et al. 1999; Wigge
et al. 2005).

The identiWcation of the three genes Ppd-H1, HvCO1,
and HvFT1 as players in the determination of Xowering
time in barley makes them attractive as candidates for a
phenotype/genotype association analysis across a wide
germplasm sample. In this study we set out to search for
associations between nucleotide diversity at these three
genes and variation in Xowering time within a geographi-
cally widely distributed collection of spring barleys. The
multi-factorial inheritance of most quantitative traits com-
plicates their genetic analysis. Although the generally
adopted assumption is that quantitative trait loci (QTL) act
additively, signiWcant QTL £ QTL interactions have been
observed across a range of plant species (Alonso-Blanco
et al. 1998; Caicedo et al. 2004; Eshed and Zamir 1996;
Juenger et al. 2005; Li et al. 1997, 2000; Lukens and Doeb-
ley 1999). We have analyzed the present data set to exam-
ine the impact of statistical gene £ gene interactions on the
outcome of association results.

Materials and methods

Plant material

The germplasm collection consisted of 220 spring barley
accessions originating from Europe (EU, n = 108), East
Asia (EA, n = 39), West Asia and North Africa (WA,
n = 44), and America (AM, n = 29) (Supplemental Table
S1). The accessions are a subset of the full Barley Core
Collection (“BCC”; KnüpVer and Hintum 2003), chosen to
represent the widest possible range of diversity, with some
additional West Asian accessions (“HOR”) provided by the
Gatersleben Genebank.

Phenotypic evaluation

Spring sown Weld trials were conducted at three locations,
two in Southern (Stuttgart-Hohenheim and Irlbach) and one
in Northern (Bergen-Wohlde) Germany. Flowering time
was recorded in 2004 at Irlbach and at all three sites in
2005. Each trial was arranged in microplots in a 15 £ 25
lattice design, with three replicates. Flowering date was
recorded as days after sowing (das), using the date at which
half of the ear had emerged from the Xag leaf of the main
tiller in 50% of the plants within a given plot.

Genotypic analysis

Genomic DNA was extracted from pooled leaf tissue of six
plants per accession, as described elsewhere (Graner et al.
1991). Twenty-Wve barley expressed sequence tag-derived
simple sequence repeat markers (EST-SSRs) (listed in Sup-
plemental Table S2; Thiel et al. 2003) were used to charac-
terize population structure. The criteria applied for marker
selection were map position (to maximise genome cover-
age) and informativeness. The SSRs were grouped into
multiplex sets of three to six each, and amplicons were gen-
erated with the Multiplex PCR kit (QIAGEN), using an
ampliWcation program of 95°C/15 min, followed by 40
cycles of 94°C/30 s, 60°C/30 s and 72°C/15 s, and a Wnal
extension step of 72°C/10 min. PCR products were sepa-
rated on 6% polyacrylamide gels on an ABI377 system
(Applied Biosystems/Applera, Darmstadt, Germany), and
proWles were analyzed with GeneScan 3.7.1 und Genotyper
3.7 software.

Sequence analysis

Primers were designed to amplify coding and non-coding
sequence intervals of the candidate genes, covering
1230 bp (Ppd-H1), 1772 bp (HvCO1) and 1974 bp
(HvFT1). The genomic position of each amplicon was
inferred from the respective reference sequence (Ppd-H1–
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AY970701, HvCO1–AF490467, and HvFT1–DQ100327).
Primer sequences and relevant reaction conditions are
given in supplemental Table S3. The Ppd-H1 fragment
includes the region from intron 4 to the beginning of exon
7, and covered the entire exon 5 and 6 as well as the entire
intron 5 and 6. The region contains one of the four base pair
positions diagnostic for the early and the late Xowering
alleles Ppd-H1 and ppd-H1 (Turner et al. 2005). The
HvCO1 sequence covered most of the gene, with small
gaps in the Wrst intron and at the 5� and 3� ends. HvFT1 was
resequenced in its entirety, except for 100 bp at its 3� end.
As FT regulates Xowering time in a dosage-dependent man-
ner (Kardailsky et al. 1999), an additional 1 kbp of the 5�

upstream region was included. In preparation for sequenc-
ing, DNA fragments were ampliWed using AccuPrime DNA
polymerase (Invitrogen). The PCR amplicons were puriWed
in 384 well plates and their concentrations were equalized.
Ten nanogram PCR product served as the template for
cycle-sequencing using ABI BigDye Terminator 3.1 chem-
istry on a capillary automatic sequencing device (3730xl
ABI 96; Applied Biosystems/Applera, Darmstadt, Ger-
many). The ampliWcation primers were used as sequencing
primers. For quality scoring a software package based on
the poly-phred system was used (Nickerson et al. 1997).
Alignments were compiled and analyzed using Sequencher
v4.1 (Gene Codes Corporation, Ann Arbor, USA) and
Bioedit v4.7.8 (http://www.mbio.ncsu.edu/BioEdit/bioedit.
html).

Population structure

Population structure was analysed in two ways. First,
within a Bayesian framework, a Markov chain Monte Carlo
algorithm was used to sample from the joint posterior dis-
tribution of the subpopulation allele frequencies, and
assignment of individuals to particular sub-populations was
eVected with STRUCTURE version 2.1 (Pritchard et al.
2000a; http://pritch.bsd.uchicago.edu/structure.html). QST

is the matrix of admixture proportions obtained with
STRUCTURE. For between two and ten subpopulations,
ten independent simulations were performed, using the
admixture model and a burn-in of 500,000 followed by
5,000,000 iterations. The ‘optimal’ number of subpopula-
tions K was chosen on the basis of the second order rate of
change of the likelihood function with respect to K (Evanno
et al. 2005). The second approach has been developed by
Veyrieras et al. (2006) from the Frequentist framework
devised by Tang et al. (2005). For a given value of K, an
expectation maximization (EM) algorithm was run with ten
random starting points to obtain the maximum likelihood
estimates of both the admixture proportions and the popula-
tion allele frequencies. Only the run with the highest likeli-
hood was retained. For each value of K, the cells of the

allele count matrix C (Cij = 1 if individual i carries allele j,
0 otherwise) were adjusted according to their expected fre-
quencies under the admixture model with K populations
(i.e., the estimated individual admixture proportion was
multiplied by the allele frequencies in each population).
Then the spectral norm of the resulting adjusted matrix M
(i.e., the eigenvalue of the covariance matrix M�M) was
used as a measure of the linkage disequilibrium (LD)
between marker alleles not explained by the current admix-
ture model. Spectral norms are expected to decrease until
reaching a plate after the ‘optimal’ value of K. The model
selection is thus based on a scree plot of these spectral
norms, in order to identify the value of K after which the
decrease is no longer signiWcant (see Supplemental Figure
S1). This value is referred to as KEM, and the associated
matrix of admixture proportions as QEM.

Allele diversity

All cultivars were treated as pure lines and the small
proportion of non-homozygous data points was treated as
missing data. For the purpose of statistical analysis, indels
were regarded as single site polymorphisms. Only haplo-
types represented by at least two accessions were consid-
ered. To assess nucleotide variability across the candidate
sequences, and to measure and compare the diversity within
and across geographical origins, both nucleotide (pi) and
haplotype (hd) diversities were estimated using DnaSP
(Version 3.51; Rozas and Rozas 1999; http://www.ub.es/
dnasp/). Estimates for LD were obtained with TASSEL
software (v1.0.9; http://www.maizegenetics.net/bioinfor-
matics/tasselindex.htm) applying the measurement r2

(squared correlation coeYcient; Hill and Robertso 1968)
and the signiWcance of any LD was determined using
Fisher’s two-tailed exact test. Values of r2 were plotted
against the pairwise distance between polymorphic sites, or
presented in a matrix plot.

Association analysis

For the analysis of phenotypic data, the adjusted means per
environment were Wrst computed, and these were subjected
to a mixed model analysis over trials. Individual trials were
analyzed by a mixed model using Wxed eVects for genotype
and replicate, and random block eVects for recovery of
information. Variance components were estimated by the
REML method. For each trial, adjusted means and weights
were computed from the diagonal elements of the inverse
of the asymptotic variance–covariance matrix of adjusted
means (Smith et al. 2001). In the subsequent step, the fol-
lowing terms were Wtted: trial main eVect (Wxed), genotype
main eVect (random), genotype-by-trial interaction (ran-
dom). While our Wnal model assumes random genotypes,
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we initially take the genotypic eVect as Wxed in the Wrst
step. This is necessary because taking genotypes as random
already in the Wrst step we would be estimating genotype
means by best linear unbiased prediction (BLUP), which
involves shrinkage. The degree of shrinkage usually varies
among trials, and so BLUPs would be diVerently scaled and
therefore not comparable across trials. For this reason,
BLUPs cannot be used as data in stage two (Smith et al.
2001). Taking genotypes as Wxed in stage one, we obtain
unbiased estimates of genotype means, for which the model
in stage two is (approximately) valid. In addition, the popu-
lation structure was modeled by Wxed-eVects regression on
an N £ K matrix Q of probabilities of membership for K
sub-population membership and each of N genotypes. The
Q matrix was either computed using the approach of Prit-
chard et al. (2000a) or Veyrieras et al. (2006) as described
above. For model comparison, two approaches were fol-
lowed to compute a pairwise kinship matrix using the 25
background SSRs. One approach was equivalent to ridge
regression for the allele eVects. We generated a dummy
variable for each allele taking value unity when the allele
was present and zero when absent. For each dummy a ran-
dom linear regression coeYcient was Wtted. CoeYcients for
all alleles were assumed to be sampled from a common nor-
mal distribution. The model was Wtted by using a Toepitz
structure as implemented in the MIXED procedure of the
SAS system. It corresponds to Wtting a linear variance
structure with a Wxed matrix corresponding to a kinship
matrix. For further details, including implementation in the
MIXED procedure see Ruppert et al. 2003). The second
kinship matrix was computed based on estimated Nason’s
coeYcients (Loiselle et al. 1995) using SPAGeDI version
1.2 software (Hardy and Vekemans 2002). Negative kin-
ship values were set to zero following Yu et al. 2006). Each
kinship matrix was Wtted for random genotype main eVects
and random genotype-by-trial interaction eVects. Model
selection with regard to admixture probabilities (Q) and
kinship was performed using Akaike’s Information Crite-
rion (AIC) in “smaller-is-better” form. All these analyses
used components of PROC MIXED in the SAS System
(v9.1.3) package. ML was used instead of REML for model
selection to enable comparison between models with diVer-
ent Wxed eVects structures. Tests of Wxed eVects based on
selected models were then based on the REML method
with denominator degrees of freedom approximated by the
Kenward-Roger method. Adjusted means were compared
by Wald t tests. The family-wise type I error rate was con-
trolled by the Bonferroni–Holm procedure. As the means
were not variance balanced, we used the method of (Piepho
2004) to generate a letter display showing the signiWcance
of comparisons. In order to identify gene £ gene interac-
tions, a two-way classiWcation model was Wtted for two loci
at a time. When such digenic epistasis proved statistically

signiWcant, adjusted means were compared for each locus
separately. When the interaction was non-signiWcant, the
interaction term was ignored and marginal means were
computed for each locus.

Power of all tests was negatively aVected by unequal cell
sized in the factorial classiWcation, which stems from the
data structure of the population studied. However, the
validity of a parametric test does not rest on a minimal sam-
ple size. As the provided data met the normality assump-
tion, the tests are valid in small samples.

Results

Phenotypic variation

Flowering time ranged from 58.7 and 81.7 das with a mean
of 70 das (Table 1). The EU accessions were predominantly
late Xowering, on average four to seven days after those
from the remaining regions. Six-rowed accessions Xowered
on average about Wve days before two-rowed ones, but for
both subgroups the range in Xowering time was about
21 days. Both the genetic and genotype £ environment
interaction variances were highly signiWcant (P < 0.01),
with former about eight fold larger than the latter. As a
result, heritability was high (0.96).

Population structure

Using the mixed model, region of origin and ear row num-
ber explained, respectively, 26.1 and 21.6% of the genetic
variation for Xowering time (Table 2). A total of 173 alleles
was observed across the EST-SSR loci (mean 6.9 alleles
per locus). Using either the EM or the STRUCTURE
approach, a two subgroup structure attracted the highest
probability (Supplemental Figure S1). The QEM matrix for
the mixed model, as estimated by the EM algorithm
enjoyed a comparable Wt relative to the one derived by

Table 1 Means, minimum (min) and maximum (max) for Xowering
time (days after sowing, das) of all accessions, and of subsamples
grouped by geographic origin and ear type

sd standard deviation, EU Europe, EA East Asia, WA West Asia and
North Africa, AM America

Germplasm Number Mean § sd Min Max

Overall 220 70.0 § 5.26 58.7 81.7

EU 108 72.9 § 3.57 60.7 81.7

EA 39 65.8 § 5.22 58.7 76.8

WA 44 68.1 § 5.21 59.4 78.8

AM 29 68.1 § 4.76 58.9 75.7

Two-rowed 126 72.1 § 4.40 58.9 81.7

Six-rowed 94 67.2 § 4.97 58.7 81.0
123
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STRUCTURE (Supplemental Table S4). In the subsequent
association studies, a value of 2 was taken for KEM. Since
both kinship matrices did not generate an improved Wt
(AIC) (Supplemental Table S4), this component was not
included in the analyses.

The background structure only accounted for 19.4% of
the genetic variation in Xowering time, so that each sub-
group maintained plenty of variation. The distribution of
SSR alleles was in close accordance with the taxonomic
subgroups, as deWned by ear row number (Fig. 1). The
model-based and the row number-based assignment were in
agreement for the bulk (>88%) of the accessions. The mod-
els adjusting for row number and QEM2 + row number
explained almost the same proportion of the variation. In
view of the distinct phenotypic diVerences between the EU
and non-EU (origin*) accessions, as well as between the
row number types, we adjusted the model to QEM2 + row
number + origin* for the purpose of the association test.

Molecular diversity and LD

Within the Ppd-H1 amplicon, 12 variable base pair posi-
tions were identiWed (Table 4), equivalent to a mean rate of
one polymorphic site per 102 bp. Single nucleotide poly-
morphisms (SNPs) were more frequent in the coding than
in the non-coding region (Table 3). In the coding region,

Wve of the nine SNPs resulted in a codon replacement. The
frequency of the SNP alleles was mostly well balanced,
only at the ps1515 site the minor allele had a frequency
(MAF) of <0.05. Six haplotypes (PpdH11 through PpdH16)
were identiWed, four of which were present at a
frequency > 0.05 (Table 4). In the non-EU material, most
of the haplotypes were present at a frequency > 0.05. How-
ever, almost 85% of the EU accessions were of haplotype
Ppd-H11. This same proportion of WA and AM accessions
carried three, and EA as many as Wve haplotypes. Ppd-H11,
-H12 and -H13 were represented in all the geographical ori-
gins, but the frequency of Ppd-H12 was <0.05 in the EU
material. LD between the SNPs was highly variable (mean
r2 of 0.41, P · 0.001) (Fig. 2).

Within HvCO1, 16 polymorphic sites (one polymorphic
site per 111 bp) were deWned, comprising 14 SNPs and two
indels (Table 5). The non-coding sequence showed a mod-
erate level of nucleotide diversity, but within the coding
regions, this was reduced by 15 fold (Table 3). All Wve cod-
ing SNPs and two of the 11 non-coding polymorphic sites
were present at a MAF of <0.05. Two (ps427 and ps582) of
the Wve coding region sites deWned a change in amino acid
residue. Ten haplotypes (HvCO11 through HvCO110) pres-
ent in at least two accessions were recognized, but six of
these were rare (<0.05) (Fig. 3). Haplotype frequencies var-
ied markedly between the geographical origins. HvCO11

was present in >75% of the EU accessions, while the other
groups had a more balanced distribution, with the common-
est haplotype present in no more than 40% of the acces-
sions. Pairwise LD estimates produced a mean r2 value of
0.49 (P · 0.001), with 88% of all highly signiWcant associ-
ations (r2 > 0.5) located in intronic sequence (Fig. 2).

Within HvFT1, 21 SNPs and four indels (one polymor-
phic site per 79 bp) were identiWed (Table 6). Among the
eight haplotypes (HvFT11 through HvFT18) identiWed, only
three were present at >0.05 (Fig. 3; Table 6). Across all the
whole genotype set, the highest level of nucleotide diver-
sity was in the 5�-Xanking interval. The mean diversity in
the intron regions was moderate, while the exon sequence
revealed only a single SNP (Table 3).

Table 2 Percentage of explained genetic variance, var(G), for Xower-
ing time based on diVerent mixed models

* Subdivision into two origins: EU and non-EU

Model % var(G)

QEM2 19.4

Row number 21.6

Origin 29.2

QEM2 + row number 22.9

QEM2 + origin 32.1

QEM2 + origin* 32.3

QEM2 + row number + origin* 33.9

Fig. 1 Calculated population structure, based on genotype at 25 EST-
SSR loci. The population was partitioned into two color-coded subpop-
ulations. Each bar represents a single accession, and the colored
segments within each bar reXect the proportional contribution of the

two subpopulations to that accession. Accessions are ordered by ear
type (two-rowed and six-rowed) and by origin. EU Europe, EA East
Asia, WA West Asia and North Africa, AM America
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A strong LD block (ps606–ps1199) was detected in the
5�-Xanking region, comprising at least 590 bp and Xanked
by sequence with a highly variable pairwise LD structure
(Fig. 2). This interval had a mean r2 of 0.88 (P · 0.001),
while the mean LD declined sharply to 0.40 (P · 0.001) in
the coding region. This LD block structure was attributable
to a split into two tight haplogroups—haplogroup I com-

prising haplotype HvFT11 and HvFT15, and haplogroup II
with HvFT12 through HvFT14, and HvFT16.

Interlocus associations were minor compared to intralo-
cus LD, but some diVerences were apparent between the
locus pairs (Supplemental Figure S2). The mean level of
signiWcant LD between Ppd-H1–HvFT1 (r2 = 0.05;
P · 0.05, MAF > 0.01) was twofold less than that observed

Table 3 Estimates of nucleo-
tide diversity (pi) and haplotype 
diversity (hd) in coding and non-
coding regions of the genes Ppd-
H1, HvCO1, and HvFT1

Genomic region L L*1 S pi x 10¡3 (§ sd) H hd (§ sd)

Ppd-H1 (N = 205)

Total 1,230 12 2.45 (§ 0.17) 6 0.59 (§ 0.03)

Coding 676 9 2.81 (§ 0.24) 6 0.59 (§ 0.03)

Non-coding 554 3 2.00 (§ 0.13) 5 0.59 (§ 0.03)

HvCO1 (N = 200)

Total 1,772 1771 16 1.55 (§ 0.13) 10 0.68 (§ 0.03)

Coding 911 5 0.20 (§ 0.06) 5 0.12 (§ 0.03)

Non-coding 861 860 11 2.98 (§ 0.25) 7 0.66 (§ 0.03)

HvFT1 (N = 195)

Total 1,975 1969 25 4.61 (§ 0.07) 8 0.68 (§ 0.02)

Total*2 972 8 1.51 (§ 0.12) 6 0.66 (§ 0.02)

Coding 437 1 0.12 (§ 0.05) 2 0.05 (§ 0.02)

Non-coding 535 7 2.67 (§ 0.19) 6 0.66 (§ 0.02)

5�-Xanking 1,003 997 17 7.56 (§ 0.06) 6 0.67 (§ 0.02)

L fragment length in bp, L*1 
fragment length after treating in-
dels as single sites, S number of 
polymorphic sites, H haplotype 
number, sd standard derivation, 
N number of considered geno-
types, total*2 5�-Xanking region 
excluded

Table 4 Polymorphic sites in Ppd-H1 located in the exonic (e) and intronic (i) regions reXect their position in the AY970701 reference sequence

Replacement nucleotides are labeled “s”. Dots indicate identity with the reference sequence. Haplotype frequencies within the entire collection are
shown. In the lower part of the Wgure, association tests between the polymorphic site and Xowering time calculated with two models are summa-
rized (NS = non-signiWcant, * = P · 0.05, ** = P · 0.01, *** = P · 0.001). The % genetic variation explained, var(G) is shown for each signiW-
cantly associated site

Haplotypes Freq. Polymorphic site position (ps)

1
4
4
3

1
5
1
5

1
7
2
5

1
7
8
5

1
8
3
9

1
8
4
3

2
0
3
2

2
0
3
5

2
0
3
6

2
2
3
0

2
3
2
2

2
3
2
7

i4 e5 i5 e6 e6 e6 e6 e6 e6 i6 e7 e7

s s s s s

AY970701 C C T A C A A G C C T C

Ppd-H11 0.615 A . . . . C G . T . . .

Ppd-H12 0.141 . . C . . C . . . T . .

Ppd-H13 0.137 . . . . . . . . . . . .

Ppd-H14 0.058 . . . G T C . A . T C T

Ppd-H15 0.034 . T C . . C . . . . . .

Ppd-H16 0.015 . . . G . C . . . T C T

Model:QEM2

Associated *** NS *** ** * ** *** * *** *** ** **

var(G) explained 30.7 8.4 5.0 2.0 4.4 30.7 2.0 30.7 16.0 5.0 5.0

Model:QEM2 + row number + origin*

Associated *** NS * * NS * *** NS *** *** * *

var(G) explained 20.1 5.7 6.7 6.4 20.1 20.1 11.0 6.7 6.7
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Fig. 2 Strength and extent of 
LD at Ppd-H1, HvCO1, and 
HvFT1. Polymorphic sites with a 
minor allele frequency of >0.01 
were considered for pairwise 
calculation. Each point in the LD 
matrix represents a comparison 
between a pair of polymorphic 
sites, with the r2 values dis-
played below the diagonal, and 
P values for Fisher’s Exact test 
above. Points on the diagonal 
correspond to comparisons of 
each site with itself. Black, white 
and hatched margins indicate, 
respectively, exonic, intronic 
and 5�-Xanking regions. Color 
codes for r2 and P values are 
given

ps1443

ps1515

ps1725

ps1785

ps1839

ps1843

ps2032

ps2035

ps2036

ps2230

ps2322

ps2327

ps
14

43

ps
15

15

ps
17

25

ps
17

85

ps
18

39

ps
18

43

ps
20

32

ps
20

35

ps
20

36

ps
22

30

ps
23

22

ps
23

27

ps1443

ps1515

ps1725

ps1785

ps1839

ps1843

ps2032

ps2035

ps2036

ps2230

ps2322

ps2327

ps
14

43

ps
15

15

ps
17

25

ps
17

85

ps
18

39

ps
18

43

ps
20

32

ps
20

35

ps
20

36

ps
22

30

ps
23

22

ps
23

27

Ppd-H1

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps182

ps427

ps506

ps582

ps843

ps885

ps912

ps1093

ps1267

ps1348

ps1455

ps1489

ps1576

ps1596

ps1816

ps2008

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

ps
18

2

ps
42

7

ps
50

6

ps
58

2

ps
84

3

ps
88

5

ps
91

2

ps
10

93

ps
12

67

ps
13

48

ps
14

55

ps
14

89

ps
15

76

ps
15

96

ps
18

16

ps
20

08

HvCO1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

>0.01

<0.01

<0.001

<0.0001

lower r 2 upper P-value

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

>0.01

<0.01

<0.001

<0.0001

lower r upper P-value

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps450
ps460
ps464
ps606
ps632
ps723
ps779
ps838
ps890
ps939
ps990
ps1002
ps1079
ps1162
ps1186
ps1194
ps1199
ps1572
ps1599
ps1616
ps1756
ps1805
ps1919
ps2079
ps2163

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

ps
45
0

ps
46
0

ps
46
4

ps
60
6

ps
63
2

ps
72
3

ps
77
9

ps
83
8

ps
89
0

ps
93
9

ps
99
0

ps
10
02

ps
10
79

ps
11
62

ps
11
86

ps
11
94

ps
11
99

ps
15
72

ps
15
99

ps
16
16

ps
17
56

ps
18
05

ps
19
19

ps
20
79

ps
21
63

HvFT1
123



266 Theor Appl Genet (2009) 118:259–273
for Ppd-H1–HvCO1 (r2 = 0.11; P · 0.05, MAF > 0.01) and
HvCO1–HvFT1 (r2 = 0.10; P · 0.05, MAF > 0.01).

Haplotype–phenotype association

Assuming a population structure (deWned by KEM = 2), sig-
niWcant haplotype/Xowering time associations were identi-
Wed for all three genes (Table 7). The Ppd-H1 association
explained 32.4% of the genetic variance, and the haplotype
classes revealed highly signiWcant diVerences of Wve to ten
days between accessions carrying the latest Xowering Ppd-
H11 haplotype and those carrying any of the Wve remaining
ones (Table 8). One replacement (ps2036), one silent
(ps2032) and three intronic sites (ps1725, ps1443, ps2230)
were highly signiWcantly (P < 0.001) associated with phe-
notype. The three sites, ps1443, ps2032, ps2036, were in
perfect LD to one another (Fig. 2) and are diagnostic for
Ppd-H11; these explain 30.7% of the genetic variation
(Table 4).

In contrast, the HvCO1 and HvFT1 haplotypes were not
able to diVerentiate between the early and the late-Xower-

ing types, as, respectively, 80 and 62% of the haplotype
classes were associated with an intermediate phenotype
(Table 8). At HvCO1, only intronic sites showed any sig-
niWcant (P · 0.01) association with Xowering time
(Table 5). Five of these, all in perfect LD with one another
(ps912, ps1267, ps1455, ps1489, ps1576), explained 2.7%,
while ps1816 explained 4.1% of the genetic variation
(Fig. 2, Table 5). At HvFT1 the 5�-Xanking region SNP at
ps450 and two intronic sites (ps1805 and ps1919) in high
LD with one another (r2 = 0.8; P · 0.0001) were signiW-
cantly (P · 0.001) associated with Xowering time, but
explained, respectively, only 6.6, 8.8, and 9.7% of the
genetic variation (Fig. 2; Table 6).

Digenic epistasic interaction was highly signiWcant for
the Ppd-H1/HvCO1 combination, weakly so for HvCO1/
HvFT1 and non-signiWcant for Ppd-H1/HvFT1 (Table 7).
As Ppd-H1 exerted the largest inXuence on Xowering time,
the impact of allelic distribution at this gene on the associa-
tion results for HvFT1 and HvCO1 was evaluated. Exclud-
ing the non-signiWcant gene £ gene interaction from the
model, the Wxed HvFT1 eVects were calculated by adjusting

Table 5 Polymorphic sites in HvCO1 located in the exonic (e) and intronic (i) regions reXect their position in the AF490467 reference sequence

Replacement nucleotides are labeled “s”. Dots indicate identity with the reference sequence. The starting point of indels is indicated. Haplotype
frequencies within the entire collection are shown. In the lower part of the Wgure, association tests between the polymorphic site and Xowering time
calculated with two models are summarized (NS = non-signiWcant, * = P · 0.05, ** = P · 0.01, *** = P · 0.001). The % genetic variation ex-
plained, var(G) is shown for each signiWcantly associated site

Haplotypes Freq. Polymorphic site position (ps)

1
8
2

4
2
7

5
0
6

5
8
2

8
4
3

8
8
5

9
1
2

1
0
9
3

1
2
6
7

1
3
4
8

1
4
5
5

1
4
8
9

1
5
7
6

1
5
9
6

1
8
1
6

2
0
0
8

e1 e1 e1 e1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 i1 e2

s s

AF490467 C G C C AT A C A A A A T C C T G

HvCO11 0.520 . . . . . . . . . . . . . . . .

HvCO12 0.129 . . . . . . G . G . C C A T C .

HvCO13 0.129 . . . . . del . . . . . . . . C .

HvCO14 0.114 . . . . del . . . . . . . . . C .

HvCO15 0.030 . . . . . . . G . . . . . . C .

HvCO16 0.020 . . . T . del . . . . . . . . C .

HvCO17 0.020 . . T . . . G . G G C C A . C A

HvCO18 0.020 . . . . . . . . . . . . . . C .

HvCO19 0.010 T . . . . . . . . . . . . . . .

HvCO1 10 0.010 . A . T . del . . . . . . . . C .

Model: QEM2

Associated NS NS * * NS NS ** NS ** NS ** ** ** NS ** *

var(G) explained 2.1 1.2 2.7 2.7 2.7 2.7 2.7 4.1 2.1

Model: QEM2 + row number + origin*

Associated NS NS NS * NS NS NS NS NS NS NS NS NS NS NS NS

var(G) explained 1.2
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for the eVect of Ppd-H1, leading to a dramatic reduction in
the signiWcance of the association between HvFT1 and
Xowering time. Phenotypic means of the various haplotype
classes did not diVer signiWcantly from one another
(Table 8). In contrast, a similar adjustment for the eVect of
HvFT1 on Ppd-H1 did not aVect the diVerentiation between
the late Xowering PpdH11 haplotype and the remaining
haplotypes (Table 8). Given the statistically signiWcant
Ppd-H1 £ HvCO1 interaction, the Ppd-H1 background was
Wxed for Ppd-H11 and the earlier Xowering haplotypes
PpdH12–6 to estimate the eVect of HvCO1 within these hap-
lotype classes (Fig. 4a). One group of haplotypes (HvCO11,
HvCO12, HvCO16) suggested a background-dependent
change in phenotypic expression, while a second group
(HvCO13, HvCO14, HvCO15, HvCO110) behaved almost
independently. In the presence of Ppd-H11, HvCO11 and
HvCO12 generated the latest Xowering phenotype, diVering
signiWcantly (by 8 days) from carriers of HvCO14. This ear-
lier Xowering haplotype can be identiWed by a two-base
pair deletion (site 843; Table 5). For all other haplotyes
resulting in a signiWcantly diVerent phenotype it was not
feasible to generate a diagnostic marker. In the PpdH12–6

background the Xowering time of HvCO11 and HvCO12

Table 6 Polymorphic sites of the HvFT1 gene located in the exonic (e) and intronic (i) and 5�-Xanking (5�) regions reXect their position in the
DQ100372 reference sequence

Dots indicate identity with the reference sequence. The starting point of indels is indicated. Haplotype frequencies within the entire collection are
shown. In the lower part of the Wgure, association tests between the polymorphic site and Xowering time calculated with two models are summa-
rized (NS = non-signiWcant, * = P · 0.05, ** = P · 0.01, *** = P · 0.001). The % genetic variation explained, var(G) is shown for each signiW-
cantly associated site

Haplotypes Freq. Polymorphic site position (ps)

4
5
0

4
6
0

4
6
4

6
0
6

6
3
2

7
2
3

7
7
9

8
3
8

8
9
0

9
3
9

9
9
0

1
0
0
2

1
0
7
9

1
1
6
2

1
1
8
6

1
1
9
4

1
1
9
9

1
5
7
2

1
5
9
9

1
6
1
6

1
7
5
6

1
8
0
5

1
9
1
9

2
0
7
9

2
1
6
3

5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� 5� i1 i1 i1 i1 i1 i1 i2 e3

DQ100327 C C A C G G del G A C G G T CTTG T C C T C C T A G G G

HvFT11 0.479 . . . T C C CGCG A G G del C C del C G T . T . . T C . .

HvFT12 0.273 G . . . . . . . . . . . . . . . . . . . . T C . .

HvFT13 0.124 . . . . . . . . . . . . . . . . . . . . . . . . .

HvFT14 0.036 . . . . . . . . . . . . . . . . . del . . . . . . .

HvFT15 0.031 . . . . . C CGCG A G G . . C del C G T . . . C . . . .

HvFT16 0.026 . G . . . . . . . . . . . . . . . . . T . T . A T

HvFT17 0.021 . . . . . . . . . . . . . . . . . . . . . T C . .

HvFT18 0.010 G . G . . . . . . . . . . . . . . . . . . T C . .

Model: QEM2

Associated *** NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS *** *** NS NS

var(G) explained 6.6 8.8 9.7

Model: QEM2 + row number + origin*

Associated * NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS *** *** NS NS

var(G) explained 3.2 6.0 7.2

Fig. 3 Haplotype frequency and distribution at Ppd-H1, HvCO1, and
HvFT1 both across the whole collection and separately for geographi-
cal origin (EU Europe, EA East Asia, WA West Asia and North Africa,
AM America). The number of relevant accessions is shown in brackets.
Each hatched pattern represents a haplotype occurring at a frequency
of >0.05. Rarer haplotypes are pooled, and represented by a white bar
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carriers was accelerated to become indistinguishable from
carriers of HvCO14.

For HvCO1/HvFT1 the haplotype of each gene was
changed in a stepwise manner. In a HvCO11 background,
signiWcant diVerences between the HvFT1 haplotype clas-
ses were noted, whereas in the HvCO12–10 backgrounds no
such signiWcant diVerences occurred. No HvFT1 haplotype
background was associated with any signiWcant variation in
the presence of a particular set of HvCO1 haplotypes (data
not shown).

Finally, epistatic interactions were sought using the
model QEM2 + row number + origin* which explained most
of the phenotypic variation in Xowering time (Table 2).
Only Ppd-H1 was consistently associated with Xowering
time (Table 7). HvCO1 was not associated with Xowering
time, although the interaction between Ppd-H1 and HvCO1
was highly signiWcant. Once again, signiWcant phenotypic
diVerences were observed between the HvCO1 haplotype
classes in the presence of Ppd-H11, but none in the Ppd-
H12–6 background (Fig. 4b).

Discussion

The genetic dissection of quantitative variation is key to the
implementation of genomics-based crop improvement
strategies. Association mapping can be a powerful means of
understanding the genetic basis of quantitative variation,
and can even succeed in identifying candidate genes
involved in its determination (review: Hirschhorn et al.
2002). We have investigated here the allelic eVects of three
genes involved in the determination of Xowering time, and
have used a haplotype-based association analysis in con-
junction with statistical models of diVering complexity. A
special focus was on the impact of gene £ gene interactions
on the outcome of association results.

Population structure, the target genomic region, and the
number of polymorphic sites can all have a major impact on

the pattern of LD and consequently, on the outcome of
association studies (Akey et al. 2003; Ke et al. 2004; Prit-
chard et al. 2000b). The population structure of the barley
collection is largely consistent with the phenotype-based
grouping into two- and six-rowed ear types, as has been
noted in other sets of spring (Brantestam et al. 2007; Hayes
and Szucs 2006) and winter cultivars (Matus and Hayes
2002; Stracke et al. 2007; Thiel et al. 2003). Ear type is
encoded by a single major gene v, located on chromosome
2H (Komatsuda et al. 2007), which cannot account for the
existence of genetically distinct subpopulations. However,
breeders tend to avoid intermixing these types, as six-rowed
barleys are usually destined for feed, and the two-rowed
ones for malting (Hayes and Szucs 2006; Kjaer and Jensen
1996; Matus and Hayes 2002).

While the level of nucleotide diversity in the non-coding
regions of the three genes investigated was comparable,
coding sequences revealed marked diVerences. The coding
region of Ppd-H1 is particularly diverse, with a substantial
number of replacement alleles. This is consistent with the
reported role of the A. thaliana pseudo-response regulator
gene family (PRR), where both PRR7 (orthologous to Ppd-
H1) and PRR5 are rich in allelic variation allowing for the
wide adaptation of the species (Michael et al. 2003). The
late Xowering haplotype Ppd-H11 is synonymous with the
ppd-H1 allele present in the cultivar Triumph (Turner et al.
2005). Surprisingly, in addition to the diagnostic SNPs for
Ppd-H11, two polymorphic intronic sites were also signiW-
cantly associated with Xowering time, but these are inde-
pendent of the dimorphism between the late and the earlier
Xowering haplotypes. Given that the assignment to sub-
groups only imperfectly reXects the genetic background of
the collection (Balding 2006), this further association may
be attributable to residual background structure within the
subgroups.

Many rare exonic SNPs are present in HvCO1, and this
resulted in the deWnition of many haplotypes and a low
average nucleotide diversity. A. thaliana CO belongs to a

Table 7 Estimated percentage of genetic variance, var(G), for Xowering time explained by haplotypes of the genes Ppd-H1, HvCO1, and HvFT1
based on two mixed models

* Subdivision into two origins, EU and non-EU
# SigniWcance level of Wald-t test; in the case of the 2-factorial models P values refer to the interaction

Models for SNP genotypes Model QEM2 Model QEM2 + row number + origin*

% var(G) P value# % var(G) P value#

Ppd-H1 32.4 <0.0001 22.4 <0.0001

HvCO1 9.3 0.0005 0 0.1112

HvFT1 9.5 0.0003 3.4 0.0621

Ppd-H1 + HvCO1 + Ppd-H1 £ HvCO1 51.0 <0.0001 48.8 <0.0001

Ppd-H1 + HvFT1 + Ppd-H1 £ HvFT1 41.5 0.6544 30.6 0.8584

HvCO1 + HvFT1 + HvCO1 £ HvFT1 16.9 0.0450 12.3 0.0298
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family of putative transcription factors characterized by
two conserved domains. B-boxes near the N-terminus regu-
late protein-protein interactions, and a CCT domain near
the C-terminus controls the nuclear localization of the CO
protein (Robson et al. 2001) and binds to a trimeric
CCAAT factor (Ben-Naim et al. 2006; Robson et al. 2001).
All of the functional CO mutations reported to date are
located in one or other of these two domains, which under-
lines their importance to the control of Xowering time (Ben-
Naim et al. 2006; Lagercrantz and Axelsson 2000; Robson
et al. 2001). In HvCO1 one polymorphic non-replacement
site was identiWed in each of the two domains. As rese-
quencing was incomplete (76% coverage), it is possible that
a number of other polymorphic sites was not identiWed.
Nevertheless, because of LD structure, we assume that all
possible associations have been identiWed.

HvFT1 has a divergent diversity structure both up- and
downstream of the start codon. The extended LD block in
the 5�-Xanking region has been noted previously in both

Table 8 Means and their 95% conWdence intervals of the haplotype
classes of Ppd-H1, HvCO1 and HvFT1 for Xowering time based on two
models

§ Means followed by a common letter are not signiWcantly diVerent
according to the Bonferroni-Holm procedure

Haplotypes Model Model

QEM2 QEM2 + row 
number + origin*

Mean CI95 P§ Mean CI95 P§

Ppd-H11 72.56 0.73 . b 72.06 0.86 . b

Ppd-H12 66.20 1.50 a . 67.05 1.54 a .

Ppd-H13 67.38 1.47 a . 67.85 1.46 a .

Ppd-H14 65.67 2.54 a . 66.56 2.52 a .

Ppd-H15 66.88 3.21 a . 67.80 3.18 a b

Ppd-H16 61.66 4.53 a . 62.47 4.42 a .

HvCO11 71.61 1.15 . b 70.85 1.29 a .

HvCO12 68.21 1.94 a b 69.25 1.90 a .

HvCO13 71.25 2.13 . b 70.20 2.12 a .

HvCO14 67.09 2.22 a b 68.33 2.14 a .

HvCO15 67.83 3.81 a b 68.99 3.58 a .

HvCO16 63.66 4.23 a . 64.67 3.98 a .

HvCO17 63.08 5.30 a b 64.31 4.98 a .

HvCO18 70.67 4.49 a b 71.41 4.34 a .

HvCO19 70.14 6.33 a b 68.64 6.10 a .

HvCO110 68.23 6.35 a b 67.23 5.94 a .

HvFT11 70.50 0.99 a b 69.82 1.00 a .

HvFT12 68.40 1.33 a . 68.99 1.26 a .

HvFT13 73.70 1.95 . b 72.39 1.92 a .

HvFT14 71.61 3.38 a b 70.09 3.30 a .

HvFT15 72.53 3.99 a b 72.92 3.92 a .

HvFT16 71.61 4.12 a b 71.57 3.86 a .

HvFT17 65.31 4.50 a . 67.32 4.42 a .

HvFT18 70.09 6.34 a b 68.85 5.96 a .

Adjusted for PpdH1

HvFT11 67.37 1.42 a . 67.48 1.40 a .

HvFT12 65.93 1.30 a . 66.19 1.40 a .

HvFT13 66.26 2.46 a . 65.76 2.56 a .

HvFT14 65.88 3.11 a . 66.34 3.08 a .

HvFT15 60.61 5.25 a . 61.37 5.22 a .

HvFT16 69.33 3.89 a . 68.93 3.88 a .

HvFT17 67.47 3.89 a . 68.83 3.96 a .

HvFT18 62.60 5.43 a . 62.71 5.36 a .

Adjusted for HvFT1

Ppd-H11 71.76 1.28 . b 72.00 1.38 . b

Ppd-H12 63.40 2.14 a . 63.67 2.24 a .

Ppd-H13 65.49 1.83 a . 65.99 1.86 a .

Ppd-H14 65.11 3.00 a . 65.43 3.00 a .

Ppd-H15 67.24 3.70 a b 67.36 3.70 a b

Ppd-H16 61.09 4.58 a . 61.25 4.54 a .

Fig. 4 The interaction between Ppd-H1 and HvCO1. The estimated
mean phenotypic values are shown for HvCO1 haplotypes in carriers
of the PpdH11 and Ppd-H12¡6 haplotypes, applying a the model QEM2,
and b QEM2 + row number + origin*. Haplotypes are denoted by expo-
nents attached to the gene symbol. Means followed by a common letter
do not diVer signiWcantly from one another, using the Bonferroni–
Holm procedure
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spring and winter barley cultivars (Yan et al. 2006). As this
feature is associated neither with Xowering time nor with
growth habit, it may either play a role in some other signal-
ing pathway, or be an artifact of genetic drift. In A. thali-
ana, the FT promoter region is thought to be a potential
target for selection for early Xowering (Roux et al. 2006)
and FT is one of a set of genes which is regulated by photo-
periodic, vernalization, gibberellin, and developmental sig-
nals (Abe et al. 2005; Ausin et al. 2005; Kardailsky et al.
1999; Wigge et al. 2005). Induced mutations at FT have
revealed the importance of binding sites at the promoter
(Helliwell et al. 2006; Huang et al. 1995), the Wrst intron
(Helliwell et al. 2006) and of potential binding pockets in
the coding sequence (Hanzawa et al. 2005). A motif search
in HvFT1 revealed that ps460 and ps464 in the 5�-Xanking
region are both located at a potential binding site of a
MADS-box transcription factor. However, the minor allele
generates a change in the potential binding motif at both
sites, but occurred at a frequency of <0.05 and neither site
was associated with Xowering time. Interestingly, the two
intron SNPs that have been recently proposed to be diag-
nostic between spring and winter barleys (Yan et al. 2006;
Vrn-H3, SNP270 and SNP384) are identical to the segre-
gating sites SNP1805 and SNP1819 in our spring barley
collection. As shown in our study, the potential eVect on
Xowering time of both SNPs loses on signiWcance when
adjusting for Ppd-H1. These contradictory results show that
sampling eVects (number of genotypes and genetic back-
ground) have a strong inXuence on the results of association
studies.

Overall, our data demonstrate that most of the variation
in Xowering time in the collection is not caused by func-
tional mutations in either HvCO1 or HvFT1. This seems to
be consistent with QTL results from the literature. The
location of HvCO1 did not coincide with the maximum-
likelihood peak for Xowering QTL (GriYths et al. 2003),
and though HvFT1 was located in a QTL for the earliness
factor eps7S, no polymorphism between the cross parents
Igri and Triumph was detected (Faure et al. 2007). How-
ever, it is still possible that induced mutations in the puta-
tive functional domains of both genes could show an
analogous eVect on Xowering time in barley as they do in A.
thaliana.

The phenotypic diVerences between the HvFT1 haplo-
type classes were mainly attributable to an imbalanced dis-
tribution of Ppd-H1 alleles (Supplemental Table S5). The
proportion of the late-Xowering Ppd-H11 carriers in the
three most frequent HvFT1 haplotype classes was 70.6,
35.8 and 95.8% for, respectively, HvFT11, HvFT12 and
HvFT13, which led to the identiWcation of spurious signiW-
cant diVerences among the haplotype classes. Although
HvFT1 is a key gene for the control of Xowering time
(Turner et al. 2005), none of the variants exerted any eVect

when the data were corrected for the eVect of Ppd-H1.
Direct biological inferences from statistical tests are notori-
ously risky (Cordell 2002), but our conclusions are strongly
supported by the lack of diVerence in the expression level
of Ppd-H1 between cultivar Triumph (Ppd-H11) and a
closely related line carrying the early Xowering Ppd-H13

allele of cultivar Igri (Turner et al. 2005). However, the
expression level of HvFT1 was strongly dependent on the
identity of the allele at Ppd-H1. HvCO1 expression was
high in the presence of both Ppd-H1 alleles, but was signiW-
cantly lower in the Ppd-H11 background at some measure-
ment time points. As the contrasting genotypes were
monomorphic at HvCO1, biological evidence for the Ppd-
H1 £ HvCO1 interaction remains to be collected. It is of
interest, however, that in rice, epistatic interactions aVect
all combinations of Hd1 (HvCO1), Hd2 (Ppd-H1) and
Hd3a (HvFT1) (Lin et al. 2000).

As shown in our study, genotypes with identical Ppd-H1
background revealed signiWcant diVerences in the Xowering
time depending on the allelic constitution at HvCO1.
Hence, it might be useful for practical breeding purposes to
select not only for Ppd-H1 but also for HvCO1 alleles.
With exception of HvCO14, however, it was not feasible to
generate diagnostic markers for the sequences at HvCO1 in
our data set. Thus, to date re-sequencing might be the only
one, but cost-intensive method for the identiWcation of the
desirable haplotype.

It has not yet been possible to decide, whether the highly
signiWcant Ppd-H1 £ HvCO1 interaction is a result of co-
evolution, or whether it is due to a sampling artifact. Inter-
locus LD was signiWcant, but rather weak (mean values of
r2 = 0.05 and 0.11). The imbalanced distribution of the alle-
les in the EU and non-EU (EA, WA, AM) materials may
reXect a degree of local adaptation (Supplemental Table
S6). Late Xowering favors vegetative growth, and thus
enhances the amount of assimilate accumulated by the plant
where moisture and temperature remain non-limiting; in
contrast, early Xowering is advantageous where terminal
drought or temperature stress is commonplace (Roux et al.
2006). The strikingly high frequencies of the Ppd-H11 and
HvCO11 haplotypes across the whole collection (76% of
the accessions are Ppd-H11/HvCO11) is mainly due to their
predominance within the EU set, which contributed 76.5%
of all entries with this combination. The eVect of narrow
domestication-related bottlenecks on haplotype diversity
between modern barley cultivars and its closest wild rela-
tive H. spontaneum has been described repeatedly (Badr
et al. 2000; Matus and Hayes 2002; PiVanelli et al. 2004).

Consequences for association studies

The current study illustrates the potential of association
mapping but also highlights some common pitfalls. The
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outcomes agree well with a QTL-based analysis in which
variation at Ppd-H1 accounted for some 60% of the genetic
variation in Xowering time (Laurie et al. 2004). Note that
the association mapping approach delivered a much lower
estimate for this proportion. This might be partly attribut-
able to the fact that in the QTL approach only two alleles of
each locus were considered from parent lines strongly con-
trasting in Xowering time, whereas our association
approach was based on a wide range of germplasm with
diVerent allelic compositions.

Results from the present study and from literature (Lau-
rie 1997; Laurie et al. 1994, 2004) indicated both, QTL
analysis and association approach, are suitable tools for
mapping of quantitative loci with strong eVects on Xower-
ing time. For future research gene identiWcation might
greatly facilitate by the recently suggested integrative
method nested association mapping (Yu et al. 2008) where
both approaches are combined by using Wrst QTL mapping
in sets of multi-line mapping populations to detect chromo-
somal regions of interest and second, association mapping
with high-density markers for Wne dissection. Traits con-
trolled by polygenic networks involving a large number of
small-eVect QTL are probably not readily amenable to the
association approach. A recent theoretical treatment that
has highlighted the impact of epistasis on QTL detection in
association studies was provided by Jannink (2007). Our
analysis also underlines the need to consider gene £ gene
interactions, both to highlight spurious associations and to
identify hidden variation.
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