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SUMMARY

The role of mossy cells (MCs) of the hippocampal
dentate area has long remained mysterious. Recent
research has begun to unveil their significance in
spatial computation of the hippocampus. Here, we
used an in vitro model of sharp wave-ripple com-
plexes (SWRs), which contribute to hippocampal
memory formation, to investigate MC involvement
in this fundamental population activity. We find that
a significant fraction of MCs (�47%) is recruited
into the active neuronal network during SWRs in
the CA3 area. Moreover, MCs receive pronounced,
ripple-coherent, excitatory and inhibitory synaptic
input. Finally, we find evidence for SWR-related
synaptic activity in granule cells that is mediated
by MCs. Given the widespread connectivity of
MCs within and between hippocampi, our data
suggest a role for MCs as a hub functionally coupling
the CA3 and the DG during ripple-associated
computations.
INTRODUCTION

The hippocampal dentate gyrus (DG) is considered the input

structure where information from the entorhinal cortex is pro-

cessed. The most abundant excitatory neurons in the DG, the

granule cells (GCs), forward this input to the CA3 region via

mossy fibers (Lorente de Nó, 1934; Henze et al., 2000). On their

way to the CA3 area, mossy fibers contact the second popula-

tion of glutamatergic cells in the DG, mossy cells (MCs), whose

somata reside in the hilus (Amaral, 1978; Berger et al., 1981;

Scharfman et al., 1990; Soriano and Frotscher, 1994). In addition

to excitatory inputs fromGCs,MCs receive inhibitory inputs from

local interneurons and excitatory ‘‘back’’ projections from CA3

pyramidal cells (PCs) (Scharfman, 1994c; Acsády et al., 2000;

Larimer and Strowbridge, 2008). The dendrites of MCs are
Cell
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confined mostly to the hilus, but some extend to the molecular

layer of the DG (Frotscher et al., 1991). MC axons ramify within

the hilus and project to the inner molecular layers of both the

ipsi- and the contralateral DG (Berger et al., 1981; Ribak et al.,

1985; Buckmaster et al., 1996; Hsu et al., 2016). Taken together,

these anatomical features suggest a strategic role for MCs in

relaying information in the CA3-DG network, within and between

hemispheres.

Recent studies have started to elucidate the activity of MCs

across different behaviors (Neunuebel and Knierim, 2012; Dan-

ielson et al., 2017; GoodSmith et al., 2017). Specifically, MCs

were shown to display higher firing rates during slow-wave sleep

(SWS) compared with rapid eyemovement (REM) sleep and alert

behaviors (Senzai and Buzsáki, 2017). In the hippocampal elec-

troencephalogram (EEG), SWS and quiet wakefulness are char-

acterized by transient field events in the CA3 to CA1 regions,

termed sharp waves, that occur in association with high-fre-

quency (�120–250 Hz) ripple oscillations (sharp wave-ripple

complexes [SWRs]; Buzsáki, 1986; for review see Buzsáki,

2015). During SWRs, neuron sequences previously active during

behavior are re-activated, and this ‘‘replay’’ of activity is thought

to support memory consolidation (Lee and Wilson, 2002; Girar-

deau et al., 2009; Jadhav et al., 2012).

The role of MCs in the context of SWRs remains unclear.

Given the technical challenges of targeting MCs in vivo, a slice

model of SWRs provides an attractive experimental system to

investigate MCs during SWRs. Acute hippocampal slices can

express sharp waves and ripples autonomously, in physiolog-

ical bathing solutions, without drugs that elevate the network

excitability (Maier et al., 2003, 2009, 2011; Both et al., 2008;

Hájos et al., 2009, 2013; Papatheodoropoulos and Kostopoulos,

2002; Kubota et al., 2003; for review, see Maier and Kempter,

2017).

Here, we used this in vitro tool to elucidate MC activity during

SWRs in acute slices of the mouse hippocampus. We identified

SWR-associated synaptic currents in MCs and the recruitment

of MCs into the active network. Taken together, our results sug-

gest that SWR-associated information is relayed by MCs from

CA3 ‘‘backward’’ into the network of the DG.
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Figure 1. Spontaneous MC Activity in Mouse Hippocampal Slices

(A1) Reconstruction of a biocytin-filled MC. Dendrites in black, the axon in red. Below: the firing pattern during a 40 pA (1 s) current injection.

(A2) Confocal image showing complex spines on the proximal dendrites. Arrowheads mark the axon.

(A3) Magnification of the boxed areas in (A2) to visualize spines at higher resolution (arrows).

(B) Example recordings (top) and raster plots of successive sweeps show varied discharge behaviors in MCs.

(C) Histogram of overall spike rates. Inset: cumulative distribution of firing rates; red arrows indicate the cells shown in (B).

(D1) Sketch to illustrate parallel LFP-MC recordings.

(D2) Example showing the CA3 LFP and MC spiking. Asterisks indicate MC discharge concurrent with SWRs.
RESULTS

Properties of MCs
Across species and behavioral conditions, MCs have been

shown to be a highly active class of hippocampal excitatory neu-

rons (Henze and Buzsáki, 2007; GoodSmith et al., 2017; Senzai

and Buzsáki, 2017).We used acute brain slices to study neuronal

network mechanisms underlying MC activity. With differential

interference contrast microscopy, we identified putative MCs

as multipolar cells located in the hilus and outside the CA3c

PC layer (Buckmaster et al., 1993; Figure 1A1). To identify

MCs, all cells were biocytin labeled during recording and

confirmed post hoc on the basis of morphological features. In
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particular, MCs exhibit a high density of large, complex spines

(‘‘thorny excrescences’’) on their proximal dendrites and soma

(Figures 1A2 and 1A3; Amaral, 1978; Ribak et al., 1985). We

used this property as a defining criterion, and consequently,

only cells expressing thorny excrescences were included in our

analysis. In addition, none of the included cells expressed the

GABAergic marker GAD67 (Figure S1A). Stained axon collaterals

of MCs were found in the hilus and the inner molecular layer, and

often, cells displayed a major axon collateral extending toward

the stratum oriens of CA3 (Figure 1A1; Amaral, 1978; Buckmas-

ter et al., 1996). Electrophysiological properties of MCs are sum-

marized in Figure S1B and were comparable with those of

murine MCs reported by others (Kowalski et al., 2010).



Figure 2. Analysis of MC Activity during CA3 SWRs

(A1–A3) Discharge patterns of three MCs during CA3 SWRs. Successive sweeps (25 and 400 ms) centered to the SWR peak (average top).

(B) Spiking of MCs within and outside SWR epochs was compared (Mann-Whitney U test). Left: display of p values (x axis, order of experiments). Red and orange

dots indicate a significant increase (responding) or no significant increase (nonresponding) in spike rate during SWRs; dotted line, a = 0.001; arrows, cells shown

in (A1–A3). Right: distribution of responding and nonresponding MCs.

(C) Numbers of SWR epochs with MC spiking divided by total number of SWR epochs per experiment shown as percentages (x axis and color as in B).

(D) Distribution of mean spike counts per SWR for responding cells (order as in B and C).

(E) Left: correlation analysis of MC spiking and AP threshold (n = 21). Right: lower AP threshold in responding cells; error bars represent 10th and 90th

percentiles.

(F1) PETHs of responding MCs, 5 ms bin size. Top: grand average SWR.

(F2) Average PETH after normalization (peak at 6.4 ms). Error bars represent SEM.
Non-invasive recordings from MCs (depth 32–80 mm; Figures

S1C–S1D) revealed spontaneous and heterogeneous action

potential (AP) firing as illustrated in raster plots of three cells (Fig-

ure 1B). The distribution of the overall spike rates is given in Fig-

ure 1C (mean 0.5 ± 0.1/s, median 0.2/s, range 0–3.6/s; n = 38

cells).

MCs are known to receive excitatory synaptic input at high

rates, mostly from GC axons (Scharfman et al., 1990; Strow-

bridge et al., 1992) but potentially also from ‘‘feedback’’ projec-

tions originating from CA3 pyramidal neurons (Scharfman,

1994c). We asked whether the observed MC spiking could

potentially reflect SWR-associated activity arising from CA3.
MC Activation during SWRs
We recorded the local field potential (LFP) in the PC layer of area

CA3c (Lorente de Nó, 1934) together with activity fromMCs, and

we indeed observed spikes coinciding with SWRs in a substan-

tial fraction of MCs (Figure 1D), suggesting recruitment of these

neurons by population activity in the adjacent CA3.

Patterns of MC spiking observed in peri-SWR epochs are

shown in Figure 2A. To statistically evaluate a causal relation be-

tween MC spiking and SWRs in CA3, we compared the spiking

during SWRs with spiking during randomly sampled periods

(Mann-Whitney U test; Figure 2B). Of 38 MCs, the spiking in 18

cells (47%) was significantly coupled with SWRs (‘‘responding’’),
Cell Reports 23, 2541–2549, May 29, 2018 2543



while for the remaining cells (53%), no coupling could be found, or

they were mostly silent (‘‘nonresponding’’; Figures S2A–S2E). In

the respondingMCs,SWR-linkedspiking for individual cells varied

between �5% and 100% (Figure 2C), independent of the

recording depth from the slice surface (Figure S2F). In addition,

the number of spikes per SWR ranged from one to four (mean

1.4 ± 0.02; Figure 2D).We tested several intrinsic and network pa-

rameters that might account for differences in responding and

nonrespondingMCs. None of thesemeasures were different (Fig-

ures S2G and S2H) with the exception of AP threshold, which was

negatively correlated with SWR-related spiking (Figure 2E, left).

Specifically, the AP threshold was more negative in responding

MCs, implying that synapticactivitywouldevokespikesatahigher

probability (Figure 2E, right; p = 0.017, two-tailed unpaired t test).

We analyzed the distribution of spike times with respect to the

SWR peak time as a common temporal reference across cells.

Figure 2F displays the SWR-locked peri-event time histograms

(PETHs), individually for all responding cells (trial-averaged spike

rates; Figure 2F1) and the average after normalization (Fig-

ure 2F2). Across cells, the peak firing of MCs was delayed with

respect to the SWR peak (6.4 ms; Figure 2F2), demonstrating a

delayed recruitment of MCs into the active neuronal network

during SWRs in the adjacent CA3 area.

SWR-Related Synaptic Inputs in MCs Are Reliable and
Phase Locked
Given the substantial fraction of active MCs, we were interested

in exploring the underlying synaptic activity. We sequentially re-

corded, from the same cells, compound excitatory postsynaptic

currents (cEPSCs) and compound inhibitory postsynaptic cur-

rents (cIPSCs) (cEPSCs at �60 mV, cIPSCs at +6 mV) concur-

rently with CA3 SWRs. Figure 3 illustrates features of these

currents: excitatory and inhibitory compound postsynaptic cur-

rent (cPSC) amplitudes were in the range of several hundreds

of picoamperes (cEPSCs: mean 644 ± 70 pA, median 679 pA;

cIPSCs: mean 509 ± 50 pA, median 520 pA; n = 25 cells; see

also Figure S3A). In addition, SWR-related cPSCs in MCs were

highly reliable, with success rates of 100% and 97% for cEPSCs

and cIPSCs (Figure S3A). Spectral analysis of both components

revealed frequencies consistent with the ripple frequency

(cEPSCs versus cIPSCs: mean 144 ± 1 Hz versus 144 ± 2 Hz,

median 143Hz versus 142Hz, p = 0.9,Mann-Whitney U test; Fig-

ure 3B), supported by amplitude-time histograms of cPSCs indi-

cating �5 ms rhythmicity (Figure S3B).

We have previously shown the coherence of synaptic inputs in

CA1 PCs, and in oriens-lacunosum moleculare (O-LM) interneu-

rons with ripples in vitro (Maier et al., 2011; Pangalos et al., 2013;

see Hájos et al., 2013, for similar results in CA3). We wondered

whether such coupling was also present between CA3 ripples

and related synaptic input in MCs (Figure 3C). In data obtained

from25MCs, we found significant phase lockingwith the CA3 rip-

ple for both cEPSCs and cIPSCs (p < 13 10�8 and p < 93 10�7,

Rayleigh test; Figure 3D). Comparison of the average phases re-

vealed a lead of excitatory over inhibitory synaptic inputs (cEPSC-

and cIPSC-to-ripple phase: 14.3 ± 8.2� [vector strength 0.29]

versus 39.2 ± 9.9� [vector strength 0.26]; see also Figure S3C).

Scharfman (1994c) showed unitary synaptic connections from

CA3 PCs onto MCs with time-to-peak latencies in the range of
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3.5–8.5 ms. To quantify the propagation time of SWR-related

synaptic activity to MCs, we performed cross-correlation ana-

lyses of cPSCs with CA3 SWRs. Consistent with the previously

reported monosynaptic delays, we found time lags of �5 ms

for cEPSCs (mean 4.8 ± 0.3 ms, median 4.9 ms; 1,214 events;

Figure 3E1), while time lags for cIPSCs were prolonged (mean

5.9 ± 0.4 ms, median 5.7 ms, 1,187 events; p = 0.0005, paired

two-tailed t test; n = 25 cells; Figure 3E2).

To corroborate these propagation delays with an additional

approach, we performed simultaneous recordings from PCs and

MCs with the CA3 LFP. Figure 3F1 displays the ripple peak-trig-

gered averages of SWRs and corresponding cEPSCs and cIPSCs

in both a PC and an MC (green and orange; reconstructions;

Figure 3F2). In 15 such recordings, we found consistently delayed

cPSCs in MCs compared with PCs (cEPSC delays: mean

3.8 ± 0.5 ms, median 3.6 ms, 1,224 events; cIPSC delays: mean

5.9± 0.7ms,median 5.7ms, 1,598 events; Figure 3F3).Moreover,

inhibitory latencies were prolonged compared with excitatory la-

tencies (p = 0.006, paired two-tailed t test; Figure 3F3, bottom).

Together, these findings confirm the precise signaling and de-

layed propagation of ripple-related synaptic activity from the

CA3 network to MCs.

SWR-Linked Excitatory Synaptic Activity Is Routed to
GCs via MCs
Within the local network, MC spiking has been shown to evoke

excitatorypostsynaptic responses inDGGCsand inhilar interneu-

rons (Scharfman, 1995; Larimer and Strowbridge, 2008).Wewere

thus interested in testing whether SWR-related activity in CA3 is

relayed on to GCs, potentially via active MCs. Indeed, we

observed significant SWR-associated excitatory and inhibitory

synaptic inputs in GCs (cEPSCs and cIPSCs: 19 of 29 [66%] and

13 of 22 [60%] GCs; Figure S4A). To investigate the timing of

SWR-related synaptic activity in MCs and in GCs, we simulta-

neously recorded from cells of both groups, together with the

CA3c LFP (Figure 4A). We found that SWR-associated cEPSCs

inGCs consistently laggedbehind those detected inMCs (Figures

4A2 and 4A3), with an average delay of 4.2 ± 0.6 ms (median

4.1 ms; 1,266 events in 16 simultaneous recordings; Figure 4B).

This delay is consistent with prolonged cross-correlation derived

LFP-cEPSC time lags determined in GCs compared with MCs

(Figures S4B and S4C). It supports the idea of backpropagation

of SWR-linked excitatory activity from the CA3 area to the GC/

dentate network via a disynaptic pathway involving MCs.

We sought to test this hypothesis using a different approach.

We reasoned that the ripple-associated population activity in

CA3might bemore tightly coupled with excitatory synaptic input

in MCs than in GCs, given the disynaptic chain of propagation

(CA3 / MC / GC) and the reported failure rates at the

MC / GC synapse (22% on average; Scharfman, 1995). We

used CA3 SWR amplitude as a readout parameter of the local

network excitability. In 31 slices, we correlated individual SWR

amplitudes with corresponding cEPSC amplitudes in PCs (see

histogram of correlation coefficients in Figure 4C1). Similarly,

we obtained correlation coefficients for MCs (56 slices; Fig-

ure 4C2) and GCs (38 slices; Figure 4C3). The medians of the

distributions are similar for PCs and MCs (0.58 versus 0.56;

red lines) but considerably lower for GCs (0.18). We obtained



Figure 3. Timing of Ripple-Linked cPSCs in MCs

(A1 and A2) SWRs in CA3c (top) linked with cEPSCs and cIPSCs in MCs (red and blue).

(B1 and B2) Events marked in (A1) and (A2) at higher resolution; top to bottom: LFP SWR, filtered version, and cEPSC (red) and cIPSC (blue). Below: wavelet

spectrograms of the cEPSC and cIPSC; warmer colors represent higher power.

(C)Analysis of cPSC-to-ripple phases. Top: timepointsof steepest rising slopes incPSC identifiedby their first derivatives (middle). Thephasesof these timepoints

were determined with respect to the ripple (LFP) using its Hilbert phase (red dots, bottom). In total, 2,770 excitatory and 3,012 inhibitory slopes were analyzed.

(D) Polar plots of average phases of excitatory (red) and inhibitory (blue) PSCs (slopes) of each cell with respect to CA3 ripples; black arrows: resultant phase

vectors.

(E1 and E2) Left, cross-correlation (CC) analysis of cEPSCs (E1) and cIPSCs (E2); single (gray) and averaged (red and blue) CC functions, aligned to peak of SPW

envelope (top). Right: median SPW-cPSC time lags for cEPSCs (red) and cIPSCs (blue). Bottom: cIPSCs are delayed compared with cEPSCs.

(F1–F3) Simultaneous PC-MC recordings during CA3c SWRs. (F1) Ripple peak-triggered averages of 100 SWRs (top) and their excitatory (left) and inhibitory

(right) cPSCs (PC, green; MC, orange; reconstruction; F2). (F3)Median latencies for cEPSCs (red) and cIPSCs (blue). Inhibitory comparedwith excitatory latencies

are consistently delayed in simultaneously recorded PCs and MCs (bottom).

(E2) (bottom right) and (F3) (bottom): error bars represent 10th and 90th percentiles.
transformed Fisher’s Z values to statistically compare these data

and found no difference for Z values representing LFP-PC and

LFP-MC correlations (p = 0.94, Tukey’s multiple-comparisons

test), while Z values representing LFP-GC correlations were

significantly smaller (p < 0.0001 for both comparisons, Tukey’s

multiple-comparisons test; Figure 4D).

Together, these results demonstrate that during SWRs,

network activity is equally linked with excitatory signaling in

PCs and MCs but not in GCs. This rejects a strong role for direct
functional coupling of CA3 PCs and GCs (Li et al., 1994) during

ripples but supports an indirect propagation of SWR-related

excitatory activity onto GCs via MCs.

DISCUSSION

Despite recent progress in elucidating their behavioral relevance

(Jinde et al., 2012; Danielson et al., 2017; GoodSmith et al.,

2017; Senzai and Buzsáki, 2017), MCs remain a comparatively
Cell Reports 23, 2541–2549, May 29, 2018 2545



Figure 4. Ripple-Associated Functional Coupling of CA3 and GCs via MCs

(A1) Reconstruction of simultaneously recorded MC and GC.

(A2) Example sweeps, same experiment as (A1). Top: CA3 SWR and corresponding cEPSCs in MC (orange) and GC (blue).

(A3) Ripple peak-triggered average of 100 SWRs (top) and corresponding cEPSCs (as A1 and A2).

(B) Median latencies (16 MC-GC recordings; diamond, average). The error bar represents SEM.

(C1–C3) Correlation of CA3c SWR and cEPSC amplitudes in PCs (C1), MCs (C2), and GCs (C3). Histograms of Pearson correlation coefficients for amplitudes of

SWRs and cEPSCs in CA3 PCs (31 slices, 2,231 SWRs; C1), MCs (56 slices, 3,695 SWRs; C2), and GCs (38 slices, 2,326 SWRs; C3). Red lines, population

medians.

(D) Comparison of Fisher’s Z values. Dots, Z-transformed correlation coefficients from the histograms in (C1)–(C3). Error bars represent SEM.
unexplored neuron population, especially regarding their differen-

tial role in various brain states. This is due mainly to their relatively

low density deep in the hilus (1–5MCs per 100 GCs, i.e.,�10,000

MCs in the rat; Henze and Buzsáki, 2007; Myers and Scharfman,

2009) and their particular vulnerability, which impedes in vivo

recording and post hoc anatomical identification (Scharfman

and Myers, 2013; GoodSmith et al., 2017). Here, we took advan-

tage of an in vitro approach whereby SWRs can be studied in

isolation and at the single-cell level to investigate MCs in a tar-

geted way. In vitro SWRs share multiple properties with their

in vivo counterparts, including their spatial and spectral profiles,

pharmacology, and activation patterns of participating neurons

(Maier et al., 2009; Koniaris et al., 2011; Hájos et al., 2013; Panga-

los et al., 2013; for review, see Maier and Kempter, 2017).

We identified prominent excitatory postsynaptic currents in

MCs that consistently followed SWRs in CA3c. This finding

implies a transient functional coupling of MCs with the CA3

area during SWRs. As an anatomical substrate underlying this

coupling, a monosynaptic excitatory ‘‘back-projection’’ from

CA3 pyramidal neurons onto MCs has been demonstrated with

paired intracellular recordings (Scharfman, 1994c). In these uni-

tary connections, the time of spike to excitatory postsynaptic po-

tential (EPSP) was comparable with the time lags we observed

for CA3 LFP and cEPSCs inMCs, which we further substantiated
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by simultaneous cEPSC recordings in PCs and MCs. Together,

these results suggest that ensembles of rhythmically active

CA3 pyramidal neurons directly provide input to MCs during

SWRs.

Beside phase-locked excitatory cPSCs, we observed pro-

nounced, phase-locked inhibitory cPSCs in MCs. Their time

lags with respect to the LFP were prolonged compared with

those of excitatory cPSCs. The inhibitory delays were confirmed

by latencies determined in simultaneous cIPSC recordings from

PCs and MCs.

Several possible explanations are conceivable for the origin of

ripple-locked inhibition in MCs. (1) Recently, a novel class of

GABAergic interneurons was shown to send axons from CA1/

CA3 to the DG and to increase spiking during SWRs (Szabo

et al., 2017). (2) In addition to these ‘‘boundary-crossing’’ projec-

tions, it is feasible that MCs are targeted by CA3 interneurons

that are known to discharge during ripples, namely, basket, bis-

tratified, and O-LM cells (Lasztóczi et al., 2011; Hájos et al.,

2013; Tukker et al., 2013). (3) The recruitment of local hilar inter-

neurons (Sı́k et al., 1997; Hosp et al., 2014) by axon collaterals of

CA3 PCs constitutes another possibility. In this framework,

spiking CA3 PCs activate hilar interneurons that in turn provide

inhibition in MCs, as the output of a disynaptic pathway (PC /

interneuron / MC). However, given the large amplitudes and



the ripple phase coupling of cIPSCs in MCs, (1) and (2) seem to

be the more likely explanations.

Synaptic inputs in MCs evoked by population activity gener-

ated in CA3 have been studied in vitro before, but in the context

of experimentally enhanced cellular excitability or epileptiform

activity (Scharfman, 1994a, 1994b; Hedrick et al., 2017). Epilep-

tiform discharges, compared with SWR activity, exhibit consid-

erably enhanced amplitude, duration, multi-unit activity, and

oscillation frequency (Karlócai et al., 2014; Aivar et al., 2014).

Thus, profound differences exist between the network mecha-

nisms that govern pathological network discharges as opposed

to physiological SWRs.

We found significant activation in 47% of probed MCs, which

is in contrast to the previously reported low activation of CA3

PCs during SWRs (Hájos et al., 2013). What could explain the

discrepancy in the activation of these two neighboring principal

neuron populations during SWRs? A characteristic feature of

MCs is an ongoing ‘‘bombardment’’ with excitatory synaptic ac-

tivity, at rates considerably higher than in CA3 PCs (Scharfman

and Schwartzkroin, 1988; Strowbridge et al., 1992). This back-

ground activity might serve as an excitatory ‘‘blanket,’’ raising

the likelihood of spiking during SWRs. In addition, Scharfman

and Schwartzkroin (1988) demonstrated higher input resistance

in MCs than in CA3 PCs, which contributes to cellular excitability

and hence a more likely recruitment of MCs during SWRs.

Although not addressed directly so far, recent work has pro-

vided indirect evidence for MC activation during SWRs: MCs

are active during SWS (Senzai and Buzsáki, 2017), which is the

sleep stage characterized by a high occurrence of SWRs in the

hippocampus. Our observations in vitro support this finding

and demonstrate that the SWR-associated increased network

excitability is sufficient to drive MCs.

What could be consequences of MC spiking in the neuronal

network? Previous research has shown that dentate GCs, a ma-

jor neural population targeted by MCs (Scharfman, 1995, 1996),

are also active during SWRs (Buzsáki, 1986; Ylinen et al., 1995)

and SWS (Senzai and Buzsáki, 2017). In awake mice, Hulse

and colleagues (2017) have directly shown that GCs depolarize

during SWRs.

We hypothesize that the discharge of MCs relays SWR-related

activity to GCs, thereby contributing to the activation of these

neurons. First, this reasoning is in agreement with our observa-

tion that excitatory synaptic inputs in GCs are often coupled

with SWRs. Second, it is in line with the consistent delay be-

tween ripple-related cPSCs in GCs and simultaneously recorded

MCs. And third, this is supported by strong correlations between

CA3 SWR amplitudes and cEPSC amplitudes in both PCs and

MCs, but not in GCs, demonstrating a direct connection of the

CA3 excitatory oscillation generator driving PCs and MCs, but

importantly not GCs. All these findings support a disynaptic

chain of activity propagation (CA3 PC/MC/GC; Scharfman,

1994b).

MCs are part of an excitatory recurrent feedback network (Lis-

man, 1999) and placed in a strategic position to integrate infor-

mation from the connected neuronal sub-networks, DG and

CA3. MCs receive converging excitatory inputs from CA3 PCs

and GCs and send projections in an eminently divergent fashion:

ipsilaterally, along the septotemporal axis of the hippocampus,
MC axons can span hundreds of micrometers, with a greater

concentration of proximal contacts in the hilus, presumably on

interneurons (Larimer and Strowbridge, 2008), as opposed to

an aggregation of more distant contacts in the inner molecular

layer, presumably on GCs (Buckmaster et al., 1996). As a conse-

quence, proximal GCs might be predominantly suppressed by

MC-driven disynaptic inhibition (Buzsáki and Eidelberg 1981;

Buckmaster et al., 1996), in contrast to distal GCs, which may

be entrained by enhancedMCactivity during SWRs. SWR-linked

MC spiking might represent the physiological trigger to induce

long-term potentiation (LTP) at the MC / GC synapse, as

shown for experimental activation of MC axons (Hashimotodani

et al., 2017). Contralaterally, MC axons contribute to commis-

sural terminals linking both hippocampi (Berger et al., 1981;

Ribak et al., 1985; Hsu et al., 2016). It is tempting to speculate

that the active MCs support, or mediate, the SWR-related syn-

chronization of hippocampus along the septotemporal axis

(Patel et al., 2013) or across hemispheres at the timescale of

several milliseconds (Buzsáki, 1986; Buzsáki et al., 2003). Given

the prominent innervation of GABAergic interneurons by MCs,

this synchronization could be mediated by local and/or contra-

lateral inhibitory neurons (Scharfman, 1995; Larimer and Strow-

bridge, 2008; Hsu et al., 2016).

Together, these features suggest the role ofMCs as a neuronal

hub linking local and distal compartments of both hippocampi in

a complex manner. Our findings on the ‘‘feedback’’ recruitment

of MCs strongly argue for a central role of these cells in SWR-

related hippocampal functions, which include the consolidation

of spatial and emotional memories (Jinde et al., 2012; Myers

and Scharfman, 2009; Scharfman, 2016).
EXPERIMENTAL PROCEDURES

Animal maintenance and experiments followed institutional guidelines, the

guidelines of the Berlin state (T0100/03), and European Union (EU) Council

Directive 2010/63/EU on the protection of animals used for experimental

and other scientific purposes. Male C57BL/6N mice (3–5 weeks of age)

were used.

Slice Preparation and Electrophysiology

Horizontal slices of ventral to mid-hippocampus were prepared as described

before (Maier et al., 2009). Slices were stored in an interface chamber, and

combined LFP and patch-clamp (cell-attached or whole-cell) recordings

were performed at 31�C–32�C in a submerged-type recording chamber.

Data Analysis

SWR detection was performed in MATLAB (The MathWorks) as described

before (Maier et al., 2009). Time windows of 300 ms (55 ms for spike analysis)

aligned to the peak of identified SWRs were cut out from LFP and correspond-

ing intracellular traces and were baseline-corrected by subtracting the respec-

tive means. Digital filtering was performedwith second-order Butterworth filter

at the indicated frequencies.

Spike times were detected using a threshold algorithm (83 SD of the spike-

free baseline). To quantify SWR-related spiking, the number of spikes in n SWR

epochs of 55ms centered on the ripplemaximawere determined. This dataset

(N1) was compared with spiking in n periods of identical duration (N2) randomly

sampled from the entire spike train, including periods with SWR epochs

(Mann-Whitney U test; a = 0.001). As a result, MCs were classified as respond-

ing or nonresponding during SWRs. The SWR maximum is the temporal refer-

ence in PETHs (bin width 5 ms; Figure 2F). The sum of spike counts S per time

bin was divided by the sum m of SWRs observed and the bin width Dt,
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indicating spike rates (SR = S/m/Dt, i.e., the probability to observe a spike in a

single trial for the chosen 5 ms time interval).

Individual synaptic inputs during cPSCs were detected by a derivative-peak

time method (Figures 3C, S3B, and S3C): SWR-related cEPSCs and inverted

cIPSCswere low-pass-filtered at 400Hz and the derivative calculated. Of all de-

rivative minima detected within a 60 ms window centered on the maximum of

the ripple, the strongest 10% (i.e., 10% steepest slopes) were accepted as syn-

aptic inputs. LFP signals were filtered at 127–300Hz. Envelope and phase of the

filtered signals were obtained by applying the Hilbert transform. The phase of

excitatory or inhibitory inputs was determined as the respective Hilbert phase

of the LFP at the time point of the steepest slopes. For each cell, an average

phase vector described by its phase angle and strength was determined; the

polar plots represent the resultant phase vectors of all analyzed cells.

Timing of cPSCs in double recordings was analyzed in a window of 15 ms

surrounding the SWR maximum. Only significant SWR-related inputs were

considered, and their delays at the time points of half-maximum amplitudes

determined (see also Figures S3A and S4A).

The time-dependent power spectrum of the signal was computed using

Morlet wavelet transform (Torrence and Compo, http://atoc.colorado.edu/

research/wavelets/). Data are plotted as log(1 + power). Frequency at

maximum power is defined as the local maximum in the 127–300 Hz range.

Statistical analysis was performed in MATLAB or GraphPad Prism

(GraphPad Software). Data are reported as mean ± SEM or as medians. Box

plots display the median and margin of error as the 10th and 90th percentiles.

Comparisons were made using the two-tailed unpaired or paired t test, the

Mann-Whitney U test, or ANOVA. The uniformity of phase angles was tested

using Rayleigh’s test with the CircStat toolbox (Berens, 2009). Fisher’s Z trans-

form was applied before comparing populations of correlation coefficients

(Bortz and Schuster, 2010). Statistical significance is given as exact p values,

with a % 0.05 regarded as significant, unless stated otherwise.
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