## SUPPLEMENTARY INFORMATION

Molecular details of dimerization kinetics reveal negligible populations of transient  $\mu$ -opioid receptor homodimers at physiological concentrations

Derya Meral,<sup>1</sup> Davide Provasi,<sup>1</sup> Diego Prada-Gracia,<sup>1</sup> Jan Möller,<sup>2</sup> Kristen Marino,<sup>1</sup> Martin J. Lohse,<sup>2,3</sup> and Marta Filizola<sup>1,\*</sup>

<sup>1</sup>Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

<sup>2</sup>Max Delbrück Center for Molecular Medicine, Berlin, Germany.

<sup>3</sup>Institute of Pharmacology and Toxicology, Würzburg, Germany.

| Supplementary Figure 1  | pg. 2  |
|-------------------------|--------|
| Supplementary Figure 2  | pg. 3  |
| Supplementary Figure 3  | pg. 4  |
| Supplementary Figure 4  | pg. 5  |
| Supplementary Figure 5  | pg. 6  |
| Supplementary Figure 6  | pg. 7  |
| Supplementary Figure 7  | pg. 8  |
| Supplementary Figure 8  | pg. 9  |
| Supplementary Figure 9  | pg. 10 |
| Supplementary Figure 10 | pg. 11 |
| Supplementary Figure 11 | pg. 12 |
| Supplementary Figure 12 | pg. 13 |
| Supplementary Table 1   | pg.14  |
| Supplementary Table 2   | pg.15  |
| Supplementary Table 3   | pg.16  |
| Supplementary Table 4   | pg.17  |
| Supplementary Table 5   | pg.18  |
| Supplementary Table 6   | pg.19  |
|                         |        |



**Supplementary Figure 1.** Distributions of the CVs as monitored during the unbiased simulations of inactive and active MOR. Specifically, the probability to observe a second protomer at a given x,y position is calculated as:  $1/(2N) \sum_{i,t} \delta(x-d(t)\cos\alpha_i(t)) \delta(y-d(t)\sin\alpha_i(t))$ , where N is the total number of frames t of the unbiased simulations and i=1,2 is the index of the protomer.



**Supplementary Figure 2.** Contact maps of the dimeric macrostates of MOR dimers formed by inactive protomers.



**Supplementary Figure 3.** Contact maps of the dimeric macrostates of MOR dimers formed by activated protomers.



**Supplementary Fig 4.** Representative structures of the dimeric macrostates of the inactive MOR system. The cartoon representation of the inactive crystal structure (PDB ID: 4DKL), colored from red (TM1) to blue (H8), is aligned to the backbone beads of the coarse-grained structure by minimizing the RMSD between  $C_{\alpha}$  atoms. Side-chain beads of the CG structure are represented as transparent spheres, whereas the backbone beads of the CG structure are not displayed for clarity.



**Supplementary Fig 5.** Representative structures of the dimeric macrostates of the active MOR system. The cartoon representation of the active crystal structure (PDB ID: 5C1M), colored from red (TM1) to blue (H8), is aligned to the backbone beads of the coarse-grained structure by minimizing the RMSD between  $C_{\alpha}$  atoms. Side-chain beads of the CG structure are represented as transparent spheres, whereas the backbone beads of the CG structure are not displayed for clarity.



**Supplementary Figure 6.** Residues represented according to the average number of interprotomer contacts formed at the interface of putative (a, b) inactive and (c, d) active MOR dimers calculated over all microstates (see Supplementary Table 2), where red represents the highest possible average contact number (1.76) and white represents zero.



**Supplementary Figure 7.** TRAM convergence of the implied timescales with errors calculated through bootstrapping for the (a) inactive and (b) activated MOR structures.



**Supplementary Figure 8.** Chapmann-Kolmogorov test applied to the TRAM kinetic model for transitions from the unbound state to each macrostate of the (a) inactive and (b) activated MOR derived from simulations.



**Supplementary Figure 9.** Implied timescales of the coarse-grained model as compared to the timescales of the full transition matrix of the TRAM analysis for the (a) inactive and (b) activated MOR structures.



| SNAP-CD28     | ROI.01 | ROI.02 |
|---------------|--------|--------|
| Donor Pre     | 44.02  | 0.58   |
| Donor Post    | 56.01  | 0.54   |
| Acceptor Pre  | 111.3  | 0.94   |
| Acceptor Post | 46.32  | 0.88   |
| Efficiency    | 0.2141 | 0      |

| CDET officionay - | I <sub>Donor (postbleach)</sub> - I <sub>Donor (prebleach</sub> |     |  |  |
|-------------------|-----------------------------------------------------------------|-----|--|--|
| FRET eniciency –  | I <sub>Donor</sub> (postblead                                   | ch) |  |  |
|                   |                                                                 |     |  |  |

**Supplementary Figure 10.** FRET acceptor photobleaching in confocal microscopy using SNAP-Surface® 549 as donor and SNAP-Surface® Alexa Fluor® 647 as acceptor. FRET-efficiencies are calculated according to the formula in the figure. Shown as example is a bleaching experiment with CD28.



**Supplementary Figure 11.** Intensities of isolated Snap-dyes during bleaching in FRET-AB experiments. During bleaching the acceptor loses over 60% of intensity whereas the donor stays sovereignly stable (bleaching less than 2%).



**Supplementary Figure 12.** Location of the umbrella centers selected for further simulations of the (a) inactive and (b) active MOR structures.

**Supplementary Table 1.** Summary of simulations.

|             |       | Inactive MOR |         |                             | Active MOR |         |                          |  |
|-------------|-------|--------------|---------|-----------------------------|------------|---------|--------------------------|--|
|             |       | Count        | Length  | Bias (d, α)                 | Count      | Length  | Bias (d, α)              |  |
| Unbiased    |       | 352          | 5 µs    | -                           | 352        | 5 µs    | -                        |  |
| Simulations | Total |              | 1.76 ms |                             |            | 1.76 ms |                          |  |
| Biased      |       | 68           | 0.3 µs  | 250kJ/mol/nm <sup>2</sup> , | 54         | 0.3 µs  | 250kJ/mol/nm             |  |
| Simulations |       |              |         | 100kJ/mol                   |            |         | <sup>2</sup> , 100kJ/mol |  |
|             |       | 255          | 0.3 μs  | 100kJ/mol/nm <sup>2</sup> , | 260        | 0.3 μs  | 100kJ/mol/nm             |  |
|             |       |              |         | 80kJ/mol                    |            |         | <sup>2</sup> , 80kJ/mol  |  |
|             | Total | 96.9 µs      |         | 94.2 µs                     |            |         |                          |  |
| Grand Total |       | 1.86 ms      |         | 1.85 ms                     |            |         |                          |  |

**Supplementary Table 2.** Residues at the interface of putative inactive or active MOR dimers that are involved in the largest average number (> 0.20) of inter-protomer contacts calculated over all microstates (see Methods for details). The residues common to both conformations have been marked in red.

| Inactive MOR |           |                | Active MOR  |      |                |  |
|--------------|-----------|----------------|-------------|------|----------------|--|
|              |           | Average Number | Average Nur |      | Average Number |  |
| Residue      | Position* | of Contacts    | Residue     | TM   | of Contacts    |  |
| I352         | H8        | 1.302          | F350        | H8   | 1.757          |  |
| M130         | 2.66      | 0.925          | C351        | H8   | 1.536          |  |
| C351         | H8        | 0.823          | I352        | H8   | 1.475          |  |
| A73          | 1.37      | 0.815          | S261        | IL3  | 1.412          |  |
| I238         | 5.44      | 0.663          | K260        | IL3  | 0.994          |  |
| L129         | 2.65      | 0.651          | I69         | 1.33 | 0.859          |  |
| <b>S</b> 76  | 1.40      | 0.643          | L257        | 5.63 | 0.845          |  |
| K174         | IL2       | 0.595          | L129        | 2.65 | 0.798          |  |
| M243         | 5.49      | 0.595          | R258        | 5.64 | 0.688          |  |
| F350         | H8        | 0.549          | M130        | 2.66 | 0.675          |  |
| I69          | 1.33      | 0.544          | I298        | 6.53 | 0.610          |  |
| Y227         | 5.33      | 0.513          | I302        | 6.57 | 0.588          |  |
| L231         | 5.37      | 0.431          | L305        | 6.60 | 0.481          |  |
| H223         | EL2       | 0.416          | V80         | 1.44 | 0.464          |  |
| V80          | 1.44      | 0.406          | E349        | H8   | 0.443          |  |
| I77          | 1.41      | 0.400          | M72         | 1.36 | 0.372          |  |
| C235         | 5.41      | 0.351          | Y227        | 5.33 | 0.371          |  |
| L246         | 5.52      | 0.349          | A68         | 1.32 | 0.371          |  |
| H171         | IL2       | 0.324          | P134        | EL1  | 0.355          |  |
| M72          | 1.36      | 0.317          | L246        | 5.52 | 0.330          |  |
| V126         | 2.62      | 0.301          | V126        | 2.62 | 0.326          |  |
| K260         | IL3       | 0.294          | M65         | 1.29 | 0.293          |  |
| I242         | 5.48      | 0.292          | A73         | 1.37 | 0.260          |  |
| P224         | EL2       | 0.278          | F84         | 1.48 | 0.252          |  |
| W228         | 5.34      | 0.273          | F135        | EL1  | 0.228          |  |
| L257         | 5.63      | 0.272          | <b>S</b> 76 | 1.40 | 0.227          |  |
| P134         | EL1       | 0.268          | P122        | 2.58 | 0.216          |  |
| I234         | 5.40      | 0.266          | Y299        | 6.54 | 0.209          |  |
| V66          | 1.30      | 0.231          | I301        | 6.56 | 0.201          |  |
| F239         | 5.45      | 0.214          |             |      |                |  |
| M65          | 1.29      | 0.207          |             |      |                |  |
| I256         | 5.62      | 0.203          |             |      |                |  |

\*Residue position in TMs follows the Ballesteros-Weinstein generic numbering scheme.

| Inactive MOR          |             | Active MOR            |             |  |  |
|-----------------------|-------------|-----------------------|-------------|--|--|
| Contact               | Probability | Contact               | Probability |  |  |
| K174(IL2)-I352(H8)    | 0.253       | S261(IL3)-I352(H8)    | 0.383       |  |  |
| M130(2.66)-Y227(5.33) | 0.234       | S261(IL3)-F350(H8)    | 0.357       |  |  |
| A73(1.37)-I238(5.44)  | 0.234       | L257(5.63)-C351(H8)   | 0.356       |  |  |
| L129(2.65)-Y227(5.33) | 0.167       | K260(IL3)-I352(H8)    | 0.346       |  |  |
| H171(IL2)-I352(H8)    | 0.166       | S261(IL3)-C351(H8)    | 0.343       |  |  |
| M130(2.66)-P224(EL2)  | 0.163       | R258(5.64)-F350(H8)   | 0.336       |  |  |
| L129(2.65)-L231(5.37) | 0.157       | L257(5.63)-F350(H8)   | 0.330       |  |  |
| K174(IL2)-C351(H8)    | 0.148       | S261(IL3)-E349(H8)    | 0.319       |  |  |
| I77(1.41)-M243(5.49)  | 0.142       | K260(IL3)-C351(H8)    | 0.314       |  |  |
| V173(IL2)-I352(H8)    | 0.140       | K260(IL3)-F350(H8)    | 0.305       |  |  |
| S76(1.40)-M243(5.49)  | 0.138       | R258(5.64)-C351(H8)   | 0.250       |  |  |
| M130(2.66)-W228(5.34) | 0.125       | I69(1.33)-I298(6.53)  | 0.217       |  |  |
| A73(1.37)-M243(5.49)  | 0.123       | M130(2.66)-L305(6.60) | 0.189       |  |  |
| H171(IL2)-C351(H8)    | 0.123       | L129(2.65)-L305(6.60) | 0.188       |  |  |
| M130(2.66)-H223(EL2)  | 0.122       | A68(1.32)-I302(6.57)  | 0.184       |  |  |
| S76(1.40)-I238(5.44)  | 0.119       | I69(1.33)-I302(6.57)  | 0.165       |  |  |
| I69(1.33)-I234(5.40)  | 0.116       | I69(1.33)-Y299(6.54)  | 0.160       |  |  |
| A73(1.37)-F239(5.45)  | 0.102       | M72(1.36)-I298(6.53)  | 0.159       |  |  |
|                       |             | A73(1.37)-I298(6.53)  | 0.157       |  |  |
|                       |             | V80(1.44)-L246(5.52)  | 0.153       |  |  |
|                       |             | L257(5.63)-I352(H8)   | 0.149       |  |  |
|                       |             | V262(IL3)-I352(H8)    | 0.138       |  |  |
|                       |             | L129(2.65)-I302(6.57) | 0.135       |  |  |
|                       |             | R263(IL3)-I352(H8)    | 0.115       |  |  |

**Supplementary Table 3.** Likelihood (>0.10) of inter-protomer contacts formed between inactive or active MOR protomers calculated over all microstates (see Methods for details).

**Supplementary Table 4.** Decomposition of the binding pathways for the inactive MOR system. State numbers refer to the indexes in Supplementary Figure 8a. The fraction of flux corresponding to the direct transition from the unbound state is highlighted in bold.

| Cmp             | Final state                | Path(s)                                                 |
|-----------------|----------------------------|---------------------------------------------------------|
| C <sub>00</sub> | 12(8)/12(8) (#5)           | [16,5] ( <b>94%</b> ); [16,3,5] (5%)                    |
| $C_{\pi\pi}$    | 56/56 (#2)                 | [16,2] ( <b>64%</b> ); [16,9,2] (25%); [16,7,9,2] (7%)  |
|                 | 5(6)/5(6) (#9)             | [16,9] ( <b>61%</b> ); [16,7,9] (18%); [16,2,9] (13%);  |
|                 |                            | [16,6,9] (7%)                                           |
| $C_{0\pi}$      | 1(2,H8)/56(EC3,7) (#15)    | [16,15] ( <b>58%</b> ); [16,13,15] (22%); [16,11,13,15] |
|                 |                            | (12%); [16,11,13,8,15] (2%); [16,8,15] (2%)             |
|                 | 12(EC1,H8)/56 (#8)         | [16,15,8] (41%); [16,13,8] (27%); [16,11,13,15,8]       |
|                 |                            | (13%); [16,8] ( <b>8%</b> ); [16,11,13,8] (5%)          |
|                 | 1(2)/5 (#13)               | [16,13] ( <b>43%</b> ); [16,11,13] (29%); [16,15,13]    |
|                 |                            | (19%); [16,10,11,13] (3%); [16,14,11,13] (2%)           |
|                 | (1)2(EC1,H8)/4(EC2)5 (#14) | [16,11,14] (37%); [16,13,11,14] (34%);                  |
|                 |                            | [16,15,13,11,14] (14%); [16,14] ( <b>7%</b> );          |
|                 |                            | [16,10,11,14] (3%)                                      |
|                 | (128)/45 (#10)             | [16,10] ( <b>36%</b> ); [16,11,10] (26%); [16,13,11,10] |
|                 |                            | (24%); [16,15,13,11,10] (10%)                           |
|                 | 1/45 (#11)                 | [16,11] (39%); [16,13,11] (36%); [16,15,13,11]          |
|                 |                            | (15%); [16,10,11] (4%); [16,14,11] (3%)                 |

**Supplementary Table 5.** Decomposition of the binding pathways for the active MOR system. State numbers refer to the indexes in Supplementary Figure 8b. The fraction of flux corresponding to the direct transition from the unbound state is highlighted in bold.

| Cmp             | Final state         | Path(s)                                                |
|-----------------|---------------------|--------------------------------------------------------|
| C <sub>00</sub> | 12(8)/12(8) (#14)   | [15,11,14] (99%)                                       |
| $C_{\pi\pi}$    | 5/5 (#3)            | [15,4,3] (37%); [15,5,3] (25%); [15,3] ( <b>23%</b> ); |
|                 |                     | [15,4,5,3] (7%); [15,7,5,3] (6%)                       |
| С0π             | (3,IC2)5/1(2) (#10) | [15,12,8,10] (35%); [15,13,10] (28%);                  |
|                 |                     | [15,13,8,10] (15%); [15,10] ( <b>10%</b> );            |
|                 |                     | [15,9,8,10] (9%)                                       |
|                 | 56/1(28) (#8)       | [15,13,8] (41%); [15,12,8] (38%); [15,9,8] (10%);      |
|                 |                     | [15,10,8] (7%)                                         |

| Number of families        | 1         |                       |              |         |          |
|---------------------------|-----------|-----------------------|--------------|---------|----------|
| Number of comparisons per |           |                       |              |         |          |
| family                    | 15        |                       |              |         |          |
| Alpha                     | 0.05      |                       |              |         |          |
|                           |           |                       |              |         |          |
| Tukey's multiple          | Mean      |                       |              |         | Adjusted |
| comparisons test          | Diff.     | 95.00% CI of diff.    | Significant? | Summary | P Value  |
| CD28 vs. β1AR             | 0.1683    | 0.1451 to 0.1914      | Yes          | ****    | < 0.0001 |
| CD28 vs. MOR-wt           | 0.1731    | 0.1519 to 0.1943      | Yes          | ****    | < 0.0001 |
| CD28 vs. T279D            | 0.1698    | 0.1476 to 0.192       | Yes          | ****    | < 0.0001 |
| CD28 vs. T279K            | 0.1481    | 0.1254 to 0.1708      | Yes          | ****    | < 0.0001 |
| β1AR vs. MOR-wt           | 0.004833  | -0.01792 to 0.02759   | No           | ns      | 0.9902   |
| β1AR vs. T279D            | 0.001562  | -0.0221 to 0.02523    | No           | ns      | >0.9999  |
| β1AR vs. T279K            | -0.02013  | -0.04428 to 0.004028  | No           | ns      | 0.1621   |
| MOR-wt vs. T279D          | -0.003272 | -0.02509 to 0.01855   | No           | ns      | 0.9981   |
| MOR-wt vs. T279K          | -0.02496  | -0.04731 to -0.002611 | Yes          | *       | 0.0188   |
| T279D vs. T279K           | -0.02169  | -0.04497 to 0.001585  | No           | ns      | 0.0835   |

**Supplementary Table 6.** Significance analysis of the FRET-efficiencies of SNAP-labeled MOR constructs.