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Understanding the dynamics behind domain architecture evolution is of great importance to unravel the functions of
proteins. Complex architectures have been created throughout evolution by rearrangement and duplication events. An
interesting question is how many times a particular architecture has been created, a form of convergent evolution or
domain architecture reinvention. Previous studies have approached this issue by comparing architectures found in
different species. We wanted to achieve a finer-grained analysis by reconstructing protein architectures on complete
domain trees. The prevalence of domain architecture reinvention in 96 genomes was investigated with a novel domain
tree–based method that uses maximum parsimony for inferring ancestral protein architectures. Domain architectures were
taken from Pfam. To ensure robustness, we applied the method to bootstrap trees and only considered results with strong
statistical support. We detected multiple origins for 12.4% of the scored architectures. In a much smaller data set, the
subset of completely domain-assigned proteins, the figure was 5.6%. These results indicate that domain architecture
reinvention is a much more common phenomenon than previously thought. We also determined which domains are most
frequent in multiply created architectures and assessed whether specific functions could be attributed to them. However,
no strong functional bias was found in architectures with multiple origins.

Introduction

Protein domains constitute the evolutionary units of
proteins (Murzin et al. 1995). A domain can fold indepen-
dently (Jaenicke 1987) and may combine with other do-
mains on the same protein chain to form multidomain
proteins (Rossmann et al. 1974). In eukaryotes, a majority
of proteins have multiple domains, whereas prokaryotes
have fewer multidomain proteins (Apic et al. 2001; Ekman
et al. 2005; Wang and Caetano-Anollés 2006). The domain
architecture of a protein is defined by the particular order of
domains on the protein sequence. Domain architectures
may arise by way of domain rearrangement or duplication,
inserting or deleting domains. Most domain architectures
appear to have originated a single time only, and if func-
tional, they will be copied and spread across many species
(Doolittle 1995). As a consequence, the presence of iden-
tical domain architectures in different species normally in-
dicates a common origin. Nevertheless, some protein
architectures have arisen multiple times independently
due to functional necessity or random chance. Such cases
can give insights into protein function and evolution.

Several previous studies have examined various aspects
of domain architecture evolution, such as gene fusion andfis-
sion events and circular permutations (Ekman et al. 2005;
Kummerfeld and Teichmann 2005; Weiner et al. 2006;
Weiner andBornberg-Bauer 2006; Fong et al. 2007). In con-
trast, the prevalence of multiple independent domain archi-
tecture invention events has hardly been studied at all. In one
study, Gough (2005) searched for such convergent evolu-
tion events among domain architectures from 62 genomes
in the SUPERFAMILY database. Only 1.9% (59/3041)
of the analyzed architectures were found to be likely candi-
dates for convergent domain architecture evolution. Possi-
ble reasons for this low number are that the data set was
heavily biased toward prokaryotes and that a species tree

was used leading to that only events between the chosen spe-
cies were recorded. Comparedwith this work, we use a com-
pletely different approach based on phylogenetic trees and
also include more species in the data set, substantially ex-
panding the proportion of eukaryotic genomes.

In this paper, we present a novel algorithm based on
domain trees to investigate evolution of protein architec-
tures and address the question of multiple independent do-
main architecture creation in a more comprehensive way
than previously. Our approach infers ancestral architectures
using the maximum parsimony criterion separately for each
domain by processing the full phylogenetic tree of the
domain family. A maximum parsimony approach was re-
cently described to analyze domain architecture evolution
(Fong et al. 2007), but their method only operated on a spe-
cies tree and was mainly used to study fusion and fission
events.

The main technical novelty in our method is that it
does not look for events between nodes in a species trees.
A drawback with using a species tree is that the true spe-
cies tree is often unknown. Another source of error from
using a species tree are horizontal gene transfer (HGT)
events, which easily appear as independent creation
events. Because our domain tree-based approach uses se-
quence similarity and ignores the species, it removes any
potential bias stemming from HGT. A major benefit of us-
ing the domain tree is that multiple origins of an architec-
ture can be detected within one species, which is not
possible when operating on a species tree. Also, the evo-
lutionary pattern of an architecture can be further corrob-
orated by combining the results from the phylogenetic
trees for the individual domains. We are aware that a gen-
eral drawback of using phylogenetic reconstruction is the
inherent uncertainty in the reconstructed tree. Therefore,
to ascertain robustness of the results, we use a bootstrap-
ping approach to determine whether the conclusions for
a given architecture are reliable.

The novel domain tree–based method was applied to
domain architectures derived from Pfam, but only to pro-
teins that passed a quality control to ensure accurate anno-
tations and to avoid multiple spliceforms.With this method,
independent creation events of the same domain architec-
ture become detectable in 12.4% of all scored architectures.
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In a much smaller data set of only completely domain-
assigned proteins, the figure was 5.6%. This indicates that
domain evolution is a highly dynamic process. We further
analyzed the content and character of the most frequently
reinvented architectures. However, we could find no strong
functional bias for multiple independent evolutionary
events of an architecture. Knowledge of which architectures
are readily reinvented, and which domains are most versa-
tile to this end, provides us with a glimpse into nature’s
rules of functional domain rearrangement.

Materials and Methods

We selected 96 species (see supplementary table S1,
Supplementary Material online) for the analysis. From the
curated part of the Pfam database (Pfam-A) release 21 (Finn
et al. 2006), we extracted the full multiple alignments of all
protein domain families found in the selected species (see
fig. 1). The alignments of domain families of type repeat or
motif were excluded (ca. 2.5% of Pfam) because it is much
harder to estimate their phylogeny. From the selected mul-
tiple alignments, we excluded sequences with discontinu-
ous domains, that is, a domain that is interrupted by the
insertion of another domain; such discontinuous domains
are also rare (,1% of Pfam). Also, for nonfungi eukaryotes,
only the longest spliceform in terms of number of domains
was included. If several spliceforms had the same number
of domains, the longest with regards to number of residues
was chosen. Throughout this study, protein architectures
are represented as strings of domains (N- to C-terminal)
separated by asterisks.

In Pfam, hidden Markov models (HMMs) are con-
structed for each domain family alignment. An HMM
match state models the distribution of amino acids in the
corresponding column in the alignment. Some of the result-
ing alignments contain very divergent sequences, which
means that if bootstrapping is performed, there is a risk that
the resampled pseudoalignment will contain sequence pairs
that have no positions in common, leading to that distance
methods such as Neighbor-Joining are unable to handle
them. In order to avoid this, we only retained sequences that
share at least 50% of the match states with the HMM
(thereby excluding sequences that are highly divergent).
Because some families have only a few match states over-
all, the 50% cutoff sometimes still did not ensure that each
pair of sequences in the pseudoreplicate alignments had de-
fined distances to each other. Hence, we also only retained
sequences that shared at least 10 of the HMMmatch states.
After these filtering steps, alignments containing 3 sequen-
ces or more were subjected to tree reconstruction using
Neighbor-Joining with the Scoredist distance estimator
as implemented in Belvu (Sonnhammer and Hollich
2005). Each tree was taken as the basis for ancestral archi-
tecture inference.

The ancestral architecture inference algorithm is based
on the parsimony criterion and runs in 2 passes (see fig. 2A).
In the first pass, the tree is traversed from the leaves to the
root. The extant protein architectures at the leaves are used
to initialize the tree. At each inner node, all possible ances-
tral architectures and their costs are enumerated. In order to

avoid prior bias, an insertion or a deletion of a domain is
assigned an equal cost. The set of potential ancestral archi-
tectures is determined by finding the shared subarchitec-
tures between child nodes and enumerating all their
possible permutations, with the constraint that the domain
from which the tree was built has to be present (see fig. 2B).
Following the maximum parsimony principle, the least ex-
pensive architecture is selected at each node in the tree.
However, at a particular node, several ancestral architec-
tures may share the same cost, in which case they are all
kept. In the second pass, the tree is traversed from the root
to the leaves. At each node, the ancestral architecture yield-
ing the lowest total cost over the whole tree is selected. If
several architectures give the same total cost, one of them is
chosen randomly. The outcome is a phylogenetic tree with
inferred ancestral architectures at all inner nodes and the
extant architectures indicated at the leaves. For each protein
architecture at the leaves, we counted how many times it
had been independently created in the domain tree and also
identified its origin by determining which sequences that

FIG. 1.—Overview of our analysis pipeline. We started with Pfam
full alignments of domains that were not of the type repeat or motif.
Subsequently, the alignments were exposed to several filtering steps in
order to keep only wanted and useful sequences, as described in the text.
Each domain architecture was classified into 3 different categories based
on the agreement between domains and the number and origin of
independent creation events. If the domains did not agree, the architecture
was classified as ambiguous. If a majority agreed on one creation, it was
classified as single. If a majority indicated multiple creations, the
architecture was classified as multiple as long as the phylogenetic origins
of the creations agreed.
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evolved from each creation. To assess the quality of the
phylogenetic trees, we used a bootstrapping approach.
For each domain family, a hundred bootstrap pseudorepli-
cate alignments were generated, and the entire above anal-
ysis was repeated for each pseudoreplicate. Finally, for each
architecture in the data set, we collected the number of in-
dependent creation events and origins for that architecture
from the individual domain trees.

To score the number of creation events for a given ar-
chitecture, phylogenetic trees and all their bootstrap pseu-
doreplicate trees had to be available for at least 2 domains of
the given architecture. If a majority of the phylogenetic
trees for the individual domains of an architecture sup-
ported single or multiple evolutionary events and there
was agreement regarding the origin of these events, that ar-
chitecture was scored as ‘‘single’’ or ‘‘multiple,’’ respec-
tively. By ‘‘agreement regarding the origin,’’ we mean
that for a particular architecture, there was no conflict be-

tween the individual domain trees regarding which sequen-
ces each independent architecture creation event gave rise
to. A conflict would mean that 2 sequences are found in the
same cluster of sequences in one domain tree but in differ-
ent clusters in another. As a result, we avoided drawing con-
clusions for architectures where the estimated phylogeny
varied widely with sampling. Conversely, if there was no
majority regarding the evolutionary pattern of an architec-
ture, it was scored as ‘‘ambiguous.’’

Our algorithm handles repeats and motifs in such
a way that a consecutive series of the same kind of repeat
or motif is collapsed to one ‘‘pseudo domain,’’ that is taken
into account in the ancestral inference algorithm. However,
as mentioned above, no phylogenetic trees are calculated
for repeats and motifs. This means that a protein has to con-
tain at least 2 domains that are not repeats or motifs to be
amenable to our analysis. This approach was chosen be-
cause current algorithms have difficulties with assigning
the precise number of repeats and motifs due to their short
length. Furthermore, it is questionable whether the exact
number of repetitions is important for the protein function.
For a few domain families, the ancestral architecture infer-
ence could simply not be completed due to computational
time and memory constraints. This occurred for families
with a high number of different domains mapping to archi-
tectures in the tree and especially when the domain from
which the tree was constructed was repeated many times
in the architectures. Because the latter is true especially
for repeats, this further motivates our handling of repeats
and motifs.

Pure loss of a domain can be considered to be a more
trivial event than other rearrangements of domains in an ar-
chitecture. Consequently, we also scored architecture rein-
vention events with pure domain loss excluded. In the
phylogenetic tree with ancestral architectures inferred,
we scored the number of independent evolutionary events
as previously described with the modification that if the
only difference in the architecture between a child node
and its parent was the loss of one or several domains,
the architecture of the child and parent node was considered
to be the same.

A problem when studying protein architectures is that
sequence regions without assigned domains are not amena-
ble to analysis. Either the domains have evolved beyond
recognition of current methods or they are simply not rep-
resented in the domain databases. To address this issue, we
generated 2 different data sets. The so-called no-limit
data set contains all sequences from our selected species
present in Pfam-A. The other data set (max50), only in-
cludes sequences with unassigned N-, C-terminal, or inter-
domain regions of 50 residues or shorter. We classified
regions as unassigned if there was no assignment of any
type of Pfam-A region (family, domain, repeat, or motif).
Sequences present in the max50 data set are also present in
the no-limit data set. This implies that ideally, the architec-
tures found to have evolved through convergent evolution
in the max50 data set should comprise a subset of the ar-
chitectures found in the no-limit data set. The choice of
the 50 residues cutoff is a trade-off between quality and
quantity of the data set. Approximately 95% of the Pfam
families of type family or domain are longer than this

FIG. 2.—Illustration of the ancestral architecture inference algorithm.
(A) Shown is a schematic of a phylogenetic tree for domain family A. In
the first pass, the tree is traversed from the leaves and upward in the tree.
At each inner node, all potential ancestral architectures and their costs are
enumerated. The costs are propagated upward in the tree, and only the
architectures with lowest costs are kept at each node. In the second pass,
the tree is traversed in the opposite direction, starting from the root, and
thereafter downward in the tree. All enumerated architectures at each
inner node are evaluated to find the ones that give the lowest total tree
cost. (B) Description of how the set of potential ancestral architectures at
each parent node is determined. Two child architectures (ABCD and
BCE) present in the hypothetical phylogenetic tree for domain family B
are shown. From the 2 child architectures, we conclude that the shared
subarchitecture is BC. All possible permutations containing the
subarchitecture BC are enumerated, with the constraint that the domain
from which the tree was built has to be present (domain B). From this set
of potential ancestral architectures, the most parsimonious architecture is
chosen as the ancestral one.
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cutoff, making it unlikely that an unknown domain is resid-
ing in an unassigned region in themax50 data set. Both data
sets were prepared as stated above to keep only wanted and
useful sequences (see fig. 1).

To assess the difference in number of multiple inde-
pendent domain creation events found in our study and
Gough (2005), we analyzed the same set of genomes as
in Gough using our method. From the Pfam full align-
ments, we extracted sequences that belonged to the species
in the Gough study. For the 3 nonfungi eukaryotes, we
consistently chose the longest spliceform according to
the rules stated above. We analyzed possible convergent
evolution with a maximum of 50 residues for unassigned
regions, which is in essence similar to the limit used
by Gough. The data set was prepared as stated above to
keep only wanted and useful sequences (see fig. 1).
Hereafter, this data set will be referred to as the Gough
data set.

Algorithm
Data types:
node {
parent : node
children : array of node
found_architecture : architecture
potential_architectures : set of [architecture, child_-

architecture_left,
child_architecture_right, cost]
}
Main algorithm:
Pass 1:
traverse tree in DFS (depth first search) order starting

with leaf
{
if node is leaf
node.potential_architectures 5 { (architecture, null,

null, 0) }
else
calculate potential architectures and costs
}
Pass 2:
traverse tree in BFS (breadth first search) order starting

with root
{
node.found_architecture 5 least expensive architec-

ture from potential_architectures
}
Calculation of potential architectures and costs:
for all combinations from children’s potential_archi-

tectures set
{
identify shared subarchitectures
calculate all combinations of non-shared subarchitec-

tures
if architecture already exists in potential_architectures
update cost if cost is lessened
else
add architecture and cost to potential_architectures
}

GO Term Analysis

In order to investigate whether any specific biological
process was significantly over- or underrepresented in the
set of reinvented architectures, we employed the Gene On-
tology (The Gene Ontology Consortium 2000) Biological
Process terms for all proteins in the no-limit data set. The
unfiltered UniProtKB GO annotations file (submission date
5/1/2007) was downloaded from the Gene Ontology Con-
sortium Web site (http://www.geneontology.org/) to re-
trieve GO term assignments. Each architecture in the
no-limit data set was associated with all GO terms assigned
to proteins exhibiting the architecture in question. To en-
sure sufficient sample size, we only included GO terms
present in at least 5% of the multiply originated architec-
tures and to leave out too general annotations only terms
at depth.5 3 in the GO hierarchy were included. The fre-
quency of each GO term in the singly and multiply origi-
nated architectures was calculated; correcting for the fact
that the multiply originated architectures had on average
a greater number of annotations compared with the singly
originated. We also calculated the probability of these ob-
servations under the null hypothesis that they are not en-
riched in either set using a hypergeometric distribution.

More in detail, we consider the sampling of a subset
(annotations in the multiply originated architectures) from
another set (annotations in both singly and multiply origi-
nated architectures). Let Y be a stochastic variable denoting
the number of times a given annotation is observed in the
sampled subset. n is the size of the subset, whereas N is the
size of the full set. For a given annotation term, k is the num-
ber of times it is observed in the subset and r is the number
of times it is observed in the full set. Then the probability of
our sample containing exactly k architectures associated
with the annotation is

PðY5kÞ5

r
k

� �
� N � r

n� k

N
n

:

If k/n . r/N, the annotation is enriched in the sample. The
probability of sampling more than k architectures annotated
by chance becomes

PðY � kÞ5
Xminðr;nÞ

ki5k

PðY5kiÞ:

If k/n , r/N, the annotation may have been depleted in the
sample. The probability of sampling less than k architec-
tures annotated by chance becomes

PðY � kÞ5
Xk
ki50

PðY5kiÞ

Results

For the no-limit data set, we extracted 8,367 unique
multidomain architectures where consecutive repeats and
motifs of the same kind had been collapsed to one pseudo
domain (see table 1). The equivalent number for the max50
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data set was 1,798 architectures. Out of these, approxi-
mately 82% of the architectures in the no-limit data set
and approximately 86% in the max50 data set could be an-
alyzed. We scored the number and origin of creation events
for each domain architecture. The great majority of archi-
tectures appeared to have arisen only once (see table 1).
There are also architectures where the number and/or origin
of creation events is ambiguous because the domains show
different results. Nevertheless, we found 650 cases, or
12.4% (650/5,263), of convergent protein architecture evo-
lution in the no-limit data set (see tables 1 and supplemen-
tary table S2 [Supplementary Material online]). In the
max50 data set, there were 70 cases, or 5.6% (70/1,242)
(see tables 1 and supplementary table S3 [Supplementary
Material online]). When excluding origin events that purely
involve domain loss, approximately 1/3 of the number of
architectures with multiple independent origin remained
in both data sets.

In the majority of cases, the architectures have evolved
through 2 independent creation events (59% in the no-limit
data set and 56% in the max50 data set, respectively). How-
ever, there is also a substantial fraction of architectures that
have 3 independent evolutionary origins (19% in the
no-limit data set and 21% in the max50 data set, respec-
tively). Thereafter, the number of architectures is rapidly
declining with increasing number of independent creation
events in both data sets (data not shown). Of the 70 candi-
dates for convergent evolution in the max50 data set, 36
were also found in the no-limit data set and 22 of them were
consistent across both data sets with regards to inferred

number of creation events and origins (see supplementary
table S4, Supplementary Material online). The remaining
14 architectures have different numbers of independent cre-
ation events in the 2 data sets. In all these cases, the inclu-
sion of more sequences in the no-limit data set has resulted
in more species being represented in the phylogenetic do-
main trees and subsequently an increased number of con-
vergent evolutionary events.

For both data sets, a substantial fraction of the candi-
dates for convergent evolution was found in eukaryotes (see
fig. 3). For the no-limit data set, more than half of the can-
didates were found in eukaryotes only. According to the
no-limit data set, bacteria exhibit a rate of convergent evo-
lution that is lower compared with eukaryotes. In themax50
data set, the opposite pattern is seen. However, we believe
that this is due to the nature of the max50 data set, where
especially eukaryotic architectures will be excluded due to
the unassigned region cutoff of 50 residues. Archaea dis-
play the lowest number of architectures with multiple inde-
pendent creation events across both data sets. Moreover,
most candidates are only found in one type of kingdom.

When analyzing the Gough data set using our method
with a 50 residues interdomain region cutoff, which is
roughly similar in scope to the approach used by Gough,
we found 1,388 unique continuous multidomain architec-
tures where consecutive repeats and motifs of the same kind
had been collapsed to one pseudo domain. Out of these,
evolutionary events could be scored for approximately
83% of the architectures. We found 48 cases, or 5.1%
(48/948), of convergent evolution in the Gough data set.
As for the other 2 data sets, approximately 1/3 of the num-
ber of architectures with multiple independent origin re-
mained when architectural origins that purely involve
domain loss had been excluded.

We detected convergent evolution among proteins be-
longing to the spermidine/spermine synthase family. The
architecture (S-adenosylmethionine decarboxylase * Sper-
mine/spermidine synthase) has arisen twice independently
in bacteria; once in Bdellovibrio bacteriovorus and once in
Azoarcus sp. (see fig. 4). The spermine/spermidine synthase
synthesizes spermine and spermidine from putrescine and
decarboxylated S-adenosylmethionine (Li et al. 2001).
Among prokaryotes, spermine/spermidine synthase and

Table 1
Candidates for Convergent Protein Architecture Evolution
Found in the Various Data Sets

Data Set Ntotal Nambiguous Nsingle Nmultiple

No-limit 8367 1605 4613 650
Max50 1798 301 1172 70
Max50, Gough 1388 205 900 48

NOTE.—Ntotal is the number of architectures included in the analysis, Nambiguous

is the number of architectures were results from the individual domains were not

conclusive, Nsingle is the number of single-origin architectures, and Nmultiple is the

number of multiple-origin architectures.

FIG. 3.—The distribution of domain architectures exhibiting multiple independent creation events across the 3 kingdoms. (A) the no-limit data set
and (B) the max50 data set.
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S-adenosylmethionine decarboxylase are usually present as
single-domain proteins. However, in some prokaryotes, the
process seems to have been made more effective by fusing
the domains into a multidomain protein with dual functions.
This can be advantageous for the spermine/spermidine syn-
thesis process as the 2 catalytic steps can happen in direct
succession.

Looking beyond our data set, in total 8 prokaryotes
have the 2-domain protein in the Pfam database. Only 2
of these were included in our selection of genomes. None
of the 8 prokaryotes seem to have maintained the S-adeno-
sylmethionine decarboxylase as a single-domain protein,
and only half of them have the single-domain protein sper-
mine/spermidine synthase. Previous studies have suggested
that the need for a compact genome can lead to evolution of
multidomain proteins from interacting single-domain pro-
teins (Brocchieri and Karlin 2005). Bdellovibrio bacterio-
vorus is a parasite of other gram-negative bacteria, and it
has a smaller genome compared with the free-living soil
bacteria Azoarcus sp. Interestingly, Azoarcus sp. still has a
single-domain protein of spermine/spermidine synthase in
its genome, whereas B. bacteriovorus has lost it. The other
3 prokaryotes with a single-domain spermine/spermidine
synthase all have genome sizes larger than Azoarcus sp.
The prokaryotes deficient in single-domain spermine/
spermidine synthase on the other hand have small genomes,
mostly smaller than B. bacteriovorus. In fact, one of them
(Candidatus Pelagibacter ubique) has the smallest genome
of any cell known to replicate independently in nature.

An example of independent protein architecture crea-
tion found in eukaryotes is shown in fig. 5. The architecture
(Glycosyl hydrolases family 17 * X8 domain * X8 domain)
has arisen twice independently in plants; once in Arabdi-
dopsis thaliana and once in Oryza sativa. The N-terminal
domain in the architecture belongs to the glycosyl hydro-
lases, a widespread group of enzymes that hydrolyze the

glycosidic bond between 2 or more carbohydrates or
between a carbohydrate and a noncarbohydrate moiety
(Henrissat and Davies 2000). The X8 domain is thought
to be involved in carbohydrate binding by the formation
of disulphide bridges. Arabdidopsis thaliana and O. sativa
have proteins with none, one, or 2 X8 domains C-terminally
of the glycosyl hydrolase (see fig. 5). Also, single-domain
X8 proteins are present in the genomes of these 2 plants.
The fusion of a glycosyl hydrolase and an X8 domain
may help to attune the hydrolase to a particular substrate
and allows more specific regulation. Furthermore, one
can speculate that the need for a different substrate speci-
ficity has led to an independent duplication of the X8 do-
main in some proteins.

Another example of a protein architecture found to
have arisen multiple times in both data sets is the architec-
ture (Glutamine amidotransferase class-I * Glycosyl trans-
ferase family, helical bundle domain * Glycosyl transferase
family, a/b domain) (see fig. 6), which has been created in-
dependently in bacteria—once in Escherichia coli/Salmo-
nella typhimurium and once in Thermotoga maritima.
The protein is anthranilate synthase component II and is
part of the tryptophan synthesis pathway (Romero et al.
1995). Together with anthranilate synthase component part
I, an oligomer is formed. The anthranilate synthase cata-
lyzes the second step in the pathway leading from choris-
mate to tryptophan (Roberts et al. 2002). Chorismate is used
as a substrate not only for the tryptophan pathway but also
for producing other amino acids such as phenylalanine and
tyrosine. Also, folate and ubiquinone synthesis require cho-
rismate as substrate. Apparently, the tryptophan synthesis
pathway has been optimized, either for efficiency or for reg-
ulatory control, by independent creation events of the 3-
domain architecture in different bacteria.

Are some domains more versatile than others with re-
spect to the architectures in which they can function? We

FIG. 4.—Example of independent protein architecture creation. Shown is the topology of the tree for Pfam domain Spermine/spermidine synthase
(PF01564). The architecture (S-adenosylmethionine decarboxylase * Spermine/spermidine synthase) ([PF02675 * PF01564]) has arisen twice
independently in bacteria (shaded boxes): once in Bdellovibrio bacteriovorus and once in Azoarcus sp. The tree shown is a subtree of the full
phylogenetic tree, and it is not drawn to scale.
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would expect some domains to occur in convergent evolu-
tion more often than others, reflecting the ability to function
well in different types of architectures. Table 2 lists the do-
mains present in architectures with more than 10 indepen-
dent creation events in the no-limit data set. Many of the
top-ranked domains in the list are frequent in general,
but some exceptions exist. For instance, C1 (PF03107)
and C1-like (PF07649) domains both occurred in 13 rein-
vented domain architectures but only in 28 and 31 architec-
tures, respectively, in total. The function of these domains is
variable and largely unknown. However, C1 and C1-like
domain–containing proteins are known to be involved in
signaling pathways in a variety of organisms (Hurley et al.
1997).

Are proteins connected to some biological processes
more likely to involve reinvented architectures? To investi-
gate this, we evaluated whether any Gene Ontology Biolog-
ical Process terms were significantly enriched in the set of
reinvented architectures. At the 95% confidence level, 22
terms were significantly enriched or depleted in the set of
architectures with multiple origin (see table 3). GO terms
associated with signal transduction were only found among
the terms significantly enriched in multiple origin architec-
tures. In contrast, GO terms significantly enriched in single
origin architectures were dominated by functions associated
with metabolic processes, whereas only one such case was
found among terms enriched in multiple origin architectures.

Discussion

We have presented a novel algorithm for analyzing
protein architecture evolution based on domain trees.
The algorithm uses maximum parsimony to infer ancestral
architectures. Given the ancestral architectures on the tree,
we were able to track the origin of each architecture. We
used this to search for cases of domain architectures with
multiple evolutionary origins, and our results suggest that
such cases are more frequent than previously thought. In the
no-limit data set, 12.4% of the explored architectures
showed evidence of reinvention. In the more restricted
max50 data set, the figure was 5.6%. Compared with a pre-
vious study (Gough 2005) that suggested a proportion of
1.9%, our figures are significantly higher. To assess the pos-
sible reasons for this discrepancy, we analyzed the same set
of genomes used in Gough (2005) using our method with
a 50 residues cutoff for unassigned regions, which is in es-
sence the same limit used by Gough. Using our method for
preparing the data set, we only found approximately half the
number of multidomain architectures as Gough did in the
same genomes. A number of reasons can be responsible for
this, including our rigorous filtering steps and differences
between SUPERFAMILY and Pfam domain annotation.
We also note that Gough did not explicitly remove alternate
splice forms. The results from our analysis of the Gough
genomes indicate approximately the same proportion of

FIG. 5.—Example of independent protein architecture creation. Shown is the topology of the tree for Pfam domain Glycosyl hydrolases family 17
(PF00332). The architecture (Glycosyl hydrolases family 17 * X8 domain * X8 domain) ([PF00332*PF07983*PF07983]) has arisen twice
independently in eukaryota (shaded boxes): once in Arabidopsis thaliana and once in Oryza sativa. The tree shown is a subtree of the full phylogenetic
tree, and it is not drawn to scale.
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convergent evolution (5.1%) as in our max50 data set
(5.6%). This suggests that the main reason for our much
higher figure is differences in the methods, whereas differ-
ences in the data set have a small effect.

There are several major differences between our
method and the method implemented by Gough (2005).
Our method utilizes domain trees instead of a species tree
that allows us to detect protein architecture reinvention at

Table 2
Most Frequent Domains in Multiple Origin Architectures

Domain Pfam AC
Multiple Origin
Architectures

All
Architectures

Histidine kinase-, DNA gyrase B-,
and heat shock protein 90-like ATPase PF02518 44 268

His Kinase A (phosphoacceptor) domain PF00512 33 195
Response regulator receiver domain PF00072 27 177
Reverse transcriptase (RNA-dependent

DNA polymerase) PF00078 23 88
Integrase core domain PF00665 20 87
PAS fold PF00989 20 192
PAS fold PF08447 20 164
Zinc knuckle PF00098 19 102
PAS fold PF08448 17 172
Retrotransposon gag protein PF03732 16 67
Chromo’ (CHRromatin Organization

MOdifier) domain PF00385 16 50
PH domain PF00169 16 125
SH3 domain PF00018 16 103
GGDEF domain PF00990 15 94
4Fe-4S–binding domain PF00037 13 58
Retroviral aspartyl protease PF08284 13 42
C1-like domain PF07649 13 31
C1 domain PF03107 13 28
Helicase conserved C-terminal domain PF00271 13 100
Zinc finger, C3HC4 type (RING finger) PF00097 12 90
GAF domain PF01590 12 128
PDZ domain (Also known as DHR or GLGF) PF00595 11 73
C2 domain PF00168 11 66

NOTE.—Listed here are domains occurring in more than 10 unique architectures with multiple origins in the no-limit data set.

For each domain, the number of architectures it occurs in is shown, both for multiple origin architectures as well as for all

architectures in the data set.

FIG. 6.—Example of independent protein architecture creation. Shown is the topology of the tree for Pfam domain Glycosyl transferase family,
helical bundle domain (PF02885). The architecture (Glutamine amidotransferase class-I * Glycosyl transferase family, helical bundle domain *
Glycosyl transferase family, a/b domain) ([PF00117 * PF02885 * PF00591]) has arisen twice independently in bacteria (shaded boxes): once in
Escherichia coli and Salmonella typhimurium and once in Thermotoga maritima. The tree shown is a subtree of the full phylogenetic tree, and it is not
drawn to scale.
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any node in the tree, whereas the Gough method was lim-
ited to detection between species. This makes our analysis
much more fine grained. Another advantage is that we do
not need to worry about the correctness of a species tree.
Instead a tree is built for each domain family, making it pos-
sible to gain further support for architecture reinvention
events by comparing the results for all the domains in
the architecture. Also, studies based on a species tree run
the risk of finding false cases of convergent protein archi-
tecture evolution due to HGT. HGT is a phenomenon that
occurs quite frequently in prokaryotes, although very rare in
eukaryotes (Choi and Kim 2007). By using a domain tree,
we are studying the sequences directly, irrespective of
which species they are found in, and therefore, our ap-
proach is not sensitive to HGT. A majority of our candi-
dates for convergent evolution in the no-limit data set
are found in eukaryotes, although there are more prokary-
otic sequences present in the data set. In the max50 data set,
more candidates are found in prokaryotes but this is corre-
lated to a decrease in eukaryotic sequences as the cutoff for
unassigned regions is applied. We would have expected
prokaryotic architecture reinvention to be seen much more
often if our method could be tricked by HGT.

Our rationale for creating and analyzing 2 different
data sets (no-limit and max50) is that they both have
strengths and weaknesses. The max50 data set is restricted
to fewer but more completely annotated sequences, which
is likely to result in a better resolved phylogeny for a par-
ticular architecture. However, the limited number of se-
quences could bias the ancestral architecture inference
and thus, multiple independent creation events could be
missed or be falsely detected. In particular, entire groups

of sequences that have evolved independently might be ex-
cluded by the filtering steps. In contrast, the no-limit data set
covering more sequences should allow a more accurate an-
cestral architecture inference, although with a higher risk of
including unknown domains that could alter the inference
had they been known. Another reason for the 2 data sets is
that especially eukaryotic architectures are penalized by the
50 residues cutoff. Consequently, to gain a better under-
standing of eukaryotic domain architecture evolution, the
no-limit data set is an important complement to the more
restricted max50 data set. Ideally, the architectures that
were found to have multiple independent creation events
in the no-limit data set should also be detected in the
max50 data set, that is, the max50 data set should constitute
a subset of the no-limit data set. However, the difference in
sequence coverage between the 2 data sets can result in dif-
ferent phylogenetic trees and consequently, the inference of
ancestral architectures can also differ. Therefore, not all
candidates found in the max50 data set are likely to be
found in the no-limit data set. Indeed, of the 70 candidates
for convergent evolution found in themax50 data set, 34 are
not found in the no-limit data set. Inspection of these cases
showed that the main reason for this discrepancy was that,
in the no-limit data set, more proteins exhibited the archi-
tecture in question, thereby shifting its invention closer to
the root of the phylogenetic tree. Alternatively, the results
for the architectures in question were ambiguous in the
no-limit data set.

The main reasons for why convergent evolution could
not be scored for some multidomain architectures was that
either the phylogenetic trees and/or some of their bootstrap
pseudoreplicate trees could not be generated for at least 2

Table 3
GO Biological Process Terms over- or Underrepresented among Architectures with Multiple Origins in the No-limit Data Set
at 95% Confidence Level

GO ID Description %Multiple %Single Ratio P Value

GO:0006278 RNA-dependent DNA replication 0.7 0.2 3.99 2.9 � 10�2

GO:0009064 Glutamine family amino acid metabolic process 1.2 0.4 3.13 1.4 � 10�2

GO:0032446 Protein modification by small protein conjugation 2.7 1.4 1.85 2.0 � 10�2

GO:0016567 Protein ubiquitination 2.5 1.4 1.77 3.1 � 10�2

GO:0006512 Ubiquitin cycle 2.9 1.7 1.66 3.6 � 10�2

GO:0007242 Intracellular signaling cascade 5.3 3.5 1.54 1.5 � 10�2

GO:0007165 Signal transduction 16.4 12.9 1.27 9.7 � 10�3

GO:0044249 Cellular biosynthetic process 4.7 6.3 0.75 4.3 � 10�2

GO:0005975 Carbohydrate metabolic process 1.5 3.6 0.42 9.3 � 10�4

GO:0044255 Cellular lipid metabolic process 0.6 1.4 0.41 2.1 � 10�2

GO:0044262 Cellular carbohydrate metabolic process 0.8 2.0 0.40 1.2 � 10�2

GO:0015980 Energy derivation by oxidation of organic compounds 0.8 2.3 0.35 3.7 � 10�3

GO:0006366 Transcription from RNA polymerase II promoter 0.4 1.0 0.33 3.8 � 10�2

GO:0009611 Response to wounding 0.2 0.8 0.28 3.3 � 10�2

GO:0000278 Mitotic cell cycle 0.1 0.5 0.24 4.8 � 10�2

GO:0009110 Vitamin biosynthetic process 0.1 0.5 0.24 4.8 � 10�2

GO:0019318 Hexose metabolic process 0.1 0.5 0.22 3.7 � 10�2

GO:0008610 Lipid biosynthetic process 0.2 1.1 0.21 8.4 � 10�3

GO:0005996 Monosaccharide metabolic process 0.1 0.5 0.21 3.2 � 10�2

GO:0006633 Fatty acid biosynthetic process 0.1 0.6 0.20 2.8 � 10�2

GO:0016051 Carbohydrate biosynthetic process 0.1 0.7 0.17 1.3 � 10�2

GO:0006066 Alcohol metabolic process 0.1 0.9 0.13 3.9 � 10�3

NOTE.—%Multiple and %Single denote the percentage of multiply and singly originated architectures that were associated with the respective GO term. Ratio denotes

the ratio between the frequencies in the multiple origin set (650 architectures) and the single origin set (4,613 architectures). A ratio .1 indicates that the GO term is

overrepresented in the multiply originated architectures, whereas a ratio ,1 means that it is underrepresented. The P value is the probability of the observed counts of GO

terms in both sets given a hypergeometric distribution.
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domains of the given architecture (18% for no-limit and 14%
for max50). Missing phylogenetic trees, in turn, are mainly
due to our handling of repeats and motifs or that our filtering
steps to obtain an adequate multiple alignment quality sim-
ply excluded the domain family. A possible drawback of our
method is that it depends on Neighbor-Joining trees, which
cannot be reliably generated in all cases, and therefore, we
introduced a quality filter based on bootstrapping. We con-
clude that, due to this filtering step, the method has high re-
producibility despite the risk of phylogenetic uncertainty.
Another potential limitation is that the phylogenetic trees
are binary. Even though binary trees are most commonly
used in phylogeny, sometimes the resolution at a particular
node is so low that it is impossible to determine the correct
branching order; in such cases, allowing unresolved tree no-
des should give more robust results.

In our ancestral inference algorithm, we use an equal
cost for the loss or gain of a domain. Although, previous
studies (Kummerfeld and Teichmann 2005; Fong et al.
2007) have attempted to answer whether fusion or fission
events are more common, we felt that the matter is not thor-
oughly enough studied, particularly for Pfam domain archi-
tectures. Therefore, we chose an equal cost model. Another
reason for our choice of not weighting the 2 types of
evolutionary events differently is that higher penalties for
domain gain in this context would lead to ancestral archi-
tecture assignments where gain events would tend to occur
only close to the root of the tree. This we believe to be un-
reasonable as it would tend to lead to ancestral architectures
with more domains than the leaves. Also, some domains are
known to co-occur in so-called supradomains (Vogel et al.
2004) and that would have to be taken into account if dif-
ferentiated costs for gain or loss were to be implemented.
However, not all such supradomains are likely to be known,
and there may also be other relationships between domains
that affect how likely they are to be gained or lost together.

Our figures are dependent on the completeness of
Pfam and to some extent on how good the domain recog-
nition is. Because of the incompleteness of domain anno-
tations, the multiply originated architectures deduced by
this study cannot cover all cases of convergent architecture
evolution, yet at the same time not all the inferences might
be true. The method does, however, retrieve a reasonably
complete set to which further analysis can be applied, and
both specificity and sensitivity will increase in the future as
more domain assignments become available. Our approach
should be seen as a tool for finding candidates for conver-
gent evolution that should subsequently be manually vali-
dated. However, already our results clearly show that
domain architecture reinvention is relatively frequent even
in a small data set. We find no strong functional bias among
the architectures with multiple independent evolutionary
events, suggesting that the process of convergent domain
architecture evolution is driven by chance rather than func-
tional necessity.

Supplementary Material

Supplementary tables S1–S4 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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