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Abstract

In the post-genomic era, thousands of putative noncoding regula-
tory regions have been identified, such as enhancers, promoters,
long noncoding RNAs (lncRNAs), and a cadre of small peptides.
These ever-growing catalogs require high-throughput assays to
test their functionality at scale. Massively parallel reporter assays
have greatly enhanced the understanding of noncoding DNA
elements en masse. Here, we present a massively parallel RNA
assay (MPRNA) that can assay 10,000 or more RNA segments for
RNA-based functionality. We applied MPRNA to identify RNA-based
nuclear localization domains harbored in lncRNAs. We examined a
pool of 11,969 oligos densely tiling 38 human lncRNAs that were
fused to a cytosolic transcript. After cell fractionation and barcode
sequencing, we identified 109 unique RNA regions that signifi-
cantly enriched this cytosolic transcript in the nucleus including a
cytosine-rich motif. These nuclear enrichment sequences are
highly conserved and over-represented in global nuclear fractiona-
tion sequencing. Importantly, many of these regions were indepen-
dently validated by single-molecule RNA fluorescence in situ
hybridization. Overall, we demonstrate the utility of MPRNA for
future investigation of RNA-based functionalities.
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Introduction

One of the biggest surprises since the sequencing of the human

genome has been the discovery of thousands of functional noncod-

ing regions (Rinn & Chang, 2012; Hon et al, 2017). This includes

new DNA enhancer elements, promoters, small RNAs, long noncod-

ing RNAs (lncRNAs), and small peptides (20–70 amino acids) that

are encoded in regions previously annotated as lncRNAs. Under-

scoring the importance of these elements are their disease associa-

tions and functional roles in the regulation of transcription (Jin

et al, 2011; Morris & Mattick, 2014; Anderson et al, 2015; Gong

et al, 2015; Hon et al, 2017). The ever-growing collection of

noncoding annotations has motivated technological advances to

characterize these elements and assay for their functional roles in a

high-throughput manner. For example, the capacity to synthesize

pools comprised of more than 100,000 individual DNA oligos has

led to massively parallel reporter assays (MPRA) that have been

applied to identify noncoding DNA elements, such as enhancers and

promoters, on a genome-wide scale (Patwardhan et al, 2009;

Melnikov et al, 2012; Oikonomou et al, 2014; Rosenberg et al,

2015; Ernst et al, 2016). These studies have turbo-boosted our

understanding of functional DNA elements and their upstream regu-

latory factors. Addressing RNA functionalities in a similar manner

has many challenges, remains limited, and is poorly scalable. Yet,

such an assay would hold great promise to understand fundamental

aspects of lncRNA biology through the identification of functional

sequences and structures.

Central to RNA-based functionality is subcellular localization,

which influences the biogenesis and function of mRNAs and

lncRNAs alike. RNA localization provides a fundamental mechanism

through which cells modulate and utilize the functions encoded in

their transcriptomes (Davis & Ish-Horowicz, 1991; Bullock &

Ish-Horowicz, 2001; Johnstone & Lasko, 2001; Lin & Holt, 2007;

Paquin & Chartrand, 2008; Martin & Ephrussi, 2009; Zhang et al, 2014;

Hacisuleyman et al, 2016). This spatial layer of post-transcriptional
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gene regulation is known to be critical in a variety of contexts,

including asymmetric cell divisions (Paquin & Chartrand, 2008),

embryonic development (Davis & Ish-Horowicz, 1991; Bullock &

Ish-Horowicz, 2001; Johnstone & Lasko, 2001), and signal transduc-

tion (Lin & Holt, 2007). Previous work has identified a small number

of cis-acting mRNA localization elements, using genetic approaches

or hybrid reporter constructs to decipher sequences required for

localization to specific parts of the cell (Bullock & Ish-Horowicz,

2001; Martin & Ephrussi, 2009). These elements are often located in

30 untranslated regions and range from five to several hundred

nucleotides in length (Bullock & Ish-Horowicz, 2001; Miyagawa

et al, 2012; Zhang et al, 2014; Hacisuleyman et al, 2016). Yet, the

sequences and structures responsible for RNA localization remain

inchoate.

In contrast to mRNAs—which are exclusively cytosolic—most

lncRNAs are predominantly enriched in the nucleus (Derrien et al,

2012). Consistent with their localization patterns, several examples

of lncRNAs (XIST (Brown et al, 1992; Lee & Bartolomei, 2013),

FIRRE (Hacisuleyman et al, 2016), MALAT1 (Gutschner et al, 2013),

NEAT1 (Clemson et al, 2009), PVT1 (Tseng et al, 2014), GAS5 (Kino

et al, 2010), PINT (Marı́n-Béjar et al, 2013), and many others)

perform key nuclear roles during development and are believed to be

crucial in nuclear organization (Rinn & Guttman, 2014). This is

surprising since mRNAs and lncRNAs share similar biogenesis and

post-transcriptional features (Cabili et al, 2011; Ni et al, 2013;

Guttman & Rinn, 2012; e.g., m7-G cap and polyA tail), which usually

trigger RNA export to the cytosol. This raises a more general ques-

tion: Is there a universal nuclear localization motif harbored within

lncRNAs (Zhang et al, 2014), or is nuclear localization imparted by

larger RNA domains specific to individual transcripts (Hacisuleyman

et al, 2016)? Addressing this question requires a high-throughput

assay that can screen for RNA-based functionalities.

Toward this goal, we have developed and optimized such a

massively parallel RNA assay (MPRNA). Briefly, we developed a

construct that expressed and appends thousands of 110mer RNA

sequences—each uniquely barcoded—to a cytosolic-localized

reporter transcript: a noncoding, frame-shifted variant of Sox2,

which we hereafter refer to as fsSox2 (see Materials and Methods).

By sequencing barcodes in nuclear fractions versus the total barcode

population, we can simultaneously assess each 110mer that was suf-

ficient to retain fsSox2 in the nucleus. To control for the possibility

that sequences larger than 110 nucleotides (nt) might be required

for nuclear retention, we designed a densely overlapping pool of

oligos so that, on average, every unique 10 nt are independently

assayed. This was optimized to develop a robust statistical method

that leverages the interdependencies and variances of each 110mer

to identify larger RNA domains enriched in the nucleus.

As a first application, we performed MPRNA across 38 lncRNAs

with varying degrees of subcellular localization patterns as previ-

ously determined by single-molecule RNA fluorescence in situ

hybridization (smFISH; Cabili et al, 2015). We identified 109 unique

nuclear enrichment sequences derived from 29 of the 38 lncRNAs

tested, including the known RNA localization regions for MALAT1

(Miyagawa et al, 2012). Interestingly, a global motif analysis of

these regions uncovered a cytosine-rich (C-rich) motif that is over-

represented in many of the nuclear enrichment regions. Consistent

with a possible global role of the C-rich motif for localization,

these regions tend to be more conserved and are generally

nuclear-enriched in global nuclear versus cytoplasmic RNA sequenc-

ing (RNA-seq) experiments from the ENCODE consortium. Notably,

a very similar motif was also identified in an independent study

(Lubelsky & Ulitsky, 2018). Finally, we independently validated the

capability of these domains to impart nuclear localization by

smFISH of fsSox2 appended with the putative nuclear enrichment

sequences identified by our MPRNA. Collectively, we demonstrate

that the MPRNA methodology could be universally applicable to

identify active RNA elements sufficient for any cellular process that

can be physically and functionally separated.

Results

Design and optimization of a massively parallel RNA
assay (MPRNA)

In order to identify RNA sequences that drive lncRNA nuclear

enrichment, we developed a high-throughput approach for identify-

ing nuclear enrichment elements. First, we designed a pool of

11,969 153-nt oligos representing 38 lncRNAs with diverse subcellu-

lar localization patterns: from single nuclear foci (e.g., XIST, ANRIL,

ANCR, PVT1, KCNQ1OT1, FIRRE) to broadly diffuse cytosolic

patterns (e.g., NR_024412, NR 033770; Cabili et al, 2015). We

designed the oligo-pool to tile each of the 38 lncRNAs with a 10-nt

shift between sequential oligonucleotides. This densely overlapping

tiling approach offers us a unique advantage of allowing the compu-

tational “stitching” of sequential oligos (Jaffe et al, 2012; preprint:

Korthauer et al, 2017), thus enabling identification of longer regions

required for nuclear enrichment. Second, we cloned the pool of

oligonucleotides to the 30 end of a cytosolic-localized Sox2 construct

(fsSox2). As previously shown (Haciuselyman et al, 2016), we used

fsSox2 instead of regular Sox2 to avoid any unwanted translation

artifacts. The oligo-pool was expressed in HeLa cells, followed by

subcellular fractionation, and targeted RNA-seq of unique barcodes

to determine the enrichment of each fsSox2 variant in the nucleus

relative to the total barcode representation in total RNA (Fig 1A,

Table EV1, Materials and Methods). The assay was performed as six

biological replicates to ensure sufficient statistical power for our

analytical model, and accurately estimate in-group variance (see

below, Materials and Methods).

We ranked candidate localization regions using a newly defined

summary statistic that generates a null distribution by permuting

sample labels, which is used to assign P-values (Fig 1B–D; Materials

and Methods). Our approach overcomes the inter-replicate variabil-

ity inherent in high-throughput reporter assays and allows us to

sensitively and accurately discover nuclear-enriched RNA segments

spanning up to hundreds of base pairs, which we term “differential

regions” (DRs).

At each stage of the MPRNA, we used quality controls (Fig EV1),

and to prove the principle of our assay and analytical method, we

first focused on a well-established nuclear lncRNA, MALAT1. Previ-

ous work demonstrated that two elements within MALAT1 (“Region

E” and “Region M”) act as potent nuclear localization signals

(Miyagawa et al, 2012). We examined the nuclear enrichment of all

fsSox2 pool variants bearing oligos derived from MALAT1

(Materials and Methods). Consistent with the previous study,

nucleotides derived from Region E and Region M were highly
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enriched in the nucleus, compared to those from elsewhere in

MALAT1. This finding demonstrates that our assay can recapitulate

known RNA localization signals and that our analytical approach

can identify localization domains longer than 110 nt (Fig 1E).

MPRNA-based identification of RNA nuclear enrichment regions

Next, we sought to agnostically and systematically investigate

nuclear enrichment regions harbored within the selected 38

lncRNAs. Our analysis identified 109 DRs (FDR < 0.1) originating

from 29 distinct lncRNAs that were significantly enriched in nuclear

fractions relative to whole-cell lysates (Table EV2). Two of these DRs

overlap and subsume the MALAT1 Region M while another overlap

with Region E (Fig 1E). To confirm that our approach was robust,

we compared the significant DRs to all other regions represented in

the pool and found them significantly more nuclear-enriched (P < 1/

106, Mann–Whitney test; Materials and Methods). The localization

patterns of the selected 38 lncRNAs have been previously parsed into

five smFISH classes (Cabili et al, 2015). These included lncRNAs

ranging from strictly nuclear (Class I) to cytoplasmic (Class V), with

three intermediate classes (classes II–IV). The MPRNA discovered

DRs derived from lncRNAs in all five FISH classes (Fig 2A–E). To

compare DRs found across different FISH classes, we normalized for

the length of transcripts tiled across each FISH class. After normal-

ization, we found that the number of DRs per kb was broadly similar

within each FISH class (Fig 2F). Interestingly, many Class I lncRNAs

harbor multiple DRs, possibly indicating the presence of a redundant

nuclear localization motif. For example, we discovered 18 DRs in

XIST and 10 DRs in MALAT1 and some of the DRs we discovered in

XIST overlap with the previously described XIST repeat elements

RepC and RepD (Appendix Fig S1A; Brown et al, 1992). By contrast,

we only discovered 1 DR in predominantly cytosolic lncRNAs such

as NR_023915 and NR_040001. Interestingly, while 60% of the

lncRNAs in the pool were nuclear, 66% of the lncRNAs lacking DRs

were predominantly cytosolic.

We further analyzed the evolutionary conservation, length distri-

bution, and sequence content of DRs for putative nuclear localiza-

tion sequences. We used phastCons (Siepel et al, 2005, 2006) scores

to assess evolutionary conservation, and we observed significantly

higher scores among our DRs than in other lncRNA regions tiled by

our MPRNA (Fig 2G; P < 1/106, Mann–Whitney test; Materials and

Methods). The lengths of the DRs ranged from 80 to 740 nt, with an

average of 300 nt (Appendix Fig S1B). While we detected a weak

correlation between the length of a given lncRNA and number of

DRs within (Appendix Fig S1C), this analysis is confounded by the

different length of lncRNAs across the five FISH classes. Finally, we

did not observe a difference in GC content between the DRs and

other sequences within the tiled lncRNAs (Appendix Fig S1D).

We hypothesized that the identified DRs might harbor common

sequence motifs or preferences. To test this, we searched for motifs

that were more prevalent among the DRs than in other regions of the

lncRNAs, using the MEME software package (Machanick & Bailey,

2011). We identified a 57-nt motif (E-value = 3.7e-10) occurring 18

times exclusively in XIST but not elsewhere in the human genome

(Fig 3A–C). Another 15-nt C-rich motif (E-value = 9.0e-10) was found

in 52 DRs of 21 different lncRNAs (Fig 3D–F), and we discovered four

additional motifs closely related to the ones described here

(Appendix Fig S2A–D). Similarly, k-mer analysis (Le Cessie & Van

Houwelingen, 1992) revealed several C-rich 4-mers that were mildly

predictive of a DR (Appendix Fig S2E). In total, we discovered six

motifs and confirmed that the nucleotides overlapping these motifs

were significantly enriched in the nucleus (P < 1/106, Mann–Whitney

test, Materials and Methods), compared to all other regions tiled in

our MPRNA (Fig 3G). Since the C-rich motif occurred in many distinct

DRs of diverse lncRNAs, we postulated that this motif could function

as a global RNA nuclear localization element. To test this, we exam-

ined the nuclear versus cytoplasmic localization of both human

lncRNA and mRNA transcripts containing this motif, from the

ENCODE consortium fractionation RNA-seq data (ENCODE Project

Consortium, 2012). For both lncRNAs and mRNAs, we observed a

modest-yet-significant increase (P < 1/106, Mann–Whitney test) in

nuclear localization of transcripts containing the C-rich motif across

all 11 ENCODE TIER 2 cell lines (Fig 3H and I, Appendix Fig S3).

Interestingly, we note that while the effect of the motifs was signifi-

cant for both lncRNAs and mRNAs, the effect size was larger in motif-

harboring lncRNAs. Collectively, these results demonstrate the power

of our MPRNA to discover potential functional elements that may be

missed by classic RNA localization studies.

◀ Figure 1. A Massively Parallel RNA Assay (MPRNA) to identify RNA nuclear enrichment signals.

A Experimental overview. Far left: oligonucleotide pool design. Double-stranded DNA (dsDNA) oligonucleotides were designed by computationally scanning 38 parental
lncRNA transcripts (Table EV1) in 110-nt windows, with 10-nt spacing between sequential oligos. These lncRNA-derived sequences (gray) were appended with unique
barcodes and universal primer binding sites, resulting in a pool of 11,969 oligos of 153 bp (Table EV1). The vertical lines in the lncRNA denote splice junctions. Second
from left: schematic summarizing the design of each oligonucleotide. Second from right: reporter design. The oligonucleotide pool was cloned into a reporter plasmid
as fusion transcript 30 of fsSox2 (minCMV, minimal CMV promoter; pA, polyadenylation sequence). Far right: MPRA workflow. The fsSox2~oligo reporter pool was
transiently transfected into HeLa cells. Following 48 h of expression, cells were harvested and fractionated to isolate nuclei, and the nuclear enrichment of each oligo
was quantified by targeted RNA sequencing. Matched whole-cell lysates from unfractionated cells served as controls.

B Read mapping and normalization. A perfect match between the first 10 nt of the read and the barcode sequence was used to “map” the read. To guarantee
robustness of the mapping procedure, we allowed for no more than two mismatches within the 90 basepairs upstream of the barcode (see “mapReads” function in
our analysis package—please refer to the Code availability section). Counts were normalized for library size using the “normCounts” table (see analysis package and
GEO data—please refer to the Code and Data availability sections).

C Counts for each nucleotide were modeled based on the normalized counts for each oligo. When nucleotide “A” overlapped with oligos i1, i2, i3, and i4, counts for this
nucleotide were modeled by the median of counts for each of the individual oligos (i1–i4; see “modelNucCounts” function in our analysis pipeline).

D The nucleotide counts were then used to infer differential regions by (1): finding candidate regions and assigning a summary statistic to each one of them and next
(2): generating null candidates by permuting sample labels and using them to assign an empirical P-value to our candidate regions from step 1 to identify significant
regions.

E Differential region-calling correctly identifies nuclear retention elements in MALAT1. Solid lines: per-nucleotide abundances in the nuclear (red) and whole-cell (gray)
fractions, modeled for each nucleotide position along the MALAT1 transcript, based on the aggregate behavior of all oligos containing that nucleotide (shaded regions:
�SD, medians of six biological replicates).
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Single-molecule RNA-FISH validation of nuclear enrichment
motifs and domains

We independently tested if the motifs identified by our MPRNA

are sufficient for nuclear localization using a smFISH-based

reporter assay (Fig 4A). Briefly, we appended consensus motif

sequences (small motifs and long DRs) to the 30 end of the cytosolic

fsSox2 reporter and electroporated these constructs into HeLa cells

(Hacisuleyman et al, 2016; Fig 4B and C). We then performed

smFISH (Levesque & Raj, 2013) using RNA probes antisense to
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Figure 2. Novel lncRNA nuclear enrichment signals.

A–E Identification of differential regions (DRs) within lncRNAs with different subcellular localization patterns. Data are depicted as in Fig 1E. Established subcellular
localization patterns range from (A), occupying a single, prominent nuclear focus (ANRIL, FISH Class 1), to (E), exhibiting a diffuse, mostly cytosolic pattern
(NR_024412, FISH Class 5; Cabili et al, 2015).

F The number of DRs discovered per 10 kb of lncRNA sequence tiled is similar for each FISH Class.
G DRs are more conserved than most lncRNA sequences. Boxplot of phastCons scores comparing nucleotides within DRs (red), to all other nucleotides within the

oligo-pool (gray). P-value: Mann–Whitney Test. The solid horizontal line is the median while the lower and upper hinges correspond to the first and third quartiles
(the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is the inter-
quartile range). The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are outliers
and are plotted individually.
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fsSox2, followed by double-blinded spot quantification using Star-

Search (Levesque & Raj, 2013; Materials and Methods). We

observed that ~30% of fsSox2-only transcripts were detected in the

nucleus, and appending the repetitive XIST motif increased nuclear

localization to ~40% (Fig 4D; P = 0.03, Mann–Whitney test).

Appending the C-rich motif did not significantly affect the localiza-

tion of fsSox2 (Fig 4D).

We next investigated whether the longer DRs identified by our

MPRNA might impart a stronger effect on nuclear localization. There-

fore, we expressed fsSox2-DR fusion transcripts (DRs from MALAT1,
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Figure 3. Motifs enriched in lncRNA nuclear enrichment signals.

A Position weight matrix (PWM) for a novel 57-nt motif enriched within the DRs of XIST (E-value < 0.05).
B Occurrences of this motif throughout the XIST locus.
C Multiple sequence alignments of the incidences of the XIST motif (colored nucleotides) within the XIST DRs. Adjoining sequences are colored in gray.
D PWM for a novel C-rich 15-nt motif enriched within the DRs of 21 different lncRNAs (E-value < 0.05).
E The occurrences of this motif throughout the MALAT1 locus.
F Multiple sequence alignments of different instances of this motif (colored nucleotides), as they appear in the DRs of the indicated lncRNAs.
G Oligos bearing the novel motifs described in Fig 2A–F and Appendix Fig S2 are significantly enriched in nuclear fractions, relative to all other oligos in the MPRNA.

P-value: Mann–Whitney test. The solid horizontal line is the median while the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th

percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge. The lower whisker extends from the hinge to the
smallest value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are outliers and are plotted individually.

H, I Novel nuclear enrichment motifs influence the localization of endogenous human transcripts. Comparison of the nuclear enrichment of both human mRNA and
lncRNA transcripts with at least one occurrence of the discovered motifs, relative to all other transcripts, in HeLa and A549 cells (ENCODE Project Consortium,
2012). P-value: Mann–Whitney test (lincRNAs with at least one motif occurence versus all other lincRNAs; mRNAs with at least one motif occurence versus all other
mRNAs). The solid horizontal line is the median while the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The
upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge. The lower whisker extends from the hinge to the smallest
value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are outliers and are plotted individually.
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625 nt; TUG1, 721 nt; and XIST, 581 nt) in HeLa cells, and compared

their subcellular localization to that of the fsSox2-only transcript by

smFISH. As expected, we found that the MALAT1 “Region M” signifi-

cantly increased nuclear enrichment of fsSox2 (Fig 4D; P < 1/106,

Mann–Whitney test). Similarly, the TUG1 DR and XIST DR (which

harbors the XIST motif) also promoted nuclear enrichment of fsSox2

(Fig 4D; P < 1/106, Mann–Whitney test; Materials and Methods).

Thus, the longer DRs identified in our MPRNA are sufficient to affect

the nuclear enrichment of an otherwise-cytosolic transcript.

Discussion

Here we present a methodology to systematically assay RNA-based

functionalities in an unbiased manner. As a first application of

MPRNA, we simultaneously interrogated over 10,000 RNA sequences

for their ability to impart changes in subcellular localization. We

found that our pool design strategy also allows us to leverage redun-

dancy, variance interdependencies, and statistical Materials and

Methods to identify larger RNA regions that provide signal in MPRNA.
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Figure 4. Differential regions are sufficient to redirect RNA subcellular localization.

A Representative XIST and C-rich motif regions and novel differential regions (DRs) from lncRNAs TUG1 and XIST that are examined in (B–D). Data depicted as in Fig 1E.
B Experimental overview and examples of smFISH experiments. fsSox2 reporter constructs were fused to individual small motifs and long DRs. Representative smRNA-

FISH images: (left) unmodified fsSox2 reporter, (middle) fsSox2 fused to three tandem XIST motifs, and (right) fsSox2 fused to three tandem instances of the C-rich
motif (scale bars = 20 lm, blue: Hoechst 33342).

C Representative smRNA-FISH images of (left) unmodified fsSox2, MALAT1 Region M (second from left), TUG1 DR (second from right), and XIST DR (right).
D smFISH quantification of the nuclear localization of fsSox2 reporter constructs fused to the indicated motifs and DRs (P-value: Mann–Whitney test). The solid

horizontal line is the median while the lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends
from the hinge to the largest value no further than 1.5 × IQR from the hinge. The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the
hinge. Data beyond the end of the whiskers are outliers and are plotted individually.
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We applied MPRNA to nuclear localization and demonstrated

that we can identify active RNA regions and glean insights into RNA

biology. For example, across the 38 lncRNAs tested, we find many

regions greater than 300 nts (median DR length was 290 nts) as the

drivers of nuclear enrichment. This includes known regions

required to retain MALAT1 that was recapitulated in the MPRNA, as

well as identification of several novel regions. Consistently, inde-

pendent smFISH analysis confirmed the sufficiency of these regions

to promote fsSox2 localization to the nucleus. Moreover, we

observed that lncRNAs that are more nuclear tend to contain a

greater number of regions flagged as DRs by our assay. Together,

these independent results converge on the reproducibility and

robustness of the MPRNA.

Deeper analysis of potential common sequence motifs underlying

these longer RNA nuclear enrichment regions uncovered a C-rich

sequence motif that is over-represented in these regions. Supporting

this finding, C-rich motifs are modestly enriched in total RNA

sequencing of nuclear versus cytoplasmic samples provided by

ENCODE. Also, a similar motif was identified in an independent

study using a similar approach (Lubelsky & Ulitsky, 2018).

In contrast, we were not able to validate the nuclear localization

properties of this sequence by smFISH. This could be due to the

C-rich motif requiring a larger “linker” region or a particular stoi-

chiometry for RNA secondary structure. Deeper investigation of

these possibilities is among many other directions for future mecha-

nistic work.

Interestingly, XIST also exhibited a small 57-nt motif that was

repeated 18 times within the mature transcript, but is not detectable

elsewhere in the genome. Remarkably, the XIST motif was sufficient

—albeit modestly—to enrich fsSox2 in the nucleus as determined by

smFISH. This, combined with our finding that longer regions are

sufficient to alter the localization of a cytoplasmic transcript, further

suggests that smaller motifs could be important for nuclear localiza-

tion but likely require a larger RNA context.

Together, these findings from this first application of MPRNA

raise several new hypotheses for future experimental investigation.

For example, what are the constituent proteins that bind to the

nuclear enrichment sequences? Considering that our initial results

suggest that longer RNA sequences are more effective in nuclear

enrichment, it is likely that several proteins could scaffold a given

region for nuclear retention. With our initial map of 109 regions, we

can now hone in on these as an initial test for relevant RNA–protein

interactions through various additional experimental approaches.

One advantage to the MPRNA strategy is that it is a universally

applicable logical framework to understand RNA biology at a global

level. More focused studies such as determining structural features

that drive specific RNA–protein interactions could also benefit from

a MPRNA approach. By designing an oligo-pool containing numer-

ous sequence variants and compensatory mutations for specific

RNA–protein interaction sites, one could gain insights into lncRNA

structure–function relationships. For example, by combining RNA–

protein binding assays (e.g., CLIP) with MPRNA, one could assay

thousands of sequence and structural variants in parallel to deter-

mine common binding motifs or structures of RNA–protein interac-

tions. We also envision developing additional MPRNA constructs to

screen across diverse aspects of RNA biology, such as sequence

requirements for splicing, gene regulation, or enhancer and suppres-

sor activity.

Collectively, we have demonstrated that MPRNA is a robust and

reproducible strategy to identify activity in RNA sequences. Notably,

MPRNA can be applied to any assay where a separation of active

versus inactive RNAs can be achieved. Overall, MPRNA can be

combined with classic biochemical approaches to achieve the

needed genome-scale to address many pressing RNA biology

questions.

Materials and Methods

Oligo-pool design

We designed 153-mer oligonucleotides to contain, in order, the

16-nt universal primer site ACTGGCCGCTTCACTG, a 110-nt variable

sequence, a 10-nt unique barcode sequence, and the 17-nt universal

primer site AGATCGGAAGAGCGTCG. The unique barcodes were

designed as described previously, while the variable sequences were

obtained by tiling lncRNA sequences. The resulting oligonucleotide

libraries were synthesized by Broad Technology Labs.

ePCR amplification of oligo-pool

The synthesized oligo-pool was amplified by emulsion PCR (ePCR,

Micellula DNA Emulsion & Purification Kit, Chimerx), according to

the manufacturers’ instructions. The ePCR primers were designed

to add the AgeI/NotI restriction sites to the synthesized oligos for

subsequent cloning (AgeI primer: AATAATACCGGTACTGGCC

GCTTCACTG; NotI primer: GAGGCCGCG GCCGCCGACGCTCTTCC

GATCT). To determine the oligos representation of the ePCR-

amplified oligo-pool (based on the unique 30 barcode of each

oligo), 1 ng of the amplified oligo-pool was used as input for

library preparation (see below) and sequenced on a MiSeq (SR,

Illumina).

Cloning

A minCMV promoter (50-TAGGCGTGTACGGTGGGAGGCCTATAT
AAGCAGAGCTCGTTTAGT GAACCGTCAGATCGC-30) was cloned

upstream of fsSox2. Similar to a previous publication (Hacisuleyman

et al, 2016), we used a cytosolic-localized fsSox2 reporter in order to

avoid translation-derived artifacts. The ePCR-amplified oligo-pool

and the identified motifs and candidate regions were digested with

AgeI/NotI and inserted 30 of fsSox2. For MPRNA cloning, the liga-

tion reaction (100 ng backbone + 4× molar excess of oligo-pool)

was transformed into 10× DH5a tubes (ThermoScientific). A total

of 20 ampicillin LB plates were inoculated with the 10 transforma-

tion reactions and incubated overnight at 37°C. All bacterial colo-

nies were then scraped in 5 ml of LB per plate and pooled, and

the plasmids were purified with the endotoxin-free Qiagen Plasmid

Plus Maxi kit (Qiagen). The cloned oligo-pool was then sequenced

on the MiSeq to determine the oligo representation as described

above.

Cell fractionation

HeLa nuclear and cytoplasmic fractions were isolated as previously

described (Hacisuleyman et al, 2016). The success of the
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fractionations (Fig EV1B) was confirmed by qRT–PCR of the nuclear

ncRNA NEAT1 and the cytoplasmic ncRNA SNHG5 in RNA isolated

(see below) from whole cells, the pelleted nuclei, and from the cyto-

plasmic fractions.

RNA extraction and qRT–PCR

RNA was isolated by TRIzol (ThermoScientific)—chloroform extrac-

tion, followed by isopropanol precipitation, according to standard

procedures. 2 lg of BioAnalyzer-validated RNA was digested with

recombinant DNase I (2.77 U/ll, Worthington #LS006353) at 37°C

for 30 min, followed by heat inactivation at 75°C for 10 min.

Reverse transcription was performed with SuperScript III cDNA

synthesis kit (ThermoScientific). Quantitative RT–PCR was

performed using the FastStart Universal SYBR Green Master mix

(Roche) on an ABI 7900. Primers were as follows: NEAT1 forward

TGATGCCACAACGCAGATTG, reverse GCAAACAGGTGGGTAGG

TGA, and SNHG5 forward GTGGACGAGTAGCCAGTGAA, reverse

GCCTCTATCAATGGGCAGACA. After processing the raw data by

qPCR Miner (Zhao & Fernald, 2005), the efficiency of each primer

set was used to calculate the relative initial concentration of each

gene. The relative expression in the nuclear and cytoplasmic

fractions was then calculated by normalization to that in the whole

cell.

Library preparation

Sequencing libraries were prepared by PCR amplification using

PfuUltra II Fusion DNA polymerase (Agilent #600672) and primers

designed to anneal to the universal primer site flanking the oligos

and to add sequencing index barcode for multiplexing: forward

caagcagaagacggcatacgagatCGTGATgtgactggagttcagacgtgtgctcttccgatct

ACTGGCCGCTTCACTG, reverse AATGATACGGCGACCACCGAGAT

CTACACTCTTTCCCTACACGACGCTCTTCCG ATCT (capital letters

indicate (i) the index for the library, and (ii) the region complemen-

tary to the universal primer site). PCR amplification (initial denatu-

ration 95°C—2 min; cycling 95°C—30 s, 55°C—30 s, 72°C—30 s;

final extension 72°C—10 min) was carried out for 30 cycles

followed by triple 0.6×, 1.6×, and 1× SPRI beads (Agencourt

AMPure XP, Beckman Coulter) cleanup. The quality and molarity of

the libraries was evaluated by BioAnalyzer, and the samples were

sequenced in a pool of 6 on the Illumina HiSeq2500, full flow cell,

single-read 100 bp. To ensure the transfection was successful, we

required that at least 70% of the oligo-pool was represented back

(i.e., had a count of at least one) in the sequencing sample

(Fig EV1).

Analyzing MPRNA data

Read mapping and obtaining counts table

To find a unique mapping location for the read, we ensured an exact

match between the first 10 read nucleotides and a unique oligo

barcode. To ensure that the correct oligo was identified using this

barcode match, we allowed only two mismatches between the

remaining 65 nts of the read sequence and the upstream oligo

sequence corresponding to the unique barcode (Fig 1B). The result-

ing counts for each oligo in every sample (6 Nuclei and 6 Total)

were compiled in a counts table (Fig 1B).

Normalizing the counts table

The counts table was normalized using a library size correction in

order to facilitate comparing counts across samples with different

sequencing depths. The library size was calculated as the total

number of reads in each sample.

Modeling nucleotide counts from Oligo counts

The counts of a particular nucleotide were modeled by taking the

median of counts for every oligo tiling the nucleotide (Fig 1C). Since

the offset between subsequent oligos was usually 10 nucleotides,

we obtained nucleotide counts also at a 10-nucleotide resolution.

The resulting modeled nucleotide counts table (Table EV2) was

used to infer differential regions.

Inferring differential regions from modeled nucleotide counts

There are two main steps in inferring differential regions from

modeled nucleotide counts—(i) identifying potential candidate

regions, and (ii) assigning a P-value for each potential candidate

region (Fig 1D). We identified potential candidate regions by calcu-

lating the median of the difference between nuclear counts and

total counts across all six replicates at each nucleotide and then

grouping together neighboring points that exceeded a threshold, as

described previously (Jaffe et al, 2012). We then defined a

summary statistic for each region based on the differences between

nuclear and total counts of each nucleotide in the region as well

as the trend of these counts. To assess the uncertainty of this

procedure, we generated a list of global null candidates by shuf-

fling the sample labels and computed a summary statistic for these

regions to form a null distribution. Then, we ranked each potential

candidate region by comparing their respective summary statistic

to the null distribution to obtain an empirical P-value. The

P-values were converted to q-values using the Benjamini–Hochberg

approach.

Motif analysis

MEME (Machanick & Bailey, 2011) software package was used to

find motifs enriched in differential regions. Specifically, we used the

MEME function in the suite in the discriminative mode with DR

sequences as the list of primary sequences and the other sequences

in the pool as the controls. We ran MEME in different settings—

OOPS and ANR—to ensure we found motifs that were repeating

several times in a given DR and those only occurring once.

k-mer enrichment

If sequence preferences are driven by more general sequence

composition preferences that cannot be so easily represented by

regular expression or position weight matrix motif models, then

nuclear enrichment of DRs may be more effectively modeled by

considering all k-mers. To this end, we performed a regression to

assign weight coefficients to all k-mers for the DR sequences and

non-DR sequences similar to the motif analysis using MEME as

described previously. To avoid overfitting, we performed ridge

regression (Le Cessie & Van Houwelingen, 1992), which minimizes

not only the distance between model predictions and actual values

but also the magnitude of the weights. We chose the alpha param-

eter that varies the emphasis of these two competing objectives by
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evaluating fivefold cross-validated mean squared error over a

parameter grid.

Conservation analysis

The phastCons and phyloP scores (Siepel et al, 2005, 2006) for the

whole genome were downloaded from UCSC genome browser. We

extracted these scores for the DRs and shuffled control regions using

a custom script. In order to account for natural conservation dif-

ferences between lncRNAs and mRNAs as well as among different

lncRNAs, the control regions were obtained by shuffling the DR

sequences using shuffleBed but ensuring the new regions fell within

exons of the lncRNAs the DRs were from. Finally, the scores were

compared between DR and non-DR regions using the Mann–Whitney

test.

ENCODE fractionation RNA-Seq

We downloaded the raw RNA-Seq reads for the nucleus and cytoso-

lic compartments from the ENCODE Project Consortium (2012)

website. These reads were quantified using salmon (Patro et al,

2017) to obtain TPMs, and then, the nuclear/cytosolic TPMs of tran-

scripts with the motif [found using the FIMO (Grant et al, 2011)

software] were compared to all the other transcripts for both

lncRNAs and mRNAs.

Single-molecule RNA fluorescence in situ hybridization
(smRNA-FISH)

Briefly, 70–80% confluent 1 × 106 HeLa (ATCC� CCL-2TM) cells

were electroporated with 2 lg of construct using the Amaxa� Cell

Line Nucleofector� Kit R using program I-013, and cultured for 48 h

in LabTek v1 glass chambers. smFISH was performed using

Biosearch Technologies Stellaris� probes, as described previously

(Hacisuleyman et al, 2016). RNA probes targeting and tiling the

fsSox2 exon were conjugated to Quasar 570. Nuclei were visualized

with 4,6-diamidino-2-phenylindole (DAPI). Images were obtained

using the Zeiss Cell Observer Live Cell microscope at the Harvard

Center for Biological Imaging. For each field of view, at least 40

slices (each plane: 0.24 lm) were imaged, and z-stacks were

merged with maximum intensity projections (MIP). fsSox2 foci were

computationally identified using the spot counting software Star-

Search. To ensure robustness, the analysis was blinded and the

person counting the spots did not know the identity of the samples.

For each construct, fsSox2 foci within at least 150 cells were

counted in biological duplicate.

Code availability

All the analysis in this paper was carried out using a custom pack-

age developed for the experiment called oligoGames. The package is

currently hosted on GitHub—https://github.com/cshukla/oligoGa

mes.

Data availability

All analyzed sequence data have been deposited in NCBI GEO under

accession GSE98828.

Expanded View for this article is available online.

Acknowledgements
The authors would like to thank Doug Richardson and Sven Terclavers at

Harvard Center for Biological Imaging (HCBI) for assistance with imaging and

the Bauer Sequencing Facility at Harvard University for assistance with

sequencing. CJS would like to acknowledge Alejandro Reyes for advice on writ-

ing the manuscript and analyzing the data. The authors would like to thank

everyone in the Rinn and Irizarry laboratories for their advice and insightful

comments throughout this work. This work was supported by NIH grants

R01GM083084 and R01HG005220 to RAI as well as NIH grants U01DA040612-

01 and P01GM099117 to JLR. PGM was supported by the “Deutsche

Forschungsgemeinschaft (DFG)” (MA5028/1-3 and MA5028/1-1).

Author contributions
JLR conceived the project. PGM, ALM, and CG designed and carried out experi-

ments. CJS, KDK, and RAI conceived and implemented the statistical method to

detect Differential Regions. CJS and RAI designed and carried out informatic

analyses. MNC designed the oligo-pool and DMS assisted with the experi-

ments. JLR, CJS, and PGM wrote the manuscript. RAI and JLR supervised and

funded the project.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Anderson DM, Anderson KM, Chang C-L, Makarewich CA, Nelson BR, McAnally

JR, Kasaragod P, Shelton JM, Liou J, Bassel-Duby R, Olson EN (2015) A

micropeptide encoded by a putative long noncoding RNA regulates

muscle performance. Cell 160: 595 – 606

Brown CJ, Hendrich BD, Rupert JL, Lafrenière RG, Xing Y, Lawrence J, Willard

HF (1992) The human XIST gene: analysis of a 17 kb inactive X-specific

RNA that contains conserved repeats and is highly localized within the

nucleus. Cell 71: 527 – 542

Bullock SL, Ish-Horowicz D (2001) Conserved signals and machinery for RNA

transport in Drosophila oogenesis and embryogenesis. Nature 414: 611 – 616

Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL (2011)

Integrative annotation of human large intergenic noncoding RNAs reveals

global properties and specific subclasses. Genes Dev 25: 1915 – 1927

Cabili MN, Dunagin MC, McClanahan PD, Biaesch A, Padovan-Merhar O,

Regev A, Rinn JL, Raj A (2015) Localization and abundance analysis of

human lncRNAs at single-cell and single-molecule resolution. Genome Biol

16: 20

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence

JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is

essential for the structure of paraspeckles. Mol Cell 33: 717 – 726

Davis I, Ish-Horowicz D (1991) Apical localization of pair-rule transcripts

requires 30 sequences and limits protein diffusion in the Drosophila

blastoderm embryo. Cell 67: 927 – 940

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G,

Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y,

Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M et al

(2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of

their gene structure, evolution, and expression. Genome Res 22: 1775 – 1789

ENCODE Project Consortium (2012) An integrated encyclopedia of DNA

elements in the human genome. Nature 489: 57 – 74

10 of 11 The EMBO Journal 37: e98452 | 2018 ª 2018 The Authors

The EMBO Journal High-throughput screen of RNA function Chinmay J Shukla et al

Published online: January 15, 2018 

https://github.com/cshukla/oligoGames
https://github.com/cshukla/oligoGames
https://doi.org/10.15252/embj.201798452


Ernst J, Melnikov A, Zhang X, Wang L, Rogov P, Mikkelsen TS, Kellis M (2016)

Genome-scale high-resolution mapping of activating and repressive

nucleotides in regulatory regions. Nat Biotechnol 34: 1180 – 1190

Gong J, Liu W, Zhang J, Miao X, Guo A-Y (2015) lncRNASNP: a database of

SNPs in lncRNAs and their potential functions in human and mouse.

Nucleic Acids Res 43: D181 –D186

Grant CE, Bailey TL, Noble WS (2011) FIMO: scanning for occurrences of a

given motif. Bioinformatics 27: 1017 – 1018

Gutschner T, Hämmerle M, Eissmann M, Hsu J, Kim Y, Hung G, Revenko A,

Arun G, Stentrup M, Gross M, Zörnig M, MacLeod AR, Spector DL,

Diederichs S (2013) The noncoding RNA MALAT1 is a critical regulator of

the metastasis phenotype of lung cancer cells. Cancer Res 73: 1180 – 1189

Guttman M, Rinn JL (2012) Modular regulatory principles of large non-coding

RNAs. Nature 482: 339

Hacisuleyman E, Shukla CJ, Weiner CL, Rinn JL (2016) Function and evolution

of local repeats in the Firre locus. Nat Commun 7: 11021

Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J,

Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H,

Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T,

Medvedeva YA, Testa AC et al (2017) An atlas of human long non-coding

RNAs with accurate 50 ends. Nature 543: 199 – 204

Jaffe AE, Murakami P, Lee H, Leek JT, Fallin MD, Feinberg AP, Irizarry RA

(2012) Bump hunting to identify differentially methylated regions in

epigenetic epidemiology studies. Int J Epidemiol 41: 200 – 209

Jin G, Sun J, Isaacs SD, Wiley KE, Kim S-T, Chu LW, Zhang Z, Zhao H, Zheng

SL, Isaacs WB, Xu J (2011) Human polymorphisms at long non-coding

RNAs (lncRNAs) and association with prostate cancer risk. Carcinogenesis

32: 1655 – 1659

Johnstone O, Lasko P (2001) Translational regulation and RNA localization in

Drosophila oocytes and embryos. Annu Rev Genet 35: 365 – 406

Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA Gas5

is a growth arrest and starvation-associated repressor of the

glucocorticoid receptor. Sci Signal 3: ra8

Korthauer K, Chakraborty S, Benjamini Y, Irizarry RA (2017) Detection and

accurate False Discovery Rate control of differentially methylated regions

from Whole Genome Bisulfite Sequencing. BioRxiv 183210 [PREPRINT]

Le Cessie S, Van Houwelingen JC (1992) Ridge estimators in logistic

regression. J R Stat Soc Ser C Appl Stat 41: 191 – 201

Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding

RNAs in health and disease. Cell 152: 1308 – 1323

Levesque MJ, Raj A (2013) Single-chromosome transcriptional profiling reveals

chromosomal gene expression regulation. Nat Methods 10: 246 – 248

Lin AC, Holt CE (2007) Local translation and directional steering in axons.

EMBO J 26: 3729 – 3736

Lubelsky Y, Ulitsky I (2018) Sequences enriched in Alu repeats drive nuclear

localization of long RNAs in human cells. Nature 555: 107 – 111

Machanick P, Bailey TL (2011) MEME-ChIP: motif analysis of large DNA

datasets. Bioinformatics 27: 1696 – 1697

Marín-Béjar O, Marchese FP, Athie A, Sánchez Y, González J, Segura V,

Huang L, Moreno I, Navarro A, Monzó M, García-Foncillas J, Rinn JL, Guo

S, Huarte M (2013) PintlincRNA connects the p53 pathway with

epigenetic silencing by the Polycomb repressive complex 2. Genome Biol

14: R104

Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the

spatial dimension. Cell 136: 719 – 730

Melnikov A, Murugan A, Zhang X, Tesileanu T, Wang L, Rogov P, Feizi S, Gnirke

A, Callan CG, Kinney JB, Kellis M, Lander ES, Mikkelsen TS (2012) Systematic

dissection and optimization of inducible enhancers in human cells using a

massively parallel reporter assay. Nat Biotechnol 30: 271 – 277

Miyagawa R, Tano K, Mizuno R, Nakamura Y, Ijiri K, Rakwal R, Shibato J,

Masuo Y, Mayeda A, Hirose T, Akimitsu N (2012) Identification of cis- and

trans-acting factors involved in the localization of MALAT-1 noncoding

RNA to nuclear speckles. RNA 18: 738 – 751

Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15:

423 – 437

Ni T, Yang Y, Hafez D, Yang W, Kiesewetter K, Wakabayashi Y, Ohler U, Peng W,

Zhu J (2013) Distinct polyadenylation landscapes of diverse human tissues

revealed by a modified PA-seq strategy. BMC Genom 14: 615

Oikonomou P, Goodarzi H, Tavazoie S (2014) Systematic identification of

regulatory elements in conserved 30 UTRs of human transcripts. Cell Rep 7:

281 – 292

Paquin N, Chartrand P (2008) Local regulation of mRNA translation: new

insights from the bud. Trends Cell Biol 18: 105 – 111

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides

fast and bias-aware quantification of transcript expression. Nat Methods

14: 417 – 419

Patwardhan RP, Lee C, Litvin O, Young DL, Pe’er D, Shendure J (2009) High-

resolution analysis of DNA regulatory elements by synthetic saturation

mutagenesis. Nat Biotechnol 27: 1173 – 1175.

Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu

Rev Biochem 81: 145 – 166

Rinn J, Guttman M (2014) RNA function. RNA and dynamic nuclear

organization. Science 345: 1240 – 1241

Rosenberg AB, Patwardhan RP, Shendure J, Seelig G (2015) Learning the

sequence determinants of alternative splicing from millions of random

sequences. Cell 163: 698 – 711

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson

H, Spieth J, Hillier LW, Richards S, Weinstock GM, Wilson RK, Gibbs RA,

Kent WJ, Miller W, Haussler D (2005) Evolutionarily conserved elements in

vertebrate, insect, worm, and yeast genomes. Genome Res 15: 1034 – 1050

Siepel A, Pollard KS, Haussler D (2006) New materials and methods for

detecting lineage-specific selection. In Proceedings of the 10th Annual

International Conference on Research in Computational Molecular Biology,

pp 190 – 205. Berlin, Heidelberg: Springer-Verlag

Tseng Y-Y, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning

P, Reuland B, Guenther K, Beadnell TC, Essig J, Otto GM, O’Sullivan MG,

Largaespada DA, Schwertfeger KL, Marahrens Y, Kawakami Y, Bagchi A

(2014) PVT1 dependence in cancer with MYC copy-number increase.

Nature 512: 82 – 86

Zhang B, Gunawardane L, Niazi F, Jahanbani F, Chen X, Valadkhan S (2014) A

novel RNA motif mediates the strict nuclear localization of a long non-

coding RNA. Mol Cell Biol 34: 2318 – 2329

Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-

time polymerase chain reaction. J Comput Biol 12: 1047 – 1064

License: This is an open access article under the

terms of the Creative Commons Attribution 4.0

License, which permits use, distribution and reproduc-

tion in any medium, provided the original work is

properly cited.

ª 2018 The Authors The EMBO Journal 37: e98452 | 2018 11 of 11

Chinmay J Shukla et al High-throughput screen of RNA function The EMBO Journal

Published online: January 15, 2018 


