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ABSTRACT

Grainyhead (Grh)/CP2 transcription factors are
highly conserved in multicellular organisms as key
regulators of epithelial differentiation, organ devel-
opment and skin barrier formation. In addition, they
have been implicated as being tumor suppressors
in a variety of human cancers. Despite their physio-
logical importance, little is known about their struc-
ture and DNA binding mode. Here, we report the
first structural study of mammalian Grh/CP2 factors.
Crystal structures of the DNA-binding domains of
grainyhead-like (Grhl) 1 and Grhl2 reveal a closely
similar conformation with immunoglobulin-like core.
Both share a common fold with the tumor sup-
pressor p53, but differ in important structural fea-
tures. The Grhl1 DNA-binding domain binds duplex
DNA containing the consensus recognition element
in a dimeric arrangement, supporting parsimonious
target-sequence selection through two conserved
arginine residues. We elucidate the molecular ba-
sis of a cancer-related mutation in Grhi1 involving
one of these arginines, which completely abrogates
DNA binding in biochemical assays and transcrip-
tional activation of a reporter gene in a human cell
line. Thus, our studies establish the structural basis
of DNA target-site recognition by Grh transcription
factors and reveal how tumor-associated mutations
inactivate Grhl proteins. They may serve as points
of departure for the structure-based development of
Grh/CP2 inhibitors for therapeutic applications.

INTRODUCTION

The Grh/CP2 family of transcription factors (TF) com-
prises two distinct divisions, CP2 (CCAAT box-binding
protein 2) and Grh (grainyhead). Members of this TF fam-
ily are widely found in diverse taxa, ranging from fungi to
animals. The first member of the Grh/CP2 family was iden-
tified in Drosophila when mutant embryos had slack and
fragile cuticles, as well as ‘grainy’ and discontinuous head
skeletons (1,2). In humans, six homologs are known with
LSF, LBP-1a and LBP-9 belonging to the CP2 subfamily
(3), and grainyhead-like (Grhl) 1-3 constituting the Grh
subfamily (4). Proteins of the CP2 subfamily are generally
expressed ubiquitously (5), while the expression pattern of
the Grh subfamily is rather tissue- and developmental stage-
specific (4).

In animals, Grhl proteins are predominantly expressed
in epithelial tissues and are essential regulators of ep-
ithelial development and extracellular barrier repair af-
ter tissue damage (4,6,7). GRHL2 or GRHL3 null muta-
tions in mice lead to embryonic lethality with defects in
dorsal/ventral closure (8,9), while mice lacking GRHLI ex-
hibit delayed hair coat growth, defective hair anchoring and
palmoplantar keratoderma. Many studies have been de-
voted to identifying Grhl target genes. Grhll was described
to specifically regulate expression of the desmosomal cad-
herin desmoglein-1 (Dsgl), and phenotypes of GRHLI-null
mice are similar to that of a DSGI mutation (10). In de-
veloping epithelia, Grhl2 regulates genes encoding compo-
nents of the apical junctional complex of epithelial cells,
like E-cadherin (Cdhl) and claudin-4 (Cldn4) (11,12). In
the placenta, Grhl2 transactivates the serine protease in-
hibitor Kunitz type 1 (Spintl), controlling trophoblast in-
tegrity and labyrinth formation (13). Grhl3 can regulate the
production of transglutaminase (TGase) 1, the enzyme re-
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quired for covalent crosslinking of cuticular structural com-
ponents (14-16).

In recent years, Grhl1-3 have also been implicated in sev-
eral different types of cancer (6,17). Grhll, for example, acts
as a tumor suppressor in squamous cell carcinoma (SCC)
of the skin (18) and neuroblastoma (19). Grhl2 and Grhl3,
respectively, directly regulate diverse genes relevant to can-
cer (20-23). In breast cancer and colorectal cancer, Grhl2
is involved in controling the epithelial-mesenchymal tran-
sition (EMT) during tumor progression (24-27). Addition-
ally, Grhl2 is reported as a regulator of human telomerase
reverse transcriptase (WTERT), the catalytic subunit of the
telomerase which plays a critical role in human carcinogen-
esis through the maintenance of telomeres (28,29).

Phylogenetic analysis indicates that the Grh/CP2 fam-
ily originated prior to the metazoan-fungal divergence and
the diversification of the two subfamilies probably occurred
in an ancient animal lineage (30). Sequence analyses sug-
gest that all Grh/CP2 family members share a common
domain architecture (Figure 1A) characterized by an in-
trinsically unstructured N-terminal transactivation domain
(TAD), a conserved DNA-binding domain (DBD), also
termed CP2 binding domain, and a C-terminal dimeriza-
tion domain (DD) (30,31). The Grh and CP2 subfamilies
share only about 20% sequence conservation between their
DBDs. However, the DBD is more conserved within the
Grh family, with a sequence identity of 8§1% between Grhl2
and Grhl3, and of 63% comparing Grhll to Grhl2 or Grhl3.
Sequence-specific binding of a Grhl DBD to its recogni-
tion element is a crucial event in transcription initiation of
a target gene. Mammalian CP2 binds as a tetramer (5,32)
to a DNA core sequence 5-CNRG-N5,,-CNRG-3' (N =
any nucleotide, R = purine) (33), while Grhl factors specif-
ically recognize the consensus sequence 5-AACCGGTT-3'
(14,15,34) and bind to it as dimers (35).

To date, no experimental structure has been reported
for Grh or CP2 factors or any of their domains. Here, we
present crystal structures of Grhll DBD and Grhl2 DBD.
The structures are closely similar, and their fold resem-
bles the DBD of the tumor suppressor p53 DNA-binding
domain. Moreover, we determined the crystal structure of
Grhll DBD bound to its consensus DNA response element.
The structure analyses combined with mutagenesis studies,
identify the molecular basis of DNA binding and provide
a direct explanation of how a single mutation in the DNA
binding site is linked to cancer.

MATERIALS AND METHODS
DNA and expression constructs

Gel-filtration-purified DNA oligonucleotides used for crys-
tallization and biochemical assays were obtained from
Biotez (Berlin, Germany). The DNA oligonucleotides were
dissolved in DNA buffer containing 20 mM HEPES-
NaOH, 100 mM NacCl, at pH 7.5. To prepare duplex DNA,
well-mixed solutions of single strands were heated to 95°C
and kept for 5 min. Strands were then annealed by slowly
cooling down to RT in a thermomixer. For electrophoretic
mobility shift assays (EMSA), DNA oligonucleotides were
5" labeled with cyanine-5 fluorescent dye. All DNA oligonu-
cleotides were stored at —20°C.
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The Grhll-DBD construct (aa 248-485) and the N-
terminal truncation construct (AN_Grhll, aa 248-618) of
Grhll were PCR-amplified from human GRHLI cDNA
(DNASU, Tempe, USA). Human Grhl2 DBD (aa 217-492)
was cloned from GRHL2 cDNA (Source BioScience, Berlin,
Germany). Both Grhll DBD and Grhl2 DBD were cloned
into the pQlinkH vector (36) between the BamHI and Notl
restriction sites for expression as N-terminally His;-tagged
recombinant proteins. The AN_Grhll construct was sub-
cloned into modified pET28a, yielding a product protein
with a non-cleavable C-terminal His tag.

Protein expression and purification

For overexpression, each plasmid was transformed into
competent Escherichia coli Rosetta (DE3) cells. In large-
scale culture, cells were grown to an ODgg of 1.0 in terrific
broth (TB) medium and subsequently induced at 17°C with
0.5 mM isopropyl B-D-1-thiogalactopyranoside (IPTG)
overnight. All steps of protein purification were carried out
at 4°C. The harvested cells were resuspended using lysis
buffer (1x PBS pH 7.5, 500 mM NacCl, 5% (v/v) glycerol,
0.5 mM 1,4-dithiothreitol (DTT), 1 mg ml~! lysozyme and
adding 1 protease inhibitor cocktail tablet (Roche) per 50
ml buffer). The cell lysate was centrifuged to remove the de-
bris. The supernatant was applied to a Ni**-nitrilotriacetic
acid (NTA) column, followed by His-tag cleavage using to-
bacco etch virus (TEV) protease which was subsequently re-
moved using a Ni>*-NTA column. Grhll DBD was further
purified by cation-exchange chromatography prior to Su-
perdex 75 (GE Healthcare) size-exclusion chromatography
(SEC) in buffer C (20 mM HEPES-NaOH, 125 mM NacCl,
2 mM DTT, pH 7.2). Grhl2 DBD was applied to Superdex
75 directly after the second Ni?*-NTA step. For AN_Grhl1,
the expression and purification protocol was essentially the
same as described for Grhll DBD, except that the TEV-
cleavage step was omitted. Finally, purified proteins were
concentrated and stored at —80°C.

Selenomethionine (SeMet)-labeled Grhll DBD was ex-
pressed in E. coli strain Rosetta (DE3) (Novagen). Initially,
50 ml of Grhl1-DBD overnight culture with LB medium
were incubated at 37°C. The cells were spun down, then
washed once with M9 medium. Subsequently, the pellet was
resuspended using 2 1 M9 medium and cultured at 37°C un-
til the ODyg reached 0.8. The culture was cooled to 17°C,
and lysine, threonine, phenylalanine at 100 mg 1~!, leucine,
isoleucine, valine, and SeMet at 50 mg 1-' were added to
down-regulate methionine synthesis (37). After incubation
for 15 min, cell growth was induced as described for the na-
tive protein.

To prepare the protein-DNA complex for crystallization,
purified Grhll DBD was mixed with double-stranded DNA
at a molar ratio of 1:0.6 by adding protein slowly into DNA
solution on ice. Excess unbound DNA was removed by SEC
with Superdex 75 in buffer D (20 mM HEPES, 100 mM
NaCl, 2 mM DTT). The complex was finally concentrated
to 18 mg ml~! and stored at —80°C.

Protein crystallization

All crystallization screens were performed using the sitting-
drop vapor-diffusion method by mixing 200 nl protein solu-
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tion and 200 nl reservoir buffer at 4°C, with a reservoir vol-
ume of 75 wl in 96-well plates. A solution of Grhl1-DBD at
18 mg ml~! was supplemented with 2 mM KI and crystal-
lized in a reservoir solution containing 2.1 M (NH4),SOq4
and 0.1 M NaOAc, pH 5.5. Under the same conditions,
crystals of SeMet-incorporated Grhll DBD and mutant
Grhll-DBD R427Q were obtained as well. The above crys-
tals were frozen directly in liquid nitrogen. Grhl2 DBD was
crystallized at 15 mg ml~! in a solution containing 21%
PEG 3350, 0.2 M sodium formate. Before flash-freezing,
the crystal was transferred into a cryoprotectant consisting
of reservoir solution supplemented with 30% (v/v) glycerol.
Crystals of the Grhl1-DBD:DNA complex were obtained
in the presence of 10% (v/v) isopropanol as precipitant with
and 0.1 M citric acid, pH 4.0. They were soaked in 20% ethy-
lene glycol for cryoprotection prior to freezing.

Structure analysis and refinement

X-ray diffraction data from single crystals were collected
on beamline 14.1 at BESSY II (Berlin, Germany) (38). The
wavelengths chosen for data collection were 0.9764 A for
Grhl1-DBD SeMet, 1.5000 A for Grhll DBD and 0.9184 A
for all other datasets, including Grhl1-DBD R427Q, Grhl2
DBD and the Grhl1-DBD:DNA complex. Initial indexing
and determination of an optimal data collection strategy
were performed using iMOSFLM (39). Data collection and
refinement statistics are reported in Table 1. The recorded
diffraction data were integrated and scaled with XDSapp
(40).

The crystal structure of Grhll DBD was determined in
two steps. First, an initial atomic model was built with
phases calculated from the SeMet derivative by the SAD
method using PHENIX AutoSol (41). This model was then
used as a search template for molecular replacement to
phase the 2.34-A resolution dataset of native Grhll DBD
using the program MOLREP (42). The model was further
extended using PHENIX Autobuild (43) and completed
manually within Coot (44). After several cycles of refine-
ment within PHENIX, the final model was obtained yield-
ing the statistics shown in Table 1. The Ramachandran
map produced by MolProbity (45) shows that 94% of the
residues are in favored regions with no outliers.

The crystal structures of Grhl2 DBD, Grhll-DBD
R427Q and Grhl1-DBD:DNA were determined by molec-
ular replacement using the program PHASER (46) and the
Grhl1-DBD crystal structure as a search model. The Grhl2-
DBD structure was refined with autoBuster (47). In all four
crystal structures determined, several terminal and loop
residues could not be modeled, presumably due to disor-
der. The structure of Grhll DBD comprises residues 249—
481 except for three segments without electron density (aa
386-387, aa 290-297, aa 437-454). In the structure of Grhl2
DBD, residues 247-485 are present in chain A and residues
247-484 in chain B. In chain A, aa 258-264, aa 284-287, aa
381-385 and aa 431-463 are missing, and in chain B aa 261
264, aa 284-287, aa 379-387 and aa 433-459 are missing.
In the structure of the Grhl1-DBD:DNA complex, residues
250-478 of chain A (aa 264-266, aa 288-297, aa 401402,
aa 404-406 and aa 439-453 missing) and residues 250-477
of chain B (aa 266-268, aa 289-297 and aa 441-454 miss-

ing) are present. The structure of the Grhl1-R427Q mutant
comprises residues 249-480, and aa 291-297, aa 386-387
and aa 437-454 are not included.

The data and refinement statistics are presented in Ta-
ble 1. No protein model has residues in the disallowed re-
gion of the Ramachandran map. The DNA conformation
was analyzed with 3DNA (48). Atomic coordinates were
aligned based on matching Ca positions with the online
server PDBeFOLD (49). Figures were generated with Py-
MOL and ESPript.

Electrophoretic mobility shift assay

The binding reaction mixture (final volume of 10 wl) con-
tained binding buffer (20 mM HEPES-NaOH pH 7.4, 100
mM NaCl, 2 mM DTT and 5% (w/v) glycerol), 1 uM of
fluorescently labeled Cy5-consensus (cons) DNA, 100 uM
of individual non-labeled DNA (Mut_12mer DNA as non-
specific competitor and Cons_12mer DNA as specific com-
petitor) and 4 uM of purified Grhll protein: DBD, DBD
R427Q, DBD R427A/R430A, DBD R427A, DBD R430A,
AN_Grhll. The samples were incubated at 4°C for 1 h. Sub-
sequently, protein-DNA complexes were separated from
unbound DNA by electrophoresis on an 8% polyacrylamide
gel in ice-cold TAE buffer (Tris acetate EDTA) for 40 min
at 100 V. The fluorescence signal was recorded with a Ty-
phoon™ FLA 9500 biomolecular imager (GE Healthcare)
at an excitation wavelength of 635 nM.

Size-exclusion chromatography coupled to right-angle light
scattering (SEC-RALS)

Each sample, (Grhll DBD, Grhl1-DBD:DNA complex, ~3
mg ml~!, 200 pl) was injected on a pre-equilibrated Su-
perdex 75 (10/300 GL, GE Healthcare) column at a flow
rate of 0.5 ml min~! in buffer D. The column was coupled
in-line with 270 RALS and VE3580 RI detectors. This tech-
nique allows calculation of the absolute molecular mass and
oligomeric state of a protein or protein complex at any point
in the chromatogram. Data were analyzed with OmniSEC
(Malvern) using 4 mg ml~! BSA as a standard.

Isothermal titration calorimetry (ITC)

ITC experiments were performed on a MicroCal VP-ITC
microcalorimeter. Before any experiment, all protein and
DNA samples were dialyzed overnight against ITC buffer
(20 mM HEPES NaOH pH 7.4, 100 mM NacCl, 0.5 mM
Tris [2-carboxyethylphosphine] (TCEP)) and degassed. The
experiment was performed with an initial half injection (2
wl) followed by a series of injections (7 wl) by adding protein
solution (100-300 wM) into the DNA sample (5-10 wM)
contained in the cell compartment. The binding curves were
fit to the model of one set of binding sites except for Grhll-
DBD R427Q or Grhl1-DBD R427A/R430A, which were
fit to the model of sequential binding sites within Origin 7.0.

Thermal shift assay

The environmentally sensitive fluorescent dye Sypro
Orange® (Invitrogen, Carlsbad, CA, USA) was used to
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Grhll DBD_SeMet Grhll DBD

Grhll DBD_R427Q

Grhl2 DBD

Grhll DBD:DNA

Data collection
Space group P6,22 P6,22
Cell dimensions

a, b, c (A) 103.41, 106.75, 106.75,

103.41, 116.21 115.63

B,y () | 90, 90, 120 90, 90, 120

Resolution (A) 47.24-2.99 49.02-2.34
(3.17-2.99)% (2.42-2.34)

Rumerge 0.118 (1.397) 0.060 (1.920)

<I/o()> 17.45(1.57) 35.62 (1.88)

Completeness (%) 98.7 (97.7) 99.9(99.9)

Multiplicity 8.2(8.2) 24.9 (24.3)

Refinement

Resolution (A) 49.0-2.34

No. reflections 31189

Ryork / Reree 0.192 / 0.229

No. atoms

Protein 1680

DNA

Water 39

Mean B factors (A?)

Protein 95.1

DNA

Water 82.1

R.m.s. deviations

Bond lengths (A) 0.008

Bond angles (°) 1.05

P6,22

104.41, 104.41,

P2y

54.19, 48.20, 101.30

P4y

59.03, 59.03, 198.85

116.26
90, 90, 120 90, 102.92, 90 90, 90, 90
47.62-2.35 43.37-2.50 44.09-2.92 (3.09-2.92)
(2.49-2.35) (2.59-2.50)
0.119 (3.394) 0.105 (0.910) 0.132(0.975)
20.65(1.23) 11.01 (1.70) 10.63 (1.84)
99.7 (98.8) 99.03 (97.6) 99.2 (98.7)
15.7(15.8) 44(4.3) 4.1 (4.1
47.62-2.35 43.37-2.50 44.09-2.92
16178 17837 14601
0.222 /0.251 0.196 / 0.226 0.235/0.279
1613 3194 3590

485
10 45 20
79.9 89.8 714

46.0
79.9 54.1 54.4
0.011 0.010 0.002
112 1.10 0.53

4Values in parenthesis for highest resolution shell.

monitor protein unfolding with respect to temperature.
The assay was conducted in quadruplicates using the 1Q5
Multicolor real-time PCR detection system (Bio-Rad,
Munich, Germany). All experiments were carried out in
25 mM phosphate pH 7.2, 225 mM NacCl, 10% glycerol,
and 5 mM DTT. Sample size was 50 wl and the protein
concentration 25 wM. The sample was heated from 25°C
to 80°C with a rate of 0.5°C min~!. Changes in fluores-
cence intensity were monitored, and the wavelengths for
excitation and emission were 490 and 530 nm, respectively.
Melting temperatures (Tm, the temperature midpoint for
the protein unfolding transition) were determined from the
peak value of the first-derivative curve.

Reporter gene assay

Mouse inner medullary collecting duct cells (mIMCD-3)
were purchased from ATCC (CRL-2123). Subsequently,
a knockout of GRHL2 was induced by CRISPR-Cas9
technology. Briefly, two oligonucleotides designed to yield
sgRNAs targeting exon 2 of the GRHL2 gene (5'- CACCG
TCGCC TTGGT GGCCG CAGTC-3; 5-AAACG
ACTGC GGCCA CCAAG GCGAC-3') were annealed
and cloned into Bbsl-digested pX330-Cas9-T2A-mCherry
plasmid (Addgene, Cambridge, MA, USA). mIMCD-3
cells were transiently transfected using Lipofectamine®
3000 transfection reagent (Thermo Fisher Scientific,
Waltham, USA). After 48 h, mCherry-positive cells were
selected by fluorescence-activated cell sorting and replated
for culturing. Single-clonally derived colonies were picked
and analyzed for mutations at the target region of GRHL2
exon 2. Three clones (designated 21b, 24b and 26c) were

found to carry frame shift-inducing exon 2 mutations
resulting in homozygous inactivation of GRHL?2.

For reporter assays, wildtype and GRHL2 knock-
out mIMCD-3 cells were transiently transfected using
Lipofectamine® 3000 transfection reagent. Reporter as-
says were performed according to manufacturer instruc-
tions using the firefly luciferase reporter vector pGL3-Basic
and the Renilla luciferase plasmid pRL-SV40 (Promega,
Madison, WI, USA) for normalization. The CLDN4 re-
porter construct was generated by inserting bases —611
to +174 relative to the mouse CLDN4 TSS into pGL3-
Basic vector as described previously (11). Full-length hu-
man GRHLI and GRHL? expression vectors (EX-12097-
MO02, EX-W2222-M02) were purchased from GeneCopoeia
(Rockville, MD, USA). Mutagenized constructs (Grhll
R427Q, Grhll R427A, Grhl2 R423Q and Grhl2 R423A)
were generated using the QuikChange I XL Site-Directed
Mutagenesis Kit (Agilent Technologies, Santa Clara, USA)
and primers listed in Supplementary Table S1. For gen-
erating the empty control vector the human GRHLI se-
quence was excised from the wildtype EX-12097-M02 plas-
mid. Subsequently, the backbone was blunt-ended and re-
ligated. Cells were harvested 72 h after transfection, and re-
porter activity was assayed via the Dual-Luciferase® Re-
porter Assay System (Promega) and a BioTek Synergy™ HT
Multi-Detection Microplate Reader.
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RESULTS
Overall architecture of Grhll DBD and Grhl2 DBD

Prior to this study, no structural data were available for
any member of the Grh/CP2 transcription factor family.
An initial prediction of disorder and secondary structure
with PrDOS (50) and psipred (51) suggested that the DNA-
binding and dimerization domains of the Grhl proteins are
more structured than their transactivation domains. Based
on this observation, we produced two soluble constructs
of Grhll: AN_Grhll (aa 248-618) and Grhll DBD (aa
217-492) (Supplementary Figure S1A). Both constructs re-
tained efficient DNA binding as detected by electrophoretic
mobility-shift assays (EMSA, see below). Due to problems
with degradation of AN_Grhll, and failure to crystallize
that protein construct, we focused on Grhll DBD to study
the structural basis for DNA binding and target-site recog-
nition. The Grhll1-DBD crystal structure was determined
at 2.3 A resolution by single-wavelength anomalous diffrac-
tion (SAD) phasing using selenomethionine-labeled protein
(Table 1). The asymmetric unit of the crystal contained one
molecule of the Grhll DBD (Figure 1B).

Grhll DBD contains an immunoglobulin- (Ig-) like core
with two long, twisted antiparallel B sheets of five (B1, B3,
B8,BSand B11)andsix (B2, B4, 6,37, 9 and B10)strands
(Figure 1C), respectively. This core is decorated by three «
helices and a series of surface loops. A C-terminal exten-
sion wrapping halfway around of the core (Supplementary
Movie S1) was found to be important for the solubility and
also for the stability of Grhll DBD during purification.

To assess the degree of structural similarity between the
Grhl factors, the crystal structure of Grhl2 DBD (aa 247—
484) was determined at 2.5 A resolution. The asymmetric
unit of the Grhl2-DBD crystal contains two protein chains
with closely similar conformation. The DBD of Grhll and
Grhl2 could be superimposed with a mean root-mean-
square deviation (RMSD) of 0.5 A between 160 match-
ing Ca positions, demonstrating that the two structures are
nearly identical (Supplementary Figure S1B).

Surprisingly, a search of the Protein Data Bank (PDB)
using PDBeFold identified the tumor suppressor protein
p53 as the closest structural homolog of Grhll (Q score =
0.26, 2GEQ, chain A). Although the two proteins’ DNA-
binding domains share only 10% sequence identity, their
matching Ca positions are superimposed with an RMSD
of 2.2 A, indicating a significant structural similarity. The
structural homology is most pronounced in the Ig-like core
of the DBD, whereas surface loops and decorating « helices
appear more variable (Figure 1E). The DNA-binding loop-
strand-helix (L1, S10, and H2) motif of p53 is in a different
orientation compared to the corresponding region in Grhll
DBD, underlining different recognition element preferences
for DNA binding by the two transcription factors.

DNA binding and target-site recognition by Grhl1 DBD

To reveal the structural basis of DNA target-site recogni-
tion and binding by Grhll, we determined the crystal struc-
ture of Grhll DBD bound to a symmetric 12-base-pair
DNA duplex centered about the Grhl consensus binding
sequence (AACCGGTT) at 2.9 A resolution. The crystal

contained two Grhll-DBD molecules and one DNA du-
plex in each asymmetric unit, where the protein chains and
the strands of the DNA double helix (or two 6-bp half
helices) are related by non-crystallographic dyad symme-
try (Figure 2A). The two Grhl1-DBD chains are arranged
nearly symmetrically to opposite faces of the standard B-
form DNA and contact each other only via the L10 loop
by forming hydrogen-bond interactions between the cen-
tral Lys386 and the carbonyl oxygens of residue Ser383
and Thr380 in the opposite chain (Supplementary Figure
S2A). The minor groove is widened at the central CG base
pairs up to a cross-groove P-P distance of 15.7 A to accom-
modate the L10 residues, whereas the major groove width
remains fairly constant over the entire duplex with cross-
groove P-P distances between 17.0 and 18.4 A. The varia-
tion in DNA groove widths is linked to the slightly unusual
O4’-endo sugar pucker of the central cytosines and x tor-
sion angles around -99° of the central guanosines. In this
arrangement, Lys386 may contribute to the overall stabi-
lization of the DBD-DNA complex. The C-termini of the
two Grhl1-DBD chains are oriented towards the same face
of the DNA, from where the dimerization domains would
extend to interact with each other (Figure 2A).

When superimposed, the two Grhl1-DBD chains present
in the asymmetric unit have essentially identical conforma-
tion, suggesting that their structure is not strongly influ-
enced by different crystal environments. Similarly, compar-
ing the structures of free with DNA-bound Grhll DBD re-
veals high structural similarity with a mean RMSD of 0.54
A for 158 matching Ca atoms (Supplementary Figures S3A
and B). These results establish that the Grhll DBD adopts
a pre-formed conformation, permitting target DNA bind-
ing without major structural rearrangement. Upon DNA
binding, Grhll DBD marginally changes the orientation of
its DNA-contacting helix o3, which tilts slightly to dock op-
timally into the major groove, and the loop L10 undergoes
a more obvious conformational change. Loop L10 in the
Grhll DBD:DNA complex is less flexible than in the ab-
sence of DNA where it lacks well-defined electron density
and displays elevated atomic displacement factors. .

The total size of the protein-DNA interface is ~1400 A2
with the Grhll DBD presenting a positively charged surface
to the DNA (Figure 2B). This surface is decorated mainly
with residues from the a3 helix and the L10 loop, which
interact with the DNA major and minor groove, respec-
tively (Supplementary Movie S2). Direct hydrogen-bonded
or Coulomb interactions with the DNA backbone, sup-
porting unspecific Grhl1-DBD binding to DNA, are medi-
ated by Thr380, GIn385, Lys386, Lys389, Cys421, Lys428
and Arg430 (Figure 2C). Due to the limited resolution of
the crystal structure, no water-mediated contacts could be
identified. Sequence-specific contacts between the Grhll
DBD and DNA bases are formed primarily by three con-
served amino acids (Supplementary Figure S3D), Argd27
and Gly387, as well as Arg430. The Argd27 guanidinium
group plays a pivotal role in anchoring the recognition helix
o3 to the DNA major groove via hydrogen bonding to the
06 carbonyl and N7 imine of guanine G8, the most strongly
conserved nucleotide in the Grhl consensus binding motif.
The same G8 is further interacting with the carbonyl oxy-
gen of Gly387 from the opposite protein chain, forming a
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Figure 1. Conserved structure of the Grhll DBD shows similar fold to p53. (A) Schematic representation of the Grhll domain organization. The trans-
activation domain (TAD; orange), DNA-binding domain (DBD; turquoise) and dimerization domain (DD; light blue) are indicated. Segments predicted
as disordered are shown in white. (B) Overall structure of the DBD in cartoon representation, with helices in red and B strands in pale cyan. Dashed lines
indicate peptide segments without electron density (aa386-387, aa290-297, aa437-454), presumably due to disorder. (C) Topology diagram for the DBD
structure:  helices and B strands are labeled as in (A). (D) Grhll DBD surface (gray) with the C-terminal extension highlighted as blue ribbon. (E) Least-
squares superimposition of Grhll DBD and p53 core domain (red, 2GEQ, chain A) with matching Ca atoms deviating by 2.3 A. The DNA-contacting
helix a3 shows a different orientation, and loop L10 of Grhll DBD has a different structure than the corresponding elements in p53. The other two helices
of Grhll DBD, al and a2, are either re-oriented or missing in the p53 structure.

hydrogen bond with the N2 amino group in the DNA minor
groove. In each dimeric ensemble, the Grhll Arg430 addi-
tionally forms a weak hydrogen bond to adenine A3, likely
providing additional selectivity for targeting. The DNA-
binding interface is overall conserved among members of
the Grh/CP2 family (Supplementary Figure S3C).

The crystal structures of DNA-bound Grhll DBD and
p53 DBD reveal generally similar DNA-binding modes
(Supplementary Figure S4A). Superimposing the two
DBD:DNA complexes via alignment of one DBD chain
from each protein shows clear similarity in the DNA-
binding segments, especially the recognition helices a3 of
Grhll and H2 of p53 Supplementary Figure S4B). Inter-
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Figure 2. Overall structure of the Grhl1-DBD:DNA complex reveals a parsimonious binding mode. (A) Cartoon view of Grhll DBD bound symmetrically
to a dyad-symmetric 12-mer DNA duplex. Individual monomers (pink and green) form a dimeric interface parallel to the DNA axis, with loop 10 (L10)
and helix 3 (a3) interacting with the minor and major groove, respectively. (B) Grhl1-DBD DNA-interacting surface presented in two orientation (0° and
90°), colored by electrostatic potential, with positive potential (+10 kT) in blue and negative potential (~10 kT) in red. (C) Right panel, scheme showing
key hydrogen-bonding and/or Coulomb interactions (arrows, 3.5 A cut-off) between Grhll DBD and the DNA double helix. Grhll residues from different
chains are shown on pink or green background. Left panels, close-up views of specific interactions with DNA by Arg430 (top) and Arg427 (bottom). 2F,

— F; electron density maps are shown individually, contoured at 0.8 (gray).

estingly, the central Grhll Argd27 superimposes very well
with p53 Arg280, both playing essential roles in anchoring
their DBD to the DNA major groove through specific in-
teraction with a highly conserved guanine (G8 for Grhll).
However, distinct architectural differences are also apparent
in the DNA binding interface. The two recognition helices
(3) in Grhll are more deeply buried in the major groove,
resulting in a larger interface of 566 A% compared to that of
p53 (helix H2, PDB code 2ATA) with 277 A2. The different
interfaces can be explained by comparing the binding an-
gles between the two helices with respect to the DNA. The
binding angle for Grhll is 68° versus 130° for p53 (Supple-
mentary Figure S4A), calculated by the Python module ‘an-
glebetweenhelices’ implemented in PyMOL. Unlike in p53,
where loop L3 is involved in zinc coordination and located
at the edge of the DNA backbone, the equivalent L10 loops
of Grhll fit into the DNA minor groove.

Grhl1-DBD:DNA interaction studies

In the crystal, Grhll DBD binds its DNA recognition
site in a dimeric arrangement. To assess whether Grhll
DBD dimerization persists in solution, we analyzed the
oligomerization of two different Grhll fragments using size-
exclusion chromatography and right-angle light scattering
(SEC-RALS) in the presence or absence of DNA. In these
experiments, Grhll DBD was monomeric, but bound target
DNA as an apparent dimer (Supplementary Figures S5A

and B), in agreement with the crystal structure. However,
construct AN_Grhll, containing the dimerization domain,
formed dimers efficiently without DNA and bound target
DNA as a constitutive dimer (Supplementary Figures S5C
and D), which suggests that residues 486-618 contribute to
dimerization.

In order to assess the contribution from both specific
and non-specific Grhl1-DBD:DNA contacts observed in
the crystal structure, we measured target-DNA binding by
wild-type and mutant Grhl1-DBD proteins in a series of
isothermal titration calorimetry (ITC) experiments (Figure
3 and Supplementary Table S2). Grhll DBD bound the 12-
bp target DNA with a dissociation constant (Ky) of 90 nM.
When single DNA-contacting protein side chains were re-
placed by alanine, the mutant Grhl1-DBD variants showed
at least a two-fold reduction in DNA binding, with the
exception of C421A, whose DNA binding remained un-
changed. A significantly stronger, 12-fold drop in affinity
was observed for the Grhll-DBD R427A mutant, which
eliminated two specific hydrogen bonds to G8, the most
conserved nucleotide in the target DNA. Strikingly, an even
stronger reduction in affinity was measured for the R427Q
mutant, which is highlighted as cancer-derived in the Cat-
alog of Somatic Mutations in Cancer (COSMIC (52)) and
the Cancer Genome Atlas (53). This observation points to a
central role of Arg427 in the physiological function of Grhll
as a transcription factor.
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Figure 3. Effects of mutating DNA-contacting residues on DNA-binding affinity of Grhll DBD. ITC binding curves for injection of (A) Grhll DBD, (B)
Grhl1-DBD R427A and (C) Grhll-DBD R427Q into a micro calorimeter cell containing 12-bp consensus DNA fragment (Cons, see Methods section).
Curves were fit using a one-site binding model for Grhll DBD and Grhl1-DBD R437A, and two sequential binding sites for Grhl1-DBD R427Q. (D) ITC
binding curve for titrating Grhll DBD to mutant DNA (Mut_12mer). A fit to the binding isotherm is not possible. (E) Histogram showing association

constants for the binding of different Grhl1-DBD proteins to consensus DNA.

Further, we analyzed the impact on DNA binding of
Lys386, which is located within the DNA minor groove
without directly interacting with DNA. Lys368 mediates
contacts between the L10 loops of two Grhl1-DBD chains,
thereby acting as a clamp stabilizing the dimeric arrange-
ment of DNA-bound Grhll. Interestingly, substitution of
this residue by alanine resulted in a dramatic 17-fold de-
crease in DNA binding affinity, as determined by ITC (Sup-
plementary Figure S2B), but the 2:1 binding stoichiome-
try remained unchanged. Whether protein-protein contacts
mediated by Lys386 or Coulomb interactions of the lysine
side chains in the DNA minor groove contribute more to
Grhl1-DNA binding is unclear at present.

In the defined consensus response element (RE) for Grhl
proteins (AACCGGTT), the first C and the second G nu-
cleotide (underlined, C5 and G8 in the co-crystallized do-
decamer) are most highly conserved (14). To verify the im-
portance of this conservation, Grhl1-DBD binding exper-
iments were performed with a mutant RE in which C5
and G8 were symmetrically replaced with T and A, respec-
tively (Mut_12mer). In ITC measurements, no binding of
Mut_12mer to Grhll DBD was detected (Figure 3D). This
result was confirmed in an electrophoretic mobility shift as-
say (EMSA) in which a fluorescent-labeled RE bound to
Grhl1-DBD could be outcompeted by excess unlabeled RE
DNA, but not by Mut_12mer (Figure 4A and Supplemen-
tary Table S3).

It is known that in p53 the central dinucleotide of each
half-recognition element is essential for DNA binding (54—
57). To probe whether Grhll DNA target-site recognition is
under a similar restraint, we tested Grhl1-DBD binding to

different 12-mer DNA duplexes with variable central dinu-
cleotides at positions 6 and 7. Mutation of these nucleotides
increased Ky values by 3-6-fold (Supplementary Table S4),
following a trend of CC (CG) < AA < AT (TA). These re-
sults suggest that Grhll DNA binding strength is also sen-
sitive to the variation of the central dinucleotide.

An EMSA experiment as described for Mut_12mer also
confirmed that a Grhll variant comprising the DBD and
DD but lacking the N-terminal TAD (AN_Grhll) shows
similar DNA binding as Grhll DBD alone. In further
EMSA experiments, Grhll-DBD mutants displayed re-
duced RE binding (Figure 44) in accordance with their rel-
ative affinities established by ITC. In summary, the in vitro
DNA-binding experiments are in full agreement with the
Grhl1-DBD:DNA crystal structure by corroborating the
central role of both Grhll Arg427 and the G8 nucleotide
for sequence-specific binding.

Grhl1-R427Q mutation impedes Arg430-DNA contacts

The crystal structure of the Grhl1-DBD:DNA complex did
not rationalize the significantly stronger reduction in DNA
affinity by the cancer-related R427Q mutation as compared
to R427A. To reveal the structural basis for this effect, the
crystal structure of Grhll-DBD R427Q was determined
at a nominal resolution of 2.35 A. The effective resolu-
tion of this structure may be lower due to the inclusion of
weak high-resolution diffraction data. Whereas the over-
all structure remained unchanged compared to wild-type
Grhll DBD, two residues in the DNA binding interface
were clearly affected. In the R427Q mutant, the neighboring
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Figure 4. Electrophoretic mobility shift assays (EMSA) with different Grhll variants and structural consequence of the Grhll R427Q mutation. (A) EMSA
with fluorophore (cyanine-5) labeled double-stranded Grhl consensus 12-mer DNA (Cy5_-12mer) in the (+) presence or (—) absence of Grhll variants and
100-fold excess of unlabeled competitor DNA. Two types of competitor DNAs are applied, unlabeled Grhl consensus fragment (100xCons, Cons_12mer
in 100-fold excess over Cy5_12mer) and unlabeled mutated fragment (100xMut, Mut_12mer in 100-fold excess over Cy5_12mer). The position of bands
representing DNA-protein complexes is marked with an arrow. Grhl1-DBD R427Q and R427A /R430A mutants display comparably weak DNA binding.
DNA oligonucleotides used in the experiments are listed in (Supplementary Table S3). (B) Left, close-up view of the Argd27 and Arg430 side-chain
orientation in Grhll DBD (cyan) and the Grhl1-DBD:DNA complex (gray). The dashed contour indicates the floppy nature of Argd27 in the absence of
DNA. Right, comparison of the same segment from the Grhl1-DBD:DNA complex (gray) as shown in the left panel with the Grhl1-DBD R427Q mutant
(green). A hydrogen bond formed between GIn427 and Arg430, marked as dashed line (black), restricts the conformation of the Arg430 side chain and
prevents a readjustment to a conformation facilitating DNA binding (crossed-out curved arrow) as observed in the Grhl1-DBD:DNA complex.

residue Arg430 underwent a conformational rearrangement
whereby the sidechain rotated by ~180° and formed a hy-
drogen bond to the side chain of GIn427 introduced by the
mutation (Figure 4B). As a consequence, the R427Q muta-
tion perturbs DNA binding by Grhll DBD in two different
ways. Firstly, the GIn427 side chain cannot contact the im-
portant guanine base in the RE in the same way as Argd27
in wild-type Grhll DBD. Secondly, the Arg430 is pulled
away from the DNA, eliminating two further protein—-DNA
hydrogen bonds (Figures 2C and 4B). The Grhll R427Q
mutation, therefore, has a stronger effect in destabilizing
DNA binding than R427A, as it removes all protein side
chain-DNA base contacts observed in the crystal structure.

To further corroborate this interpretation of the effect of
the R427Q mutation, a Grhl1-DBD R427A /R430A dou-
ble mutant was generated. As expected, both in ITC and
EMSA, Grhll R427A/R430A and Grhll R427Q showed
a comparable, significant reduction in DNA-binding affin-
ity (Figures 3E and 4A), supporting the view that a single
cancer-associated mutation, Grhll R427Q, is sufficient to
completely abrogate target DNA binding by this transcrip-
tion factor.

Arg427 determines Grhll recognition of CLDN4 promoter

In order to verify that the determinants for target DNA
binding by Grhll identified by the structural and bio-
chemical study are relevant for transcriptional activation
in cells, reporter gene assays were performed with both
Grhll and Grhl2. As previously reported, inactivation of
Grhl2 significantly reduces CLDN4 promoter activity in
mIMCD-3 cells (11,58). We used CRISPR/Cas9 technol-
ogy to generate mIMCD-3 cells with frameshift-inducing
mutations within exon 2 of the GRHL?2 gene. Three clones
carrying homozygous null mutations of GRHL2 revealed
profoundly reduced CLDN4 reporter activity when com-
pared to wild-type mIMCD-3 cells (Figure 5A). Human
GRHLI or GRHL2 with or without point mutations
were then re-expressed, as indicated, in GRHL2 knock-
out mIMCD-3 cells. While wildtype GRHLI overexpres-
sion resulted in markedly increased CLDN4 promoter ac-
tivity, GRHLI R427Q or GRHLI R427A overexpression
resulted in CLDN4 promoter activity similar to GRHL?2
knockout cells. Mutations of the analogous arginine residue
in Grhl2 (Arg423) had a similar effect. CLDN4 promoter
activity increased in response to overexpression of wildtype
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Figure 5. Point mutations affecting Arg427 of Grhll or the correspond-
ing Arg423 of Grhl2 result in a complete inactivation of Grhl-dependent
CLDN4 promoter activity in mIMCD-3 cells. (A) GRHL2 knockout in
mIMCD-3 cells leads to reduced CLDN4 promoter activity. CLDN4 re-
porter activity was analyzed in wild-type mIMCD-3 cells and in three sub-
clones of mIMCD-3 cells carrying GRHL2 null mutations (clones 26c, 21b,
and 24b). (B) Luciferase assays were carried out in mIMCD3 cells carrying
a CRISPR/Cas9-induced GRHL?2 null mutation (clone 24b) transiently
transfected with the indicated overexpression constructs to assay the ability
of human wild-type Grhll, Grhl2 and point-mutated versions to activate
CLDN4 promoter activity. Point mutations were induced to achieve the in-
dicated changes of the critical arginine residue to glutamine (Grhll R427Q;
Grhl2 R423Q)) and alanine (Grhll R427A; Grhl2 R423A), respectively.
Overexpression constructs were as follows: pEZ-M02-empty, empty con-
trol overexpression plasmid; pEZ-MO02 carrying wildtype Grhll and Grhl2
and mutated versions as indicated. Bars represent mean =+ standard devia-
tion; n = 3 biological replicates. ***P < 0.001 point-mutated versus wild-
type constructs (ANOVA with post-hoc Tukey test).

GRHL2, but not GRHL2 R423Q or GRHL2 R423A4 (Fig-
ure 5B). These results demonstrate that Grhll- and Grhl2-
dependent transcriptional activation of the CLDN4 pro-
moter is entirely dependent on an intact Argd27 (Grhll) or
Argd23 (Grhl2).

Grhll-DBD R427Q shows significantly lower binding
affinity to target DNA compared to Grhl1-DBD R427A,
while the luciferase assay shows that the two mutant pro-
teins have very similar effects on transactivation of the
CLDN4 promoter. There are two main reasons for this
apparent discrepancy. First, the in vitro assays (ITC and
EMSA, see Figures 3 and 4) measure DNA binding ac-
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tivity of the Grhll-DBD instead of the full-length pro-
tein. We cannot exclude the possibility that the presence
of the other two functional domains, especially the dimer-
ization domain, may have an influence on the DNA bind-
ing affinity of Grhll. Second, transcriptional activation
in the cellular context is not exclusively determined by
DNA target site affinity, but also depends on protein-
protein interactions predominantly mediated by the tran-
scription factor’s transactivation domain. It seems possible
that the Grhll R427Q mutation affects these interactions
in a slightly different way than the R427A mutation. In ad-
dition, the Grhll R427A/R427Q (and the corresponding
Grhl2 R423A/R423Q) mutants all show very weak trans-
activation activity, very close to the ‘empty’ control, such
that small differences between them cannot be significant.

DISCUSSION

Here, we report the first structures of DNA-binding do-
mains of Grh/CP2 transcription factors and elucidate the
molecular basis for their specific DNA binding activity.
Despite low sequence conservation, the DBDs of Grhll /2
and p53 show a conserved fold. This result is in agreement
with previous bioinformatics predictions (59,60), thus es-
tablishing a common evolutionary origin of the two tran-
scription factor families. The Grhll-DBD:DNA complex
structure reveals a strictly parsimonious mode of DNA se-
quence recognition that relies on a small number of pro-
tein side chain-DNA base contacts, whose significance for
transcriptional gene activation was demonstrated by a thor-
ough study of structure-function relationship. We shall dis-
cuss the relevance of these findings for the entire Grh/CP2
family.

Structural basis for DNA targeting

Crystallographic analysis shows that Grhll and Grhl2 share
a highly conserved three-dimensional structure character-
ized by an IgG-like core, a fold that has been identified
in six other transcription-factor families (61). The con-
served structures of Grhll and Grhl2, and their conserved
DNA RE sequence (31,62) provide the basis for their bi-
ological cooperativity (63). Grhll DBD binds the target-
site DNA via extensive electrostatic interactions, while se-
quence recognition is mediated by two evolutionarily con-
served arginines, Argd27 and Arg430, hydrogen-bonded to
the most conserved guanine in the core motif and an ade-
nine in the flanking sequence, respectively. In addition, the
main-chain carbonyl of Gly387 forms a hydrogen bond in
the minor groove to the conserved G8 base. Although this is
a protein backbone-DNA contact, it is amino-acid specific
due to the Gly387 torsion angles of ¢ = 93° and {y = 19° (av-
erage values for the two protein chains) which are favored
for glycine but disfavored for all other amino acid residues.
The flexible nature of Gly387 thus helps loop L10 to prop-
erly bind in the DNA minor groove. The minor groove hy-
drogen bond from Gly387 to DNA requires the presence of
the guanine 2-amino group and helps discriminating against
AT base pairs at the center of the binding sequence.

We also find that Lys386 at the L10 loop of Grhll medi-
ates an important DBD-DBD contact that stabilizes DNA
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binding through hydrophobic and polar interactions in the
minor groove. A comprehensive review of the origin of
specificity in protein—-DNA recognition (64) discusses var-
ious aspects of protein-loop binding to the minor groove.
Interestingly, it shows several examples of arginine residues
contributing to DNA shape recognition through interac-
tions with the narrow minor groove of AT-rich DNA. In
the structure presented here, we observe a variation of that
theme in the recognition of the widened minor groove of
GC-rich DNA by a tandem lysine loop.

Transcription factors such as HSTF (heat shock tran-
scription factors) and TFIID-1 (TATA box-binding tran-
scription initiation factor) show conformational changes
during DNA binding for stabilizing the interaction (65-67).
In contrast and similarly to p53, Grhl1-DBD monomers
bind to B-form DNA without undergoing major confor-
mational changes. However, full-length p53 forms tetramers
through C-terminal oligomerization (68-70), while our data
suggest that Grhll binds DNA in a dimeric arrangement,
which proceeds without a major change of the DNA struc-
ture.

Comparison of DNA binding by Grhl DBD and p53

Grhll DBD and p53 DBD share a common protein fold,
and their DNA-binding modes are similar. In addition,
their DNA target sequences also present common fea-
tures. The half-site binding sequence of p53 is defined as
RRRCWWGYYY R = A, G;W=AT,Y =C, T),
which is related to the CP2 DNA-binding site (CNRG-Ns -
CNRG) (32,54,56). P53 and Grhl proteins cooperate during
epidermal development and function; for instance, Grhl3,
p53 and p63 (a p53 family homolog) regulate CLDNI ex-
pression, and Grhl3 cooperates with p63 in transcriptional
PTEN gene regulation (71). Based on their consensus target
sequences, we may speculate that Grhl proteins also show
binding to p53 recognition elements, and vice versa. ITC
data reveal that Grhll shows a preference for recognition
elements with a central CG or CC dinucleotide (see Sup-
plementary Figure S4), while p53 prefers AT or AA which
shows a higher propensity for DNA kinking, an essential
feature induced by p53 binding (72). The ITC data provide
evidence for decreasing affinity of Grhll when the central
dinucleotide is modified from CC (CG) to AA to AT (TA).
Although the bases of the central dinucleotide are not in di-
rect contact with Grhll, they may, thus, contribute to DNA
target-site recognition by the transcription factor.

In the Grhll-DBD:DNA complex, the two recognition
helices (a3) penetrate more deeply into the major groove
and form a larger interface with DNA compared to p53.
Consequently, thymine methyl groups at the center of the
binding site may sterically interfere with binding of Grhll,
providing a second explanation for the observed weaker
binding to sites with central AA, AT or TA steps and
a second mechanism to discriminate against p53 target
sites. Besides the central dinucleotide, other factors like the
oligomerization behavior and flanking sequences also play
roles for the target specificity of Grhll and p53.

Structural insight into Grh/CP2-linked disease

We identified a common mode of DNA binding in Grhl1-3,
which may be shared by the CP2 branch of Grh/CP2 tran-
scription factors. Accordingly, the Grhl1-DBD:DNA com-
plex structure can reveal structure-function relationships of
the whole Grh/CP2 family. For example, we identified a key
role of Grhll Argd27 (Arg423 in Grhl2) in trans-activating
gene expression, unveiling the mechanistic basis linking the
corresponding R427Q mutation to oncogenesis. The dra-
matic effect of the Grhll R427Q mutation on DNA bind-
ing and transcription is directly linked to the parsimonious
binding mode of Grhll where redundant and potentially
compensating protein—-DNA contacts are absent. By super-
imposing the structures of DNA-bound Grhll and p53, we
show that Argd427 in Grhll is matched with Arg280 in p53,
which both play central roles in DNA binding. It is known
that mutations of Arg280 to Ala or Lys in p53 are directly
linked to loss of DNA binding and transactivation and to
human breast cancer (59,73).

Several disease-related mutations in Grhl transcription
factors, mainly in the DBD, were reported in recent studies
(74-76) (Figure 6A). Missense mutations in Grhl2 (Y398H
and 1482K) and Grhl3 (R298H, R391C and T454M) are
linked to abnormalities in ectodermal structures, as found
in the Ectodermal Dysplasia Syndrome and Van der Woude
Syndrome, respectively. Mapping these five mutations to
the corresponding amino acids in Grhll (Ile474, Tyr402,
Arg319, Argd12 and Thr468) reveals that they are not in-
volved in DNA binding, but rather in stabilizing the protein
structure (Figure 6B).

Argd12 in Grhll forms a salt bridge with Asp465 and
is further hydrogen-bonded to Thr468 at the C-terminal
loop and Asp398 in strand B9 (Figure 6C). A mutation of
this arginine to cysteine (as found in one of the disease-
related Grh3 mutations, R391C) would disturb these exten-
sive interactions, resulting in the destabilization of the C-
terminal loop. Another disease-related mutation, T454M,
was identified in Grhl3 at the site corresponding to Grhll
Thr468. Ile474 forms a hydrophobic interface with Phe473
and Tyr356 (Figure 6D); a substitution of isoleucine by a
charged lysine (as found in the Grh2 1482K mutation) will
disrupt the hydrophobic contacts and result in a charge re-
pulsion with the adjacent His325. We note that all these mu-
tations interfere with the anchoring of the C-terminal exten-
sion, whose deletion leads to insolubility of the Grhl DBD
according to our observation, highlighting its fundamental
role in stabilizing the protein (see Figure 1D). Most onco-
genic mutations in p53 do not directly interfere with DNA
binding, but are deleterious because they further destabilize
an intrinsically unstable protein (77). Thermal shift assays
reveal melting temperatures (71, values) of 51.0°C for Grhll
DBD and 54.5°C for Grhl2 DBD (Supplementary Figure
S7). The thermal stability these two DNA-binding domains
is thus intermediate between p53 DBD (7}, = 45.6°C) and
its homolog p63 (7T, = 61.5°C) (78) suggesting that struc-
ture destabilizing mutations may contribute to Grhll- or
Grhl2-linked disease in a similar way.

The other two mutations, R319H (R298H of Grhl3) and
Y402H (Y398H of Grhl2), would not be predicted to desta-
bilize the protein because they are surface-exposed. We
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Figure 6. Insight into the structural effects of disease-associated muta-
tions. (A) Summary of mutations of Grhll DBD. The upper bars in black
indicate mutations of Grhll DBD that are predicted as pathogenic sum-
marized from the COSMIC database. The length of the bars indicates
the mutation frequency according to COSMIC. Residues of Grhll cor-
responding to mutations of Grhl2 and Grhl3 found in Ectodermal Dys-
plasia Syndrome and Van der Woude Syndrome, respectively, are shown at
the bottom. Numbers in red indicate sequence conservation among Grhll-
3. (B) Mapping the Grhl2 and Grhl3 mutations in ectodermal Dysplasia
syndrome and Van der Woude syndrome related mutations on the Grhll-
DBD:DNA structure. Two of these mutated residues, Arg412 and Ile474
are involved in intricate interaction networks. (C) Arg412 forms hydrogen
bonds with the backbone of Thr468 and the Asp465 side chain. (D) lle474
is involved in hydrophobic contacts with Phe473 and Tyr356. The R412C
and 1474K mutations are likely to destabilize the C-terminal loop and re-
duce overall stability.

would envisage that they may affect the interaction with
other proteins. Based on the structural studies presented
here, more disease-related mutations in Grh/CP2 proteins
can be defined and predicted. Studies on the transcription
factor LSF (TFCP2) from the CP2 branch of Grh/CP2
transcription factors demonstrate that the double mutant
Q234L/K236E cannot bind to DNA and acts as a domi-
nant negative inhibitor (79,80). These two residues are con-
served in Grhl proteins and localize close to the DNA-
binding interface. This observation is consistent with a com-
parable DNA binding mode of CP2 proteins.

A recent search identified small molecules inhibiting the
DNA binding activity of LSF, which is an oncogene in hep-
atocellular carcinoma (81-83). Further progress has been
hampered by the lack of structural information on LSF. The
structural and functional studies presented here not only re-
veal the basis of promoter recognition and transcriptional
activation by Grhl proteins, but may also provide guidance
to efforts that aim at developing structure-based inhibitors
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of Grh/CP2 transcription factors for therapeutic applica-
tions.
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