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ABSTRACT

Phages invade microbes, accomplish host lysis and
are of vital importance in shaping the community
structure of environmental microbiota. More impor-
tantly, most phages have very specific hosts; they
are thus ideal tools to manipulate environmental mi-
crobiota at species-resolution. The main purpose of
MVP (Microbe Versus Phage) is to provide a com-
prehensive catalog of phage–microbe interactions
and assist users to select phage(s) that can target
(and potentially to manipulate) specific microbes of
interest. We first collected 50 782 viral sequences
from various sources and clustered them into 33 097
unique viral clusters based on sequence similarity.
We then identified 26 572 interactions between 18 608
viral clusters and 9245 prokaryotes (i.e. bacteria and
archaea); we established these interactions based
on 30 321 evidence entries that we collected from
published datasets, public databases and re-analysis
of genomic and metagenomic sequences. Based on
these interactions, we calculated the host range for
each of the phage clusters and accordingly grouped
them into subgroups such as ‘species-’, ‘genus-’ and
‘family-’ specific phage clusters. MVP is equipped

with a modern, responsive and intuitive interface,
and is freely available at: http://mvp.medgenius.info.

INTRODUCTION

It has been increasingly recognized that microbiome can
play crucial roles in human health (1–3), diseases (4–10), re-
sponses to drugs and treatments (11,12), development (13–
15) and many other aspects of human life (16–19). However,
due to limited availability of tools that enable researchers
to manipulate microbiome, it is often difficult to directly
infer causal relationships from the correlated alterations in
microbial community structures and host phenotypes (e.g.
health statuses) under different conditions (20–23). Experi-
mental procedures such as fecal microbiota transplantation
(24,25) and/or the use of germ-free mice (3,26) can be used
to identify and validate causal factors, but they are neither
easy nor cheap. Furthermore, due to the lack of general pur-
pose tools that could manipulate microbiota at species level,
it is difficult to directly pinpoint the causal species.

Phages are known to be key players in microbial com-
munities; they could invade microbes, accomplish host ly-
sis and are of vital importance in shaping the community
structure of human and environmental microbiota (27–29).
More importantly, phages could provide potential tools for
the precision manipulation of environmental microbiota:
it is known that phages have rather narrow host ranges,
mostly at the species or genes levels (30); they are thus ideal
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tools to target (and eliminate) specific microbes at species-
resolution while avoid potential ‘off-target’ effects. A recent
study provided us with a great example for such an appli-
cation; Yen et. al. successfully reduced Vibrio cholerae in-
fection and colonization in the intestinal tract and prevents
cholera-like diarrhea, by orally administrating V. cholera-
specific phages in model animals (31).

We thus developed MVP––a microbe-phage interaction
database (MVP stands for Microbe Versus Phage), with the
main aims being to provide researchers with a comprehen-
sive catalog of phage–microbe interactions and assist them
to select phage(s) that can target (and potentially to manip-
ulate) specific microbes of interest.

In addition to experimental methods, microbe–phage in-
teractions can be identified by taking advantage of the large-
scale genomic- and metagenomic sequencing efforts. For ex-
ample, it is known that many phages insert their genomes
into that of their hosts; the integrated phages are known
as prophages (32,33). Many computational tools exist and
are able to identify prophages from complete prokaryotic
genomes and/or assembled metagenomic contigs (34–36).
In addition, CRISPR spacer sequences can also be used to
infer host–phage interactions (37,38), although their short
lengths (usually 24–50 bp) in nature make it difficult to re-
liably determine their source phages (27,37).

In this study, we obtained in total 50 782 viral sequences
from various sources and assembled them into 33 097
unique viral clusters. We identified 26 572 interactions be-
tween 18 608 viral clusters and 9245 prokaryotes, and cal-
culated the host range for each of the phage clusters accord-
ingly. We presented these data and related information in an
online database MVP (Microbe Versus Phage); we designed
MVP to be a modern website with a responsive and intuitive
interface, and incorporated many widgets (i.e. functional el-
ements of a web page that serve specific purposes) that en-
ables users to effortlessly explore all contents and find what
they are interested in.

DATA GENERATION

Viral sequences and clustering them into viral clusters

We obtained viral sequences from the following four
sources.

First, we downloaded all available viral sequences from
the NCBI viral genomes resource (39).

Second, we identified putative prophage sequences from
complete bacterial and archaeal genomes downloaded from
the NCBI prokaryotic reference genome database (40) and
EMBL proGenomes database (41).

Third, we identified putative prophage sequences from
assembled metagenomic sequences derived from the human
gut. We included in the current version of MVP two hu-
man gut metagenomic datasets containing 124 (1) and 1267
(42) human fecal samples respectively that we downloaded
from the EBI metagenomic database (43). Prophage identi-
fication was carried out using a phage finder (34) tool v2.1
(last updated: 26 Oct 26 2011) with default parameters.

Last, we included viral and prophage sequences from
several published datasets (44,45), including those from a
‘Uncovering Earth’s virome’ project, and the International
Committee on Taxonomy of Viruses (https://talk.ictvonline.

org; ICTV). Worth to mention is the recent work by Roux
et al.; by using a virus/prophage identification tool Vir-
Sorter that they developed (36), they identified in total 12
498 high-confidence viral genomes by scanning the publicly
available bacterial and archaeal genomic sequences. These
newly identified viral sequences were either prophages or
un-incorporated viral sequences that were previously anno-
tated as plasmids (45).

In total we collected 50 782 viral sequences from these
sources. We next used a cd-hit-est program (46) to clus-
ter them into clusters based on sequence similarities. As
previously suggested (27), the following options of cd-hit-
est were used: -c 0.95 and -aS 0.85. The ‘-c’ option speci-
fies the sequence identity threshold and is calculated as the
number of identical nucleotides in alignment divided by the
full length of the shorter sequence, while the ‘-aS’ option
specifies alignment coverage threshold and is defined as the
proportion of shorter sequence covered by the alignment.
Sequences in alignments with measurements above these
thresholds are clustered; the longest sequences in a cluster is
chosen as representative of the cluster. Please note that the
much relaxed parameter ‘–aS 0.85’ for clustering may not
be used as a general-purpose threshold for viral studies be-
cause it could result in very inclusive cluster, but it suits our
purpose nicely: with MVP we aimed to facilitate users to
select phages that can specifically target a bacterium, there-
fore any phages with (putative) broad host-ranges should
be marked and removed from the candidate list. A further
relaxed threshold of ‘-c 0.8 –aS 0.85’ was also tested and re-
sulted in ∼3% few clusters, suggesting that the viral clusters
we obtained in this study were relatively stable.

In sum, we obtained 33 097 clusters from the 50 782 viral
sequences.

We checked the overlap in phages from different sources.
We found only a small proportion (∼19.5%) of phages were
covered by multiple evidence (i.e. the same prophage se-
quence can be identified from multiple (meta-) genomic se-
quences); even lower proportion (∼9%) of the total phage
clusters were covered by multiple data-sources. However,
within a data source, the phage overlap ratios vary signif-
icantly; more importantly, they seem to correlate with the
number of samples taken from the same niche environ-
ment (Table 1). For example, 57.4% of the identified phages
are covered multiple times in the ‘Uncovering Earth’s vi-
rome’ (44), which collected over 3000 samples around the
world; this ratio is followed by 18.67% in the human gut,
which in total ∼1700 samples were used to identified the
phages (1,42). Conversely, the overlap ratio in the EMBL
proGenomes database is only ∼0.6%, mainly due to the
fact that only ‘representative’ genomes were presented in the
dataset we used and the ‘redundant’ genomes were excluded
(41). Thus the low overlap ratios in some data sources are
mainly because of the diverse environments from which the
genomes were sampled. These results further confirmed that
phages indeed could have very narrow host range.

Interactions between viral clusters and microbes

In this study we focused on prokaryotes (i.e. bacteria
and archaea), and used prokaryotes and microbes inter-
changeably, although the latter can also include eukary-
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Table 1. Overlaps in phages within data-sources

Data source # clusters % overlap * Notes

‘Earth’s virome’ project (44) 5412 57.4% Over 3000 samples were sequenced; most are
environmental samples

Predicted prophages in human gut (1,42) 1505 18.67% ∼1700 fecal samples from two gut metagenomic studies
(1,42)

Predicted viral and prophage sequences from
complete and draft genomes (36)

7117 18.07%

Predicted prophages from NCBI complete
genomes (40)

6964 15.4% All available complete prokaryotic genomes (as of May
2017)

NCBI reference viral genome database (39) 776 0.64%
Predicted prophages from EMBL proGenomes
database (41)

3275 0.61% Representative complete prokaryotic genomes (as of
May 2017)

ICTV 668 0 Data obtained from the International Committee on
Taxonomy of Viruses (https://talk.ictvonline.org; ICTV)

* within each data-source, the overlap ratio is defined as proportion of phage clusters containing multiple sequences from the data source, out of the total
phage clusters containing any number of sequences from the same data source.

Table 2. Overlaps in host prokaryotes

Data source # hosts % overlap with other data sources*

ICTV 11 100%
‘Earth’s virome’ project (44) 1247 79.4%
Predicted prophages from EMBL proGenomes database (41) 2549 78.6%
Predicted prophages from NCBI complete genomes (40) 4398 68.18%
Predicted prophages in human gut (1,42) 210 67.61%
NCBI reference viral genome database (39) 282 56.73%
Predicted viral and prophage sequences from complete and draft genomes (36) 6388 56.6%

* the overlap ratio is defined as proportion of hosts in a data source that could also found in any of the other data sources.

otic microbes. We also used viral- and phage- clusters in-
terchangeably, under the circumstances that a virus invades
a prokaryotic microbe.

We inferred interactions between viral-/phage- clusters
and microbes from the following four sources.

First, we established phage-host relationships by extract-
ing the ‘host’ fields from the annotation files downloaded
from the NCBI reference viral genome database (39).

Second, we could easily establish the phage-host rela-
tionships for prophages identified in reference prokaryotic
genomes.

Third, for prophages identified from assembled metage-
nomic contigs, their host information are not readily avail-
able. Therefore for each of the identified prophages, we
first extracted the two flanking sequences from the contig,
and submitted them as queries for BLAST searches (47)
against prokaryotic reference genomes. We required that
each flanking sequence should be at least 200 bp in size
and at least 50 bp apart from the putative prophage. Pre-
dicted phages with flanking sequences shorter than 250 bp
on either sides were discarded. We filtered out BLAST hits
that had sequence similarity less than 0.95 or covered <80%
of the query sequences. If there was only one hit left for a
query, we used the corresponding species of the hit sequence
as the putative host. For queries that matched multiple hits
above the thresholds, we calculated the last common ances-
tor (LCA) of all hits in the NCBI taxonomic database using
an in-house Perl script; we kept LCAs that had taxonomic
ranking of genus or species according to the NCBI taxon-
omy database (40). Metagenomic sequences are a mixture of
multiple species and are often highly fragmented. In addi-
tion, lateral gene transfers frequently occur and contribute

significantly to the expansion of gene repertoire in prokary-
otes (48). Together these factors make it technically chal-
lenging to accurately assemble metagenomic sequences (49–
51). Therefore to reduce possible false-positive results, at the
end we only kept the host–phage relationships if the iden-
tified hosts met the two following criteria: (i) both flanking
sequences should match to some reference genomes, and (ii)
the taxonomy ranks of the BLAST hits of the two flanking
sequences should be the same.

To determine the error rate in host species identifica-
tion using metagenomic data, we run the following sim-
ulations: we took randomly two fragments from a host
genome, searched them against the NCBI prokaryotic se-
quence database using BLAST (47), and run the above anal-
ysis pipeline to determine the their species identity. We did
this ten times for each of the complete prokaryotic genomes.
At the species level, we obtained an overall accuracy rate of
95% with ∼90% sensitivity. However, when we removed the
‘source’ genome (i.e. the genome from which the two frag-
ments were taken) from the analysis, the overall accuracy
rate dropped to ∼79% at the species level with ∼50% sen-
sitivity (i.e. about half of the queries were removed because
of no significant BLAST hits in the genome, or the species
assignment was ambiguous).

Last, we also obtained phage-host associations from pub-
lished datasets (44,45) and databases such as the Interna-
tional Committee on Taxonomy of Viruses (ICTV; https:
//talk.ictvonline.org).

In total, we identified 30 321 host–phage associations,
corresponding to 26 572 unique interactions between 18 608
viral clusters and 9245 prokaryotes. We summarized in Fig-
ure 1 the distribution of the 9245 prokaryotic hosts across
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Figure 1. Distribution of the 9245 prokaryotic hosts across the bacterial and archaeal phylogeny at the genus level according to NCBI taxonomy and
their associated phage clusters. For each bacterial and archaeal genus-level group, the number daughter species collected in MVP and the corresponding
number of associated virial clusters (unique count) are indicated with light-green and red bars. Bacterial and archaeal species that are not collected in
MVP are not shown. Bar heights are log-transformed. The tree and the datasets were visualized using Evolview, an online visualization and management
tool for customized and annotated phylogenetic trees (55). An interactive version of the tree can be found at: http://www.evolgenius.info/evolview/#shared/
mvp2017 stats/462.

the bacterial and archaeal phylogeny at the genus level and
their associated phage clusters.

We also check the overlap of prokaryotic hosts among
different data sources. We found that 44.35% of the hosts
were found in at least two data sources. We summarized in
Table 2 the overlaps between each data source with all oth-
ers.

In addition, 61.09% hosts associate with multiple phage
clusters.

Calculation of host ranges of phage clusters

One of the main aim of MVP is to provide researchers with
a list of phages that can specifically target certain bacteria
of interests while avoid any ‘off-target’ effects. To achieve
this, we calculated the host range for each of the phage clus-

http://www.evolgenius.info/evolview/#shared/mvp2017_stats/462
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Figure 2. Most phage clusters have rather narrow host ranges. For phage clusters with at least two hosts, their host ranges were calculated as the LCAs in
the NCBI taxonomic database (see ‘Data Generation’ for more details). (A) X-axis: host range of phage clusters, Y-axis: percentage of phage clusters (out
of total) with their LCAs in the taxonomic groups. The Y-axis has been log-transformed. (B) X-axis: number of hosts (i.e. phage clusters were grouped
into bins according to the numbers of hosts they have); ‘(5,10)’ specifies a subgroup in which phage clusters have >5 and ≤10 hosts. Y-axis, percentage of
phage clusters (in each bin) that have host ranges at the ‘species’ or ‘genus’ levels in each subgroup.

Figure 3. A screenshot of the ‘Phages’ page; highlighted are built-in widgets (i.e. functional elements of a web page that serve specific purposes) that
enables users to easily find what they are interested. (1) a navigation toolbar that floats on top of the page, allowing users to access our data in pre-
organized categories (i.e. ‘microbes’, ‘phages’ and ‘interactions’ and etc.); (2) a global search widget that enables uses to search for microbes and virial
clusters with any information, including the taxonomy IDs, scientific names and taxonomic ranks, and then redirect to the corresponding page that the
users choose; (3) a set of widgets allowing users to search for (or filter out when the ‘Except for. . . ’ checkbox is selected) the contents of the table below
(a list of phages in MVP in this case) with any keywords; (4) a widget allowing users to filter for phage clusters according to the values in the column of
‘Host range’.
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Figure 4. A screenshot of the interaction network (only partial) visualized with our built-in visualization tool. Microbes and phage clusters are visualized as
light green and pink/reddish circles, respectively, with their sizes (diameters) being propositional to the numbers of the interacting partners (including also
those that may not be shown in the visualization). Two colors, namely pink and reddish are used for phages, in order to distinguish those that infect only
one host (pink) from those that infect multiple hosts (reddish). Click the text-labels next to the circles, users will be redirect the page for the corresponding
microbe or phage cluster. In addition to the canvas, two additional widgets are also provided. The first is the selector at the top of the canvas, from which
users can browse or search for a node of interests, select it from the drop-down menu and highlight it and bring it into the middle of the canvas. The other
includes two buttons that can be used to export the visualization to an external file in either SVG or PNG format. For more information please consult
the Interactions page (http://mvp.medgenius.info/interactions).

ters collected in MVP. For a phage cluster that infects only
one host, we defined the host range as the taxonomic rank
of the host in the NCBI taxonomy database; for a cluster
that infects multiple hosts, we defined the host range as the
taxonomic rank of the LCA of all its hosts in the NCBI tax-
onomic database.

As shown in Figure 2, we found that more than 99%
phage clusters have host range at the ‘species’ or ‘genus’
levels. Excluding those with only one host (Figure 2A), or
considering phage clusters with certain numbers of hosts
(Figure 2B), the results remained largely the same, i.e. more
than 90% of the remaining clusters have host range at the
‘species’ or ‘genus’ levels. These results are consistent with
previous findings that phages often have very narrow host
range (30), and further confirmed the high-quality of our
data.

WEB INTERFACE OF MVP

We provided MVP with a modern, responsive and intuitive
interface. As explained in Figure 3, the design of the web

pages, especially the use of a few powerful search widgets
would allow users to easily find what they are interested in.

We also incorporated into MVP a powerful network visu-
alization tool that allows users to interactively visualize, in-
teract and explore phage-host associations collected in our
database. Please consult the Interactions page (http://mvp.
medgenius.info/interactions) for details; shown in Figure 4
is a screenshot of the interaction network.

DATA ACCESS

All data are freely accessible to all academic users. This
work is licensed under a Creative Commons Attribution
3.0 Unported License (CC BY 3.0). Users can download
combined data from the ‘DOWNLOAD’ page. Users can
also download data for individual viral clusters from the
‘PHAGES’ page.

FUTURE DIRECTIONS

During the development of MVP we came across numer-
ous resources and tools that would make our database

http://mvp.medgenius.info/interactions
http://mvp.medgenius.info/interactions
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more complete and better. Also due to limitations of cur-
rent methods, we wish to thoroughly test and benchmark
existing tools/analysis pipeline before we include their re-
sults into MVP. Therefore our plans for the near future
will include: (i) to use more tools, especially those that
were recently developed for the identification of prophage
and viral sequences, including virFinder (52), PHASTER
(35) and VirSorter (36); (ii) to include more metagenomics
datasets from the EBI Metagenomic database (43), (iii) to
infer and include putative host–phage interactions from
CRISPR-spacer sequences; the latter can also be used to
infer bacterial-/archaeal- resistance to phages, and is a vi-
tally important player in the phage-host interaction net-
work and (iv) to compile sets of microbes according to
their niche environments (i.e. soil or human gut), and re-
calculate host-ranges for phage clusters that could interact
with them. Finally, it has been shown that virus and their
host genomes often share certain similar genomic features
such as oligonucleotide frequency patterns (53,54). We will
thus also include such measurements for the phage–host in-
teractions in MVP calculated from existing tools such as
VirHostMatcher (54).
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