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ABSTRACT

Regular monitoring of drug regulatory agency web
sites and similar resources for information on new
drug approvals and changes to legal status of mar-
keted drugs is impractical. It requires navigation
through several resources to find complete infor-
mation about a drug as none of the publicly ac-
cessible drug databases provide all features essen-
tial to complement in silico drug discovery. Here,
we propose SuperDRUG2 (http://cheminfo.charite.
de/superdrug2) as a comprehensive knowledge-base
of approved and marketed drugs. We provide the
largest collection of drugs (containing 4587 ac-
tive pharmaceutical ingredients) which include small
molecules, biological products and other drugs.
The database is intended to serve as a one-stop
resource providing data on: chemical structures,
regulatory details, indications, drug targets, side-
effects, physicochemical properties, pharmacokinet-
ics and drug–drug interactions. We provide a 3D-
superposition feature that facilitates estimation of
the fit of a drug in the active site of a target with
a known ligand bound to it. Apart from multiple
other search options, we introduced pharmacokinet-
ics simulation as a unique feature that allows users to
visualise the ‘plasma concentration versus time’ pro-
file for a given dose of drug with few other adjustable
parameters to simulate the kinetics in a healthy indi-
vidual and poor or extensive metabolisers.

INTRODUCTION

Bioinformatics and cheminformatics are research fields in
which huge amounts of data are being generated each day

at a rapid pace. This vast amount of data is distributed
across several online databases that are either publicly ac-
cessible or often accessible only via subscription. This de-
centralized distribution of data restrains linking of the cur-
rent wealth of information with the enormous amount of
data that has been accumulating over decades. We wit-
nessed a significant progress in the last 10–15 years through
several remarkable contributions that attempted to bridge
this ‘information/informatics gap’. Comprehensive small
molecule databases such as DrugBank (1), KEGG (2) and
ChEBI (3) have been established as expert curated re-
sources. On the other hand, PubChem (4), ChEMBL (5)
and Binding DB (6) serve as major resources for bioactiv-
ity. Therapeutic Target Database (TTD) (7) and Compara-
tive Toxicogenomics Database (CTD) (8) focus on known
or explored therapeutic targets of drugs and literature ref-
erences that report chemical-gene/protein interactions. A
recent addition to the league of publicly accessible drug
databases is DrugCentral (9) which serves as an online
drug compendium with a special focus on active pharma-
ceutical ingredients that are approved by FDA and other
drug regulatory agencies. Further, resources like Protein
Data Bank (PDB) (10) and Cambridge Structural Database
(CSD) (11) archive the experimentally determined three
dimensional (3D) structures of biological macromolecules
and low molecular weight structures. Despite constant en-
richment of data at each of these platforms, there has always
been a need for a resource that could connect several layers
of information on drugs in the context of in silico research.
Especially, no dedicated resources exist for 3D structures
of drugs, with rare exceptions such as e-Drug3D database
(12). In this context, we previously came up with SuperDrug
database containing a total of 2396 experimentally deter-
mined and computed 3D structures for active ingredients
present in the WHO’s essential marketed drugs (13). Al-
though some of the aforementioned resources focus on the
pharmacological aspects of drugs to variable extents, none
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provide comprehensive pharmacokinetic data which facili-
tates simulation of pharmacokinetics of approved drugs.

Here we present SuperDRUG2, an update of our previ-
ous conformational drug database, currently containing in-
formation for 4587 active pharmaceutical ingredients that
are present in pharmaceutical products. We aim to integrate
data that is widely distributed across multiple resources and
serve as a one-stop source. The database features multiple
search options that facilitate two-dimensional (2D) and 3D
similarity calculation, identification of potential drug–drug
interactions in complex drug regimens among several other
features. A special focus of the database lies in simulation of
the ‘plasma-concentration versus time’ curves using phar-
macokinetic data extracted from various sources such as
drug labels and scientific literature. We introduce for the first
time a 3D-superposition feature that superimposes drugs of
interest with those ligands already known to bind with pro-
tein targets in experimentally determined 3D structures.

MATERIALS AND METHODS

Approved and marketed drugs

Several online public resources including the most re-
cent pharmaceutical product collections from the U.S.
Food and Drug Administration (US FDA), the European
Medicines Agency (EMA), Health Canada, the Korea’s
FDA (KFDA), and China’s FDA (CFDA) were searched
for active ingredients used in pharmaceutical products (see
Section 1 in supplementary information (S2) for detailed list
of resources and methods). For convenience, we will use the
term ‘drug’ instead of ‘active ingredient’ which is widely ac-
cepted by chemists and biologists in the field of drug dis-
covery. Currently, the database comprises a total of 4587
drugs grouped into two categories: small molecules (3,982
drugs) and biological/other drugs (605 drugs). Both 2D
and 3D structures were standardized in ChemAxon soft-
ware (https://www.chemaxon.com) for all small molecules
entries. The standardization procedure is detailed in one of
our former database papers (14). The 3D conformations
were also generated using the same software. The 2D de-
pictions on the web site are generated using RDKit toolkit
(http://www.rdkit.org) whereas the interactive 3D structure
visualisation is enabled via 3Dmol.js library (15).

Further, physicochemical properties and chemical struc-
ture identifiers were generated using the RDKit nodes in
KNIME (https://www.knime.com). In order to ensure con-
nectivity with well-known drug databases, every drug en-
try was annotated with links to external resources includ-
ing the WHO’s index of ATC codes (https://www.whocc.no/
atc ddd index). Drug labels were extensively text-mined for
regulatory details (of approval), therapeutic indications and
the recommended doses. In addition, we also flagged some
entries as withdrawn drugs. These drugs were previously
known to cause adverse effects and eventually withdrawn in
one or more countries and sometimes world-wide (14), (16).
It must be noted that sometimes only a particular pharma-
ceutical product or a specific dose or dosage form of the
drug is withdrawn which does not necessarily indicate that
the drug does not exist in any currently approved/marketed
pharmaceutical products.

Drug targets

We extracted target information from DrugBank (v. 5) (1),
TTD (7) and ChEMBL (v. 22) (5). Confirmed drug-target
interactions were found at the first two resources while
ChEMBL provides experimental activity data. Information
from ChEMBL was pre-processed using filter criteria sug-
gested by Bajorath et al. (17) to retain only high confidence
activity data (detailed procedure is described under Section
2 of supplementary information (S2)). Overall, the database
comprises >20 000 confirmed drug-target interactions cov-
ering more than 2300 drugs interacting with 3000 distinct
targets. In order to understand the interactions in the con-
text of side-effects, we used a list of side-effect targets on
the Novartis Safety Panel proposed by Lounkine et al. (18)
and annotated our drug-target relations into two categories:
safety and non-safety. Identification of previously unde-
tected targets for known drugs can provide valuable insights
and leads in drug repurposing endeavours. Our previously
published target prediction server, SuperPred (19) was used
to collect >17 000 drug-target interactions (more than 2500
drugs). Further, protein structures and their co-crystallized
ligands were extracted from PDB (10) and mapped to the
targets in our database, resulting in a total of 23 260 struc-
tures that are used for 3D-superposition.

2D and 3D similarity

The 2D structures of small molecules are converted to MDL
MACCS key based fingerprints to facilitate chemical sim-
ilarity search. Tanimoto coefficient is used as the standard
2D similarity metric. Additionally, we implemented the Ull-
mann’s algorithm for subgraph isomerism using the open
source Chemistry Development toolkit (20) for substruc-
ture similarity search. Up to 200 conformations per drug
were calculated in order to perform pairwise 3D structure
comparisons. Atoms were assigned by minimal distance and
superimposed by using the Kabsch algorithm (21). In a co-
ordinate system comprising normalized set of atoms, the
centre of masses of both conformers are calculated and su-
perimposed. A root-mean-square-deviation (RMSD) score
is derived for each comparison which signifies the extent of
similarity between the two structures. A detailed methodol-
ogy on how 3D similarity is calculated can be found in our
previous work (22).

Side effects

The current version of database includes >100 000 side ef-
fect relations for nearly 950 approved drugs that not only
cover the adverse events recorded during the clinical tri-
als prior to drug approval but also those identified during
the post-marketing surveillance. The side effect data was
collected from SIDER resource (v. 4.1) (23). We also ex-
tracted the frequency information for side effects for each
drug and labelled the relations according to the SIDER fre-
quency scale. A total of 4964 distinct side effects identified
by MEDRA concept identifiers are currently linked from
our resource to the SIDER database.
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Figure 1. A schematic representation of the data and search options in SuperDRUG2.

Table 1. A detailed comparison of SuperDRUG2 database with four other existing drug databases in terms of their content, content type and coverage.
The coverage information of the listed resources is based on our access on 26/05/2017

Pharmacokinetic parameters

The data on pharmacokinetics of drugs is scarce in many
publicly available resources. However, having such data
is essential to simulate the kinetic profile of a drug un-
der varying physiological conditions to improve personal-
ized therapy. We extracted half-life, volume of distribution,
protein binding, bioavailability, and time to peak among
various other parameters that correspond to the ADME
phases. The majority of pharmacokinetic data for hu-
mans is extracted from scientific literature while databases
such as DrugBank and dedicated drug information por-
tal Drugs.com (https://www.drugs.com) provided partial in-
formation for some drugs. Other sources include drug la-
bels and product monographs. More than 50% of all drugs
with pharmacokinetic data were annotated with therapeu-

tic minimum and maximum plasma levels extracted from
literature (24).

drug–drug interactions

We extracted the drug–drug interaction data mainly from
DrugBank and additionally extracted information from
package inserts, labels of pharmaceutical products and sci-
entific literature through semi-automated text-mining. The
interactions are classified into risk categories (1: monitor
therapy; 2: consider replacement; 3: avoid combination)
which are widely used at other public and commercial re-
sources for drug–drug interactions. Further, we annotated
some drugs as potentially inappropriate medications based
on the ‘Beers criteria’ (25) proposed by the American Geri-
atrics Society, originally published in 2012 and last updated
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in 2015. The medications covered in this list are considered
to be associated with poor outcomes in older adults and are
recommended to be avoided for all individuals in this group,
except those in palliative and hospital care. A German vari-
ant of the Beers list, known as the ‘PRISCUS list’ (26) was
also used to annotate drugs that are potentially unsuitable
for the elderly.

Web application, system requirements and data availability

All the data in SuperDRUG2 is stored in a relational
MySQL database and the web site is set up as Java
web application on a virtual Linux (Ubuntu 14.04 LTS)
server, accessible at http://cheminfo.charite.de/superdrug2.
JavaScript is key to almost all search options we of-
fer. Therefore, we strongly recommend using modern web
browsers such as Safari, Google Chrome or Firefox (with
JavaScript enabled). The contents of the database are made
available via customized download links on the web site.

DATABASE SEARCH OPTIONS

The integrated data in SuperDRUG2 can be accessed
via multiple interactive features described below and are
schematically represented in Figure 1. A detailed compar-
ison of the contents, coverage and the uniqueness of our
database with existing drug databases is presented in Table
1. Although the resources compared with are not necessar-
ily exclusive drug databases, the details presented in Table 1
are expected to justify the novelty of our database as a one
stop-resource. A list of web links to the list of pharmaceu-
tical products approved for use in several countries world-
wide is provided in the supplementary information sheet S1.
The national drug lists can also be accessed through a map
visualization on the web site.

Drug search

A simple way to search for drug records is to use the ‘Name
Search’ option under the Drug Search page. In case an ex-
act name or synonym match does not yield any result, the
search query is used to look up the chemical structure at
PubChem and five most similar drugs from the database
are displayed and ranked by the similarity towards the in-
put molecule. A molecule sketching tool provided in the
‘Structure Search’ section facilitates structure-based search.
Three different search types (exact match, similarity search
and substructure search) are provided. Users have the flex-
ibility to choose a similarity threshold and the maximum
number of results. A detailed drug record contains multi-
ple sections that provide: basic details such as synonyms,
indications, ATC codes and marketing status; 2D and 3D
molecular structures; regulatory details; drug targets; side-
effects, pharmacokinetic data; physicochemical properties,
links to external databases via specific identifiers; and mar-
keted drug products.

3D superposition

The feature of 3D superposition could be used in two ways.
The first option is to look up for two small molecule drugs

Figure 2. 3D visualisation of the result of the superposition of niraparib
and PDB ligand 1KS in the crystal structure (4KRS) of Tankyrase 1. Both
molecules (niraparib: white colour; 1SX: red color) are well superposed in
the 1SX binding region of chain A.

using the name search fields. Once a user selects the drugs,
a 3D superposition of the two structures is calculated and
an interactive 3D visualisation of the superimposed struc-
tures is displayed along with an RMSD score that indicates
the structural similarity. The second option is to superim-
pose a drug from the database with a ligand that is known
to bind to a protein in a PDB complex. To start using the
feature, the user has to first search for a protein target of
interest. PDB structures associated with this target are dis-
played along with the chain identifiers and ligands. After
choosing a combination of PDB structure and ligand, the
user is allowed to search for a small molecule drug of inter-
est in the database. An interactive 3D visualisation of the
overlapped molecules is provided in the context of the bind-
ing site of the ligand. This would be an interesting feature to
understand the fit of the drug into the binding pocket of the
target protein of interest. Figure 2 shows an exemplary 3D
superposition result in which niraparib, a well-known poly
ADP ribose polymerase (PARP) inhibitor is superimposed
with a small molecule inhibitor (PDB ligand ID: 1SX) in the
3D structure of tankyrase 1 (PDB ID: 4KRS), an important
regulator of the Wnt/�-catenin signalling. Dual inhibitors
of PARP1/2 and tankyrase 1 are known to inhibit growth
of DNA repair deficient tumours (27). Understanding the
role of known PARP1/2 inhibitors such as niraparib and
olaparib in the inhibition of tankyrase 1 could be useful in
exploring opportunities to repurpose these drugs for other
cancer types.

Pharmacokinetics simulation

To the best of our knowledge, SuperDRUG2 is the first aca-
demic resource to provide simulation of pharmacokinetics
of approved drugs as an easily accessible feature. The users
can simply search for a drug by its name to see if a simu-
lation is available within our database. The concentration
vs. time curve for a recommended dose of the drug is dis-
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Figure 3. Plasma concentration versus time curves generated using the pharmacokinetics simulation feature for losartan in two different cases: (A) dose =
100 mg/day and (B) dose = 70 mg twice daily.
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played, assuming that it is administered once per day. A
therapeutic window is displayed whenever the experimen-
tally determined therapeutic minimum and maximum con-
centrations are found. The users are provided with interac-
tive sliders to adjust the dose, intake interval and the time
period of simulation. Furthermore, approximate changes in
drug plasma levels for poor and ultra-rapid metabolisers
can be visualised relative to the plasma levels for a healthy
adult. Optionally, users can provide a dose of interest to
observe changes in plasma level. A use case for dose adap-
tation based on the pharmacokinetic simulation feature is
presented in the next section. It should be noted that this
feature is not aimed at providing recommendations or al-
ternatives to dosing schemes to healthcare practitioners in
clinical practice but may provide hints for possible problems
and solutions. A brief description of the pharmacokinetic
model behind the simulation is provided under Section 4 of
supplementary information (S2).

Drug–drug interactions

Our drug–drug interaction checker takes a list of medica-
tions and provides a list of possible drug–drug interactions
associated with the co-administration of these drugs. The
users are alerted through a ‘traffic light signal’ adaption
displaying one three risk levels whenever a potential drug–
drug interaction is found. In addition, to provide the con-
text of metabolic effects on a drug combination, the users
are linked to our TRANSFORMER resource (28) which
provides detailed report on the effects of a drug on metab-
olizing enzymes. Further, in order to provide special rec-
ommendations to the elderly patient group, we mark those
drugs in the input list that are present in the PRISCUS and
Beer’s list of potentially inappropriate medications. If a drug
is known to be present in the PRICSUS list, all possible al-
ternative drugs and dose levels are provided as recommen-
dations.

USE CASE

The following use case illustrates the utility of pharmacoki-
netics simulation feature of SuperDRUG2 to provide early
recommendations for dose adaption. We use the antihyper-
tensive drug losartan as an example. The minimum and
maximum recommended doses per day are 25mg and 50mg,
respectively. For hypertensive patients with left ventricular
hypertrophy or type 2 diabetic nephropathy, a maximum of
100mg per day is recommended. Losartan undergoes hep-
atic metabolism via cytochrome enzymes 2C9 and 3A4 to
form an active metabolite which is 10–40 times more potent.
Previous studies indicate that decreased levels of losartan
metabolites are observed in carriers of CYP2C9*2 and/or
CYP2C9*3 alleles (29) due to the lowered rate of oxida-
tion of losartan (29) into its metabolite and a higher plasma
AUC losartan/AUC metabolite ratio (30).

In Figure 3A, one can see that the plasma levels of losar-
tan even at a maximum dose for special indications of
100 mg do not remain within the therapeutic window in
order to provide a longer duration of action. Therefore, a
twice daily administration of 50–70 mg might improve the
coverage of the therapeutic window (see Figure 3B). Consis-

tently, a recent study also reported that twice daily admin-
istration of the same daily dose of losartan is more effective
in comparison to once daily administration of a single dose
(31). Additional use cases can be found in Section 5 of sup-
plementary information (S2).

FUTURE DIRECTIONS

We will regularly update the database with new entries to
ensure excellent coverage and data quality standards. Espe-
cially, the pharmacokinetic data needed for simulation of
plasma levels of drug will be further enriched to provide
simulations for as many drugs as possible. We also plan to
improve the list of drugs that have side effects by adding in-
formation from large collections such as the FDA’s adverse
event reporting system. Multiple other ways to browse the
contents of the database will be eventually added to improve
the user experience.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.

FUNDING

Berlin-Brandenburg research platform BB3R, Federal Min-
istry of Education and Research (BMBF), Germany
[031A262C]; DKTK. Funding for open access charge:
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