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Abstract

Multiple Sclerosis (MS) is an autoimmune disease driving inflammatory and degenerative

processes that damage the central nervous system (CNS). However, it is not well under-

stood how these events interact and evolve to evoke such a highly dynamic and heteroge-

neous disease. We established a hypothesis whereby the variability in the course of MS is

driven by the very same pathogenic mechanisms responsible for the disease, the autoim-

mune attack on the CNS that leads to chronic inflammation, neuroaxonal degeneration and

remyelination. We propose that each of these processes acts more or less severely and at

different times in each of the clinical subgroups. To test this hypothesis, we developed a

mathematical model that was constrained by experimental data (the expanded disability sta-

tus scale [EDSS] time series) obtained from a retrospective longitudinal cohort of 66 MS

patients with a long-term follow-up (up to 20 years). Moreover, we validated this model in a

second prospective cohort of 120 MS patients with a three-year follow-up, for which EDSS

data and brain volume time series were available. The clinical heterogeneity in the datasets

was reduced by grouping the EDSS time series using an unsupervised clustering analysis.

We found that by adjusting certain parameters, albeit within their biological range, the math-

ematical model reproduced the different disease courses, supporting the dynamic CNS

damage hypothesis to explain MS heterogeneity. Our analysis suggests that the irreversible

axon degeneration produced in the early stages of progressive MS is mainly due to the

higher rate of myelinated axon degeneration, coupled to the lower capacity for remyelina-

tion. However, and in agreement with recent pathological studies, degeneration of chroni-

cally demyelinated axons is not a key feature that distinguishes this phenotype. Moreover,

the model reveals that lower rates of axon degeneration and more rapid remyelination make
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relapsing MS more resilient than the progressive subtype. Therefore, our results support the

hypothesis of a common pathogenesis for the different MS subtypes, even in the presence

of genetic and environmental heterogeneity. Hence, MS can be considered as a single dis-

ease in which specific dynamics can provoke a variety of clinical outcomes in different

patient groups. These results have important implications for the design of therapeutic inter-

ventions for MS at different stages of the disease.

Author summary

Multiple Sclerosis (MS) is an autoimmune disease in which inflammatory and degenera-

tive processes damage the brain. We tested the hypothesis that the variability in disease

progression and the clinical heterogeneity observed in MS is driven by a single mecha-

nism, namely the autoimmune attack on the CNS that provokes this chronic inflamma-

tion and degeneration. As such, it is the difference in the intensity of these processes at

distinct times that is responsible for establishing each of the disease subtypes defined to

date. Mathematical models of brain damage and disease course were generated that were

fitted to clinical data. We found that the phenotypes of the different MS subtypes were

reproduced by the model, supporting the concept of a common pathogenesis and thus,

that of a single disease in which specific dynamics can produce a variety of clinical out-

comes in different groups of patients. These results are likely to be helpful when designing

new therapies for this disease.

Introduction

Multiple Sclerosis (MS) is an autoimmune disease with a complex pathogenesis that is driven

by inflammation and axon degeneration [1]. However, the clinical phenotype of MS is very

heterogeneous and the course of the disease is difficult to predict. Neither the frequency of

relapses (disease activity) nor the accumulated disability [2] represent an accurate predictor of

disease outcome. Relapses in MS have been modeled statistically to a negative binomial distri-

bution [3]. Moreover, relapses have been mathematically modeled from a mechanistic point of

view that focuses on the negative feedback between pro- and anti-inflammatory responses [4],

and as a probabilistic response to self-antigen presentation [5]. However, how damage to the

central nervous system (CNS) advances and how clinical disability accumulates over decades,

defining the clinical phenotype of the disease and its prognosis, are issues that are still poorly

understood [6]. Several hypotheses have been proposed to explain the heterogeneity and dif-

ferent courses of the disease. These range from considering MS as a single disease to defining

it as a disease with two distinct physiological stages (inflammatory and neurodegenerative), or

even as different diseases with relapse-remitting MS (RRMS) being defined as an autoimmune

disease (the outside-in hypothesis) and primary-progressive MS (PPMS) a primary neurode-

generative disease (the inside-out hypothesis) [7–10]. Alternatively, each of the four pathologi-

cal patterns described in acute plaques may reflect distinct pathogenic mechanisms [11].

CNS damage in MS is caused by acute inflammatory infiltrates (composed of lymphocytes

and macrophages) and chronic compartmentalized inflammation (driven by activated micro-

glia/macrophages in the CNS parenchyma and meningeal inflammation), as well as by axon

degeneration (e.g., axon degeneration due to the demyelination, neuronal pruning or cell

death, or by transynaptic degeneration: Fig 1) [7, 12, 13]. Recent pathological studies have
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Fig 1. Dynamics of the clinical and pathogenic processes in MS. The upper panel shows the evolution of

relapsing-remitting MS (RRMS) and its transition to secondary-progressive MS (SPMS), while the bottom panel shows

the evolution of primary-progressive MS (PPMS). The autoimmune process starts in the peripheral immune system,

inducing episodes of CNS inflammation (red line) that subsequently provokes demyelination (blue line) and then axon

degeneration (dark green line). Although inflammation and demyelination may experience remissions, axon

degeneration accumulates over time, as does chronic compartmentalized inflammation (orange line). If inflammatory

infiltrates affect eloquent CNS regions and exceed damage thresholds, they manifest as clinical relapses.

Alternatively, when cumulative axon degeneration surpasses the capacity of the functional CNS reserve, permanent

neurological disability arises (light blue line) and there is a transition to the progressive disease. The decrease in brain

volume over time is more severe at the beginning of the disease, in parallel with more intense inflammatory activity,

MS dynamics modeling

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005757 October 26, 2017 3 / 26

https://doi.org/10.1371/journal.pcbi.1005757


shown that acute inflammatory damage predominates in the early stages of MS, while chronic

inflammation (smoldering plaques) prevails at later stages, suggesting an evolution from

peripheral autoimmune damage to chronic CNS inflammation [14].

Long-term cohort studies have shown that the progressive course of MS develops after a

given threshold of disability is reached, defined by a score above 4.0 in the Expanded Disability

Status Scale (EDSS). Hence, inflammatory and neurodegenerative processes appear to be to

some extent independent [15], supporting the two-stage disease hypothesis. Alternatively,

genetic susceptibility always appears to be related with immune system dysfunction and not

with disease course [16]. Moreover, pathological inflammation is always detected in MS, in all

phases of the disease, with a predominantly adaptive immune response in the early stages of

the disease and a mainly innate immune response (compartmentalized inflammation) at later

stages [13, 14]. Therefore, while the evolution of MS seems to be the result of the interplay

between acute inflammatory relapses, chronic inflammation in the CNS, and the degeneration

of axons and myelinated cells, each process could have a distinct influence on the different

patient subgroups and at different stages of the disease, consistent with the single-disease

hypothesis. On top of this, we should also consider the role of functional CNS adaptation or

the functional reserve at disease onset. There is little structural damage at disease onset and

thus, the breakdown of functional CNS compensation and disability increases from a certain

damage threshold onward [12].

In RRMS, the main drivers of clinical disability include demyelination, the blockage of axo-

nal conduction and acute axon transection, whereas axon/neural loss is the main factor under-

pinning permanent disability during the progressive phase [17]. While demyelination is

frequently reversible during the RRMS phase, complete recovery is rarely achieved [18]. As

such, demyelination in RRMS can be expected to lead to a certain degree of permanent dam-

age that accumulates after each relapse and that exacerbates the effects of acute axon

transection.

In order to improve disease management, models of CNS damage and disease dynamics

could be useful to stratify patients with similar degrees of disability, as well as to evaluate the

benefits of therapies in different patient sub-types [19]. Complex diseases can be modeled on

different biological scales, from the molecular level (e.g., genetic networks and signaling path-

ways) [20–22], to the cellular level [4] where the cell is considered as the basic unit that inte-

grates all the molecular information (e.g., lymphocyte dynamics), or to the tissue or whole

body level [5]. We previously developed a mathematical model of the autoimmune response at

the cellular level that reproduces the dynamics of MS relapses [4, 23]. As a result, cell interac-

tions were seen to particularly affect tissue dynamics at the functional level, influencing the

immune response or CNS neurodegeneration. Hence, modeling at the cellular level may bring

us closer to the clinical phenotype.

Here, we have tested the hypothesis of dynamic CNS damage which states that the course

and heterogeneity of MS can be generated through a specific pathogenic mechanism, namely

autoimmune attack on the CNS in association with chronic inflammation, the severity and

timing of each process producing the diversity in the patient subgroups. We assessed to what

extent the progression of CNS damage in MS is a dynamic process that commences at the

onset of the disease, even in RRMS. For simplicity, our model only included inflammation,

and it continues steadily as the disease evolves. PPMS follows the same processes but the inflammatory relapses are

not translated into clinical relapses, either because they are less frequent, less severe or they affect silent (non-

eloquent) areas. Only when axon degeneration reaches a clinical threshold is disability manifested as progressive.

Therefore, there are no differences between SPMS and PPMS except for the relative clinical impact (relapses) of

acute inflammatory activity.

https://doi.org/10.1371/journal.pcbi.1005757.g001
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demyelination and axon loss at a general level, without entering into specific mechanistic

details, such as the role of the adaptive and innate immune responses, or feedback from CNS

damage to the autoimmune process. Consequently, our model does not formally exclude other

alternative hypotheses (e.g., the two-stage disease or the inside-out hypothesis).

Results

Modeling the dynamics of CNS damage in MS

We developed a mathematical model based on ordinary differential equations (ODEs) to study

the dynamics of CNS damage in MS, a model that contemplated the dynamics of myelinated

(healthy) and demyelinated axons, axon loss (acute transection or delayed degeneration) and

demyelination/remyelination as a consequence of autoimmune attack (see Materials and

methods: Fig 2A). We defined the parameters of the model through a literature search (S1

Table) and then, by fitting it to the changes in EDSS in a retrospective, longitudinal cohort of

MS patients with a long (up to 20 years) follow-up. The results were validated in a second pro-

spective cohort with a shorter follow-up (3 years), and brain volume (BV) quantified by MRI

was used in the validation cohort to improve the fit of the cell damage in the model to the clini-

cal phenotype (EDSS time series). In addition, to decrease the complexity of the clinical pheno-

type, the data were grouped using a non-supervised clustering approach (see below).

Clustering of the EDSS time series

The EDSS time-series from the retrospective longitudinal cohort was clustered using a modi-

fied k-means clustering method and subsequently, we analyzed each cluster as a single dataset

to estimate the distinct parameters. We identified four clusters of patients that corresponded

to the different levels of disease severity (EDSS) and disease subtypes (relapsing vs progressive

disease: Fig 2B). Thus, 86% of progressive MS cases (SPMS or PPMS) were included in Cluster

1 or 2, whereas 66% of relapsing MS (RRMS) were grouped into Cluster 3 or 4 patients

(Table 1). We validated this clustering using a cohort that consisted of an EDSS time-series

with a three-year follow-up (see Materials and methods), producing a similar grouping into

four clusters.

Simulations with the model reproduce the observed MS phenotypes

Simulations with the model were compared with the experimental EDSS time-series using the

10 parameter sets with the best data fit (lowest objective function values, see Materials and

methods: S1 Fig) and 100 random (t) inputs of the cluster-specific EDSS characteristics. The

EDSS time-series closely overlapped the simulations for each cluster, confirming that the

model could reproduce the diversity of MS phenotypes (Fig 3).

To evaluate the quality of the predictions for each cluster at the clinical level, we calculated

the probability of reaching key clinical milestones, such as EDSS 4.0 or 6.0 [15]. The event of

interest was calculated as the ratio of patients with an EDSS higher than the value of interest at

each time point. Again, the EDSS time-series were contained within the model’s simulations,

confirming the ability of the dynamic model of CNS damage to reproduce the different trajec-

tories towards a milestone of disability (S2 Fig).

In order to investigate the influence of the parameters on disease dynamics, we compared

their sensitivity profiles (Fig 4A). We found that the remyelination-related coefficients km and

q have an important influence on the demyelination coefficient kmd, which is consistent with

the fact that disrupted myelin and impaired remyelination are processes responsible for MS

progression [11]. Global sensitivity indices were calculated for the model read-outs (EDSS and

MS dynamics modeling
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Fig 2. The ODE model of CNS damage in MS. A) The model represents the volume occupied by axons and myelin: Right, the healthy CNS is

composed of myelinated axons (Am); Center, inflammatory attack is represented by the time-dependent parameter λ(t), which arises from the

Generalized Extreme Value (GEV) distribution of the EDSS time-series, producing either demyelination (right) or degeneration of axons (bottom); Left,

demyelinated axons (Ad) can be remyelinated with myelin produced by oligodendrocytes (M), as a function of the parameters km and q; Bottom,

myelinated or demyelinated axons can be lost by either acute axon transection or degeneration (D), according to the parameters kmd or kd

respectively. B) Clustering MS patients based on the EDSS time series. The horizontal axes correspond to the time in months (maximum = 16 months),

MS dynamics modeling
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BV, the latter measured by MRI), show notable differences in the demyelination coefficient kd
(p = 0.0027), as for δ (p = 1.81E-09) and to a lesser extent q (p = 0.0252). The sensitivity of the

parameters with respect to EDSS or BV were almost equivalent, suggesting that there is no dif-

ference in the use of either. Thus, there is no parameter that is non-identifiable due to the type

of data, although the goodness of fit will indicate that which is best used for modeling.

The dynamics of brain atrophy

We tested if the model could also reproduce the dynamic changes in BV of the validation

cohort. As expected, there was a negative correlation between the EDSS and BV time-series in

the prospective cohort (S3 Fig). As indicated in the Materials and Methods, we estimated the

coefficients necessary to connect the values observed to the simulated read-outs specific to the

allocated cluster (note that we did not recalculate the parameters but rather, we used the

parameter estimated from the discovery cohort), and we then adjusted the age-dependent ini-

tial value Ami(t = 0). For each of the clusters we compared 1000 simulated time series (100 sim-

ulations for the 10 selected parameter sets) of the BV (Vs(t)) using the normalized BV values

from the MS patients. The correlation coefficient was calculated for each combination of

experimental and simulated time series. For each patient, we generated a distribution of the

correlation coefficients between the experiments and simulations (Fig 4B), and we observed a

significant correlation between the experimental and simulated BV (median correlation coeffi-

cients: cluster 1, 0.93; cluster 2, 0.94; cluster 3, 0.86; and cluster 4, 0.87).

MS subtypes are the consequence of different dynamics of the same

pathogenic process

We first evaluated whether the model could simulate the diversity of disease subtypes (RRMS,

SPMS and PPMS) and their severity. Simulations were performed with the same inflammatory

input (t) but with different sets of parameters, and these parameters were then explored manu-

ally. Simulations reproduced the different disease subtypes (Fig 5), whereby the different dis-

ease courses -RRMS, SPMS and PPMS- were reproduced by changing the parameters of the

model given that the inflammatory part of the disease remained the same. The overlap between

the inflammatory inputs and the EDSS course indicated that each significant incremental

change in the EDSS is the result of a specific immune attack (relapse), whereas the progressive

while the vertical axes correspond to the patients. Each line represents the EDSS of a given patient over time, using a color scale to reflect the EDSS.

Clusters 1 and 2 include patients that maintain an intermediate short term EDSS and that reach a high EDSS in the long term. Cluster 3 includes

patients that maintain a low short term EDSS and that achieve an intermediate EDSS in the long term. Cluster 4 represents a more heterogeneous

group.

https://doi.org/10.1371/journal.pcbi.1005757.g002

Table 1. Proportion of each MS subtype in the clusters identified in the discovery cohort.

# of cases (%)* RRMS SPMS PPMS All

Cluster 1 1 (7%) 7 (17.5%) 3 (27%) 11

Cluster 2 1 (7%) 16 (40%) 8 (73%) 25

Cluster 3 6 (43%) 8 (20%) 0 (0%) 14

Cluster 4 6 (43%) 9 (22.5%) 0 (0%) 15

All clusters 14 (100%) 40 (100%) 11 (100%) 65

*One patient was not ascribed to any of the clusters and was excluded from the analysis, giving a total of 65

patients.

https://doi.org/10.1371/journal.pcbi.1005757.t001
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Fig 3. Comparison of the EDSS time-series and model simulations. Comparison of the EDSS scores from all the patients in the longitudinal cohort

as a function of their cluster (each patient from the discovery cohort is shown separately and identified with a cluster-specific color: red, cluster 1;

green, cluster 2; blue, cluster 3 and black, cluster 4) and in accordance with the model’s predictions (grey lines, each line corresponds to an individual

simulation).

https://doi.org/10.1371/journal.pcbi.1005757.g003
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Fig 4. Sensitivity analysis of the model’s parameters. A) A sensitivity analysis showing the effects of the uncertainties in parameters on the model’s

behavior (output variables: EDSS and brain volume—BV). The extended version of a Fourier amplitude sensitivity test (eFAST) was used to quantify

the relative importance of the input factors. Pink line indicates the sensitivity level of a dummy parameter that does not occur in any of the equations.

Sensitivities below this line should not be considered significantly different from zero. B) Simulations of brain volume in MS. Median occurrence and

interquartile range (IQR) for the correlation coefficients between the experimental and simulated BVs in the validation cohort. Pearson correlation

coefficients: cluster 1, 0.93; cluster 2, 0.94; cluster 3, 0.86; and cluster 4, 0.87.

https://doi.org/10.1371/journal.pcbi.1005757.g004
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Fig 5. Simulations of the model that reproduce the MS subtypes. The top panel shows an example of the

dynamics of autoimmune attacks (derived from the T cell model and adjusted for the EDSS distribution), and

the bottom panels reproduce the dynamics of the EDSS in function of the fine-tuning of the parameters

defining axon degeneration and de/remyelination, reproducing the RRMS, SPMS and PPMS disease

courses, respectively. In the model, each increase in the EDSS is the consequence of an inflammatory attack,

yet in the progressive phenotypes (SPMS and PPMS), they are observed as small and discrete increases in

the EDSS.

https://doi.org/10.1371/journal.pcbi.1005757.g005
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increases in the EDSS result from changes in the parameters of chronic inflammation and neu-

rodegeneration (progressive phase).

Progressive and relapsing MS are inversely dependent on the rate of

axon degeneration and the capacity for remyelination

By running simulations of our model and comparing the results with the EDSS time-series of

the longitudinal cohort, we tested whether the model reproduced the phenotypes of the four

patient clusters when the parameters were modified, albeit maintaining them within the bio-

logical range (Fig 1 and S1 Table). To identify the parameters that would reproduce the differ-

ent MS subtypes (RRMS, SPMS and PPMS), we calculated the number of patients of each

subtype in each cluster and expressed this relative to the total number of patients of that sub-

type in the discovery cohort. These ratios allowed us to compute linear combinations of the

cluster-specific parameter sets (the 10 combinations of parameters with the 10 lowest objective

values in terms of function) in order to define MS subtype-specific parameters sets (S1 Fig).

We then compared these values between the three MS phenotypes (using a pairwise Wilcoxon

test), and we found the Km, Kmd, Kd and δ values to be significantly different between all

three MS subtypes, whereas q only differed significantly between the RRMS and PPMS sub-

types (Fig 6; S2 and S3 Tables).

Fig 6. Model parameters for the studied disease subtypes. Parameter distribution for the different disease subtypes were analyzed through

pairwise Wilcoxon tests (S2 Table).

https://doi.org/10.1371/journal.pcbi.1005757.g006
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By definition, the biological meaning of the model parameters Km and δ are related to the

rate and capacity of remyelination, respectively, while Kd and Kmd define the rates of irrevers-

ible axon degeneration for demyelinated and myelinated axons, respectively. The subtype-spe-

cific parameters estimated above indicated that the characteristic accumulated and irreversible

disability of the progressive MS subtypes (PPMS and SPMS) is associated with higher rates of

axon degeneration. This association was revealed by the significant monotonic increase in Kd
and Kmd from RRMS to SPMS and PPMS, and the lower rate and capacity of remyelination (a

significant monotonic decrease in Km and δ from RRMS to SPMS and PPMS: Fig 6 and S2

Table). However, the degeneration of chronic demyelinated axons is not a key feature distin-

guishing the RRMS phenotype, consistent with recent pathological studies [17, 24, 25].

A statistical analysis of the model’s parameters between the disease subtypes suggested that

the greater resilience to CNS damage and disability in the relapsing subtype (RRMS) relative

to progressive MS (SPMS and PPMS) is related to the lower rate of axon degeneration, and

more rapid remyelination. The higher remyelination capacity in RRMS is reflected by a higher

Km (p = 0.0002) and δ (p�0.001), and the lower rates of axon degeneration in RRMS are indi-

cated by lower values for Kd (p = 0.0002) and Kmd (p�0.0001: Fig 6 and S2 Table).

MS is a progressive disease from the onset, with superimposed relapses

Another relevant question is whether the transition from relapsing to progressive MS is a

dynamic process that simply involves the same biological processes or whether any additional

biological events must be invoked to explain its dynamics, e.g., the effects of neurodegenera-

tion on axons [26]. As such, we analyzed the transition from the relapsing to the progressive

phase in terms of the changes to the variables within the model. The model readout (EDSS) is

defined as the maximum of Ad and D, where D refers to irreversible axon degeneration. From

the equations, one can see that D is always an increasing monotonous function (axon transec-

tion), while Ad (demyelinated axons) is the variable derived from inflammatory relapses when

the condition Ad> D is met (otherwise, if D> Ad, the effect of Ad is masked by D). Hence,

disability in RRMS can be characterized by the impact of demyelination due to relapses

whereas in the progressive phase of MS the impact of axon degeneration (D, transected axons)

is stronger than the impact of demyelination (D> Ad). Thus, the nature of the model defines

the transition from the relapsing to the progressive phase of MS as a dynamic evolution from

Ad> D to D> Ad.

We found that the PPMS phenotype was also reproduced by the model (Fig 5), a phenotype

that occurs when D> Ad at all time points. This criterion could be met when the rate of axon

degeneration is high (large values of Kd and Kmd) and when remyelination fails (Km and δ are

small, see Fig 2), particularly given that myelinated axons are less prone to degeneration than

demyelinated axons (Kmd<< Kd). Thus, our model of CNS damage in MS supports the con-

cept of MS as a single and progressive disease, with individual heterogeneity based on differ-

ences in dynamics, a notion consistent with pathological findings [27].

A central question is whether neurodegeneration in MS is a process that is independent of

inflammation, appearing at later phases in a damaged CNS, or if a single progressive process is

at play that commences at disease onset and that combines both biological processes to a dif-

ferent extent over time. Simulations of the model reproduced all the MS phenotypes when

both inflammation and degeneration commenced at disease onset (Fig 5). In addition, the

model assumed a direct effect of adaptive immune system attacks (the independent parameter

λ(t)) on demyelination-related relapses and neurodegeneration, as well as an effect of chronic

immune activation (through parameters kd and kmd) on neurodegeneration. Accordingly, our

simulations support the concept that neurodegeneration starts from the beginning of the

MS dynamics modeling
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disease and progresses at different speeds in different patients. However, our model did not

explore other alternative hypothesis.

Discussion

In this study, we tested the dynamic CNS damage hypothesis of MS, and whether all the dis-

ease phenotypes can be reproduced by the participation of the same mechanisms operating at

different intensities and over different time scales: autoimmune inflammation followed by

axon loss and de/remyelination. Our simulations support the hypothesis that MS is a single

disease with very heterogeneous phenotypes and they suggest a different contribution of each

process to the phenotype. The presence of irreversible axon degeneration at early disease stages

would appear to be mainly due to the higher rates of degeneration (transection) of myelinated

axons and to a lesser extent, to a weaker capacity for remyelination. A build-up of axon degen-

eration is the basis of the progressive phenotype, even during early disease stages like those of

RRMS. Conversely, increased resilience in both the rates of axon degeneration and in the effi-

ciency of remyelination at early stages of the disease are the basis of the RRMS subtype. These

results provide a theoretical framework to study the contribution of such pathogenic processes

at the experimental level, as well as for the design of therapeutic strategies for MS. However,

our model does not rule out alternative hypotheses, such as the inside-out hypothesis, the two-

stage hypothesis or the influence of a deteriorated autoimmune response (e.g., epitope spread-

ing, antigen presentation in the damaged CNS). Hence, we can only state that the dynamic

CNS damage hypothesis of MS is consistent with the phenotype observed, while we cannot for-

mally rule out other explanations.

In order to use clinical data to fit the parameters to our model, we performed a clustering

analysis to limit the heterogeneity of the data. Non-supervised clustering yields four clusters

that best group the data and that reproduce the main characteristics used clinically to stratify

patients: namely the disease subtype (relapsing or progressive) and disease severity (commonly

defined as the time to reach a milestone like EDSS 4.0 or 6.0). It is striking that a simple

approach such as a clustering analysis does not segregate the MS phenotypes into the three

classic subgroups, supporting the current concept that RRMS-SPMS-PPMS represent a contin-

uum with different levels of disease activity and superimposed relapses, as proposed recently

[12]. Based on this approach, our model has been optimized to match each of the clusters and

such a grouping may aid patient stratification at the time of tailoring therapies based on dis-

ease course. As such, new prospective clinical studies classifying patients into one of the four

clusters and modeling the trajectory of each group based on this ODE model should provide

evidence of its clinical utility for patient stratification.

Our model may have implications for the development of new therapies for MS. Pathologi-

cal studies have shown that all pathogenic processes are in place from the onset of the disease

[14] and they demonstrated the key role of acute axon transection due to autoimmune relapses

[28]. Based on these concepts, it has become highly desirable to obtain “no evidence of disease

activity” (NEDA) from the early stages of the disease [29]. Our model supports this assump-

tion, although such predictions must be demonstrated in clinical trials or by ruling out other

alternative hypotheses. This is important because the model shows that CNS damage accumu-

lates from disease onset and that once it reaches a given threshold, a small increase in damage

has a significant impact on disability. This can be explained by depletion of the functional CNS

reserve, hindering remyelination and impairing axon conduction due to demyelination [12].

Although there is currently much interest in remyelination therapies, our model suggests that

these may only be of value within specific time windows of disease evolution (e.g., RRMS).

However, remyelination was not fully analyzed with our model and thus, our results should be
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considered preliminary. Finally, our model shows a key role of axon degeneration in defining

the MS phenotype, consistent with pathological evidence. As such, developing neuroprotective

or regenerative therapies should hinder the advance of disability [30].

Our approach has some caveats. At the formal level, this study offers support for the

dynamic CNS damage hypothesis of MS but it does not formally exclude alternative hypothe-

ses, such as the two-stage hypothesis or the inside-out hypothesis. Considering the lack of

quantitative biological data regarding these biological processes, we approached the parame-

ter search by fitting the ODE model to the clinical phenotype (experimental EDSS time-

series) and we then checked whether such parameters were in the range of biological pro-

cesses. Therefore, our results should be considered more a qualitative than quantitative

model of CNS damage in MS. In addition, we have not modeled all the pathogenic processes

that can damage the brain in detail, such as the feedback of CNS damage to autoimmune pro-

cesses, chronic microglial activation, meningeal inflammation, cortical plaques, or specific

neurodegenerative processes. Future studies and more quantitative data will allow such a

level of detail to be added, and enable more specific and quantitative models to be developed.

On a more positive note, we were able to model the phenomena using relatively few parame-

ters, which means that the constitutive equations are capable of capturing MS demyelination

and neuroaxonal events.

In summary, our study indicates that the pathogenic processes that drive autoimmune

damage in the CNS can produce all the distinct MS subtypes and explain the clinical heteroge-

neity in patients. However, while each phenotype requires specific parameters to be fulfilled, it

appears that there is a distinct contribution of each biological process to the different disease

stages (perhaps reflecting different genetic susceptibility and environmental exposure). There-

fore, our model supports the notion that MS and its phenotypes can be explained as an auto-

immune process, arguing in favor of the dynamic CNS damage hypothesis of MS. This

hypothesis has implications for the development of new therapies and patient monitoring.

Principally, it means that MS should be considered and treated from the onset as a progressive

disease, with a focus on preventing CNS damage, and on avoiding reaching the thresholds

associated with the progressive course of the disease and more severe disability.

Materials and methods

Ethics statement

All the patients were recruited by their neurologists after obtaining their signed informed con-

sent. The IRB of the Hospital Clinic, Charite University, Karolinska Institutet, University of

Zurich approved the study.

Patients

The discovery cohort was a retrospective longitudinal cohort that included 66 MS patients

from the Hospital Clinic of Barcelona, Spain (iTEM database) and from the Hopital Civil de

Lyon, France (EDMUS database, data provided by Prof. Christian Confavreux: the raw data

for the EDSS time-series are provided in the S1 File). The time-series of the cohort included

EDSS values during a follow-up of 5 to 20 years. The disease subtypes at the end of the follow-

up were: 22% RRMS, 60% SPMS, and 16% PPMS. The validation cohort was a prospective

cohort of 120 MS patients from the Hospital Clinic of Barcelona, with annual clinical (EDSS)

and MRI assessment over three years (raw data for the EDSS and BV time-series are provided

in the S2 File). More details of this cohort can be found elsewhere [31].
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MRI volumetric dataset

MRI’s were acquired on a 3T Magnetom Trio scanner (Siemens, Erlangen, Germany), using a

32 channel phased-array head coil. A 3-dimensional structural T1-weighted Magnetization-

Prepared Rapid Gradient Echo (T1-MPRAGE) was used to compute all the volumes in this

study and a 3-dimensional Fluid-Attenuated Inversion Recovery (FLAIR) was used to manu-

ally achieve lesion segmentation. The T1-weighted MPRAGE sequence was acquired with the

following parameters: TR = 1970 ms, TE = 2.41 ms, TI = 1050 ms, flip angle = 9, 208 contigu-

ous sagittal slices with voxel size = 0.9 x 0.9 x 0.9 mm3, matrix size = 256 x 256. The FLAIR

sequence was acquired with the following parameters: TR = 5000 ms, TE = 393 ms, TI = 1800

ms, 208 contiguous sagittal slices with voxel size = 0.9 x 0.9 x 0.9 mm3, matrix size = 256 x 256.

The FLAIR image registered to T1 was used to manually segment the lesions. Subsequently,

the lesion mask obtained was used to create a healthy-like T1 and improve the following steps.

Finally, the T1 was segmented and the normalized BV was calculated using SIENA.

Clustering of EDSS data

We used a modified k-means algorithm to cluster the patient’s EDSS time-series from the dis-

covery cohort based on their complete EDSS time-series. First, we normalized the EDSS data

at each time point to the maximum and imputed the missing values using the K-Nearest

Neighbor method. Since k mean clustering is sensitive to the choice of the initial partition, we

ran it multiple times with random starting points, and using different k values between 3 and

8. The center of the clusters were obtained using fuzzy c-mean clustering and through this

method, we identified clusters that group all patients in the dataset. The number of clusters

was quantified using the average silhouette approach, which provided the best result at k = 4.

We obtained the clusters that better grouped the dataset of the discovery cohort, without pre-

specifying any number of clusters (e.g., 3 clusters to group RRMS, SPMS and PPMS).

To test if the clustering obtained from the long-term follow-up datasets (i.e.: the discovery

cohort) could cluster clinical datasets when only short-term follow-ups are available (e.g., two-

three years of annual EDSS data), we evaluated if the four clusters identified in the discovery

cohort were also extracted from the validation cohort. As such, we repeated the clustering pro-

cess on the validation cohort with the restriction that the number of clusters should be the

same as that defined in the discovery cohort (n = 4). We calculated the ratio of misclassified

patients for each of these 4 clusters in the validation cohort compared to the discovery cohort

as the error rate. We found that the error rate of the clustering using only a 2-year follow-up

was 16.51% ± 6.02 (the maximum error rate belonged to cluster 3 and the minimum rate to

cluster 2). Hence, based on these results we established that classification or assignment to

EDSS clusters can be achieved based on short-term EDSS observations.

Distribution of ΔEDSS to define the inflammatory input

Incremental changes in disability (ΔEDSS) were calculated using the current confirmed defini-

tion of the progression of disability based on an increase�1 point in the EDSS three months

apart [2]. Such ΔEDSS may be due to clinical relapses or disease progression. For the EDSS

time-series, the time intervals (ΔT) between consecutive ΔEDSS events (pulses) were counted

and using MATLAB (allfitdist custom script), we tested different statistical models to identify

that which best described the distribution of the ΔT values. The frequency of the ΔEDSS events

in 76% of patients can be approximated by the inverse Gaussian distribution and the remain-

ing 24% by the distribution of Generalized Extreme Values (GEV: comparable statistical mod-

els representing rare events). Furthermore, we took the median values of ΔT for each of the

patients and analyzed the resulting distribution of all of them. The best approximation of the
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resulting distribution was the GEV model (cumulative distributions versus data: S4 Fig). The

simulated GEV distribution of the ΔT frequencies belongs to a category of extreme events of

underlying processes and it was further used in the ODE model with the parameters of distri-

bution, defined separately for each patient cluster.

Mathematical model: Biological and clinical assumptions

MS is an autoimmune disease in which the activation of auto-reactive T cells induces chronic

activation of the innate immune response and focal CNS damage, the latter manifested as

demyelination and axonal loss (Fig 1) [1, 7, 32]. Mechanisms that drive peripheral immune

tolerance and brain immune privilege can shut down the immune attack in the short term,

although relapses occur that exacerbate demyelination and axon loss. We assume that remyeli-

nation fails after some time, contributing to the steady loss of axons and the chronic compart-

mentalized inflammation that ultimately leads to neurodegeneration [28]. However,

inflammation persists throughout the disease and it evolves from being orchestrated in the

peripheral immune system to being compartmentalized in the CNS [33, 34]. During the early

phases of the disease, immune-mediated demyelination and acute axon transection dominate,

while the progressive phases are characterized by compartmentalized CNS inflammation and

degeneration of demyelinated axons due to oxidative stress, energetic failure, loss of trophic

support in the oligodendrocyte-axon unit and the development of a glial scar [6, 25, 35]. We

took these three processes (inflammatory attack, demyelination/remyelination and axon loss)

into account at the cellular level to model MS and reproduce the clinical phenotypes observed.

We kept our model as simple as possible using the most basic processes described in MS, and

avoided modeling other processes for which there is still insufficient quantitative data for them

to be modeled (e.g., specific inflammatory processes or oligodendrocyte loss).

The healthy CNS is composed of neurons and their myelinated axons, and for simplicity we

do not consider the volume of glial cells (e.g., astrocytes and microglia) or the somas of oligo-

dendrocytes. Myelin is damaged during the course of autoimmune attack (via pro-inflamma-

tory cytokines, antibodies), oxidative stress or energy failure [36, 37]. Yet because extensive

remyelination may occur in the early to mid-phase of MS [18], we assume that demyelination/

remyelination events will follow the dynamics of the autoimmune attack until remyelination

mechanisms are unable to compensate for the loss of myelin, which occurs in conjunction

with the clinical transition to the progressive phase [24]. By contrast, axon damage (acute tran-

section or degeneration) does not follow autoimmune dynamics but rather, it accumulates due

to the poor regenerative capacity of the CNS [12].

Activation of the adaptive immune system in MS drives the migration of lymphocytes and

monocytes into the CNS, damaging the CNS parenchyma. Inflammatory infiltrates are present

in all forms of MS, including PPMS, albeit in different proportions and with distinct temporal

profiles for each disease subtype [14]. Both reversible CNS damage (demyelination with axon

preservation) and irreversible CNS damage (permanent demyelination and axon transection/

degeneration or neuronal loss) lead to a wide range of neurological disabilities (as measured

with the EDSS [38]).

We developed an ordinary differential equation (ODE) model that aimed to reproduce the

healthy brain (myelinated axons, Am), the MS brain (the combination of Am, demyelinated

axons, Ad, remyelination capacity, M, and axon degeneration, D). We represent the fraction of

the BV occupied by myelinated and demyelinated axons as Am and Ad, respectively, and we

define the capacity for remyelination as M (the ability of oligodendrocytes to produce all the

myelin required in a healthy adult brain). Our model describes three main processes in MS

that are involved in CNS damage: immune attack (via either inflammatory infiltrates or
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chronic compartmentalized inflammation); demyelination/remyelination; and axon degenera-

tion.

dAm

dt
¼ kmAdM � lðtÞAm � kmdAm ð1Þ

dAd

dt
¼ � kmAdM þ lðtÞAm � kdAd ð2Þ

dM
dt
¼ � kmAdM þ dAdM

q ð3Þ

dD
dt
¼ kdAd þ kmdAm ð4Þ

The first term on the right-hand side of the three equations represents the remyelination

process, at a rate of km. In turn, axons become demyelinated at a basal rate kmd. The capacity of

myelination (M) is depleted by the demyelination process and restored by the production of

myelin segments by oligodendrocytes. M is defined as the amount (volume) of myelin that can

be produced in a healthy adult brain and it is used to model the remyelination capacity modu-

lated by km. Up to 40 myelin segments are produced by a single oligodendrocyte and those seg-

ments can be extended along the demyelinated axons [39, 40]. We therefore assume that the

capacity for myelination augments in accordance with the proportion of demyelinated axons

(at least in the first 10–20 years of the disease) [18, 24]. Also, since myelogenesis primarily

occurs via elongation, we assume that M grows in a sub-linear manner, with a coefficient q<1.

This leads to a decrease in the capacity of oligodendrocytes to remyelinate axons over time

[41–43]. The significance and the range of each term is given in Table 2 and in our simulations

below, we assume that all axons are initially myelinated (Ad = 0, Am = 1) and that the capacity

of myelination is equal to the baseline healthy state (M = 1).

Modeling autoimmune attacks

In our model, autoimmune attack is represented by the time-dependent parameter λ(t). We

modeled the inflammatory attack in terms of timing in order to capture the dynamics of the

damage but for simplicity, not in terms of severity or mechanisms. In addition, we did not dis-

tinguish between different types of inflammatory damage, although the dynamics of relapsing

inflammation and chronic inflammation was modeled based on the parameters. In order to

define the ΔEDSS distribution, we used the timing between clinical relapses (ΔT) from the dis-

covery cohort. Similar shapes of cluster-based ΔT distributions were obtained, with slightly

Table 2. Model parameters.

Description Unit range

km remyelination rate (# myelin sheets per day) 1/day [0–100]

kmd rate of myelinated-axonal loss per day in acute plaques (due to

inflammatory infiltrates)

1/day [0–0.01]

kd rate of demyelinated-axonal loss per day in chronic plaques (due to

degenerative processes)

1/day [0–1]

q cooperativity coefficient of myelin sheet production by

oligodendrocytes

- [0–1]

δ myelination capacity growth rate 1/day [0–1]

https://doi.org/10.1371/journal.pcbi.1005757.t002
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different cluster-specific characteristics, allowing a further estimation of the parameters. We

found that the GEV distribution of the changes in EDSS approached the simulated values,

lying in the 97th percentile in terms of intensity and the ΔT distributions obtained from the

ODE model of T cell cross regulation in MS [4, 23] (Fig 7). Our model does not contemplate

the feedback provided by CNS antigens from the damaged brain being presented again in cer-

vical lymph nodes, mainly because such processes have still not been proven in MS patients

and there is little quantitative data to model such processes [10]. We compared the distribution

of the inflammatory events from the ODE model of MS autoimmunity with the ΔEDSS distri-

bution, and both followed a similar distribution (Fig 7). For this reason and again for simplic-

ity, we used the GEV distribution of ΔEDSS as the source of λ(t).

Linking the model of dynamic CNS damage to clinical outcomes

In order to link the biological processes in MS that damage the CNS with the clinical pheno-

type, we used an intermediate scale, measuring BV by MRI as a surrogate of CNS tissue dam-

age (which mainly reflects demyelination and axon loss but that can be confounded by

inflammation and edema or pseudoatrophy) [44]. Therefore, we aimed to relate the changes in

BV with those in the disability scale (EDSS(t)). To this end, we made use of the fact that most

regions of the CNS do not produce symptoms after damage (non-eloquent regions or brain

Fig 7. Analysis of the distribution of the EDSS time series. A) Distribution of the time intervals between the clinical relapses. The distribution is

derived from the experimental data of the EDSS time series (orange), simulations from the ODE model of T cell cross-regulation [4] (light blue) and the

results from the GEV distribution model (red line). B-C) Examples of the analysis of the EDSS time-series in patients with MS. Incremental changes in

EDSS over time in the experimental series for (B) PPMS and (C) SPMS. The onset of ΔEDSS is marked with an asterisk.

https://doi.org/10.1371/journal.pcbi.1005757.g007
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volume resilient Vri(t) in our notation), whereas other regions always induce clinical symp-

toms after being damaged (eloquent regions or brain volume eloquent Vei(t))) [45].

Both eloquent and resilient regions of the brain are affected by MS at similar rates (the

lesion distribution in the CNS has some areas of preference for MS, although for simplicity we

assumed here that all regions have the same probability) [26, 46]. In order to compare the data

obtained from different patients, we assumed that the individual brain volume BVi(t) is linearly

dependent on age and disease duration, with the individual linear coefficient kbi of the normal-

ized BV Vs(t) and with a constant individual parameter Vdi (minimal BV that remains after

maximum disability is achieved: EDSS = 10, patient death).

BViðtÞ ¼ kbiVsðtÞ þ Vdi ð5Þ

We represent the two fractions of normalized BV Vs(t) occupied by myelinated and demye-

linated axons as Am(t) and Ad(t), respectively, and we denote the myelination capacity (with

respect to the normalized -healthy- brain) as M.

VsðtÞ ¼ AmðtÞ þ AdðtÞ ð6Þ

Clinical readouts of the model

We linked the model’s variables to both the time-dependent individual (i) disability EDSS(t)
and to the MRI-derived BV of the individual BVi(t). We consider that clinical disability is the

result of a combination of both axon degeneration Ad(t) and demyelination Am(t). Given that

the EDSS assumes a non-cumulative effect of axon demyelination and degeneration, it can be

represented more adequately using the maximum rather than the sum of the two components.

EDSSiðtÞ ¼ keiEDSSsðtÞ ¼ keimaxðAdðtÞ;DðtÞÞ ð7Þ

Where kei is a scaling factor that transforms the simulated EDSSs derived from the volume frac-

tions Ad(t) and D(t) (range from 0 to 1) normalized to the observed EDSS (range: 0–10).

In contrast to EDSS(t), individual brain volume BVi(t) is linearly dependent on the purely

additive measure of functional axons, both myelinated Am(t) and demyelinated Ad(t),Vs(t).
Thus, for each individual

BViðtÞ ¼ kbiVsðtÞ þ Vdi ¼ kbiðAmðtÞ þ AdðtÞÞ þ Vdi ð8Þ

where kbi is a patient-specific proportionality constant and Vdi is the patient specific minimal

BV.

Assumptions and boundary conditions

In order to identify all the coefficients needed to connect the model to the experimental read-

outs, we estimated boundary conditions for the variables at specific time points (S4 Table) on

the basis of biological considerations and the conservation law.

AmðtÞ þ AdðtÞ þ DðtÞ ¼ VsðtÞ þ DðtÞ ¼ constant ð9Þ

Based on the equations presented in the table, we see the linear dependence between the

BVi(tA) and EDSS(tA) for the time points outside of the relapses, such as

BViðtAÞ ¼ BiEDSSiðtAÞ þ Ci ð10Þ
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where

Bi ¼ � kbi=kei ð11Þ

Ci ¼ kbiAmið0Þ þ Vdi ð12Þ

And

Vdi ¼ Ci þ keiBiAmið0Þ ð13Þ

Taking into account that

EDSSiðt10Þ ¼ keiAmið0Þ ¼ EDSSmax ð14Þ

for each individual patient or group of patients having both BV and EDSS measurements, the

constants and coefficients necessary for the model predictions could be defined from the esti-

mation of Ci and Bi as follows:

kei ¼ EDSSmax=Amið0Þ ð15Þ

kbi ¼ � keiBi ¼ � EDSSmaxBi=Amið0Þ ð16Þ

And, for each individual:

Vdi ¼ Ci þ EDSSmaxBi ð17Þ

BViðtÞ ¼ � keiBiVsðtÞ þ Vdi ¼ �
EDSSmaxBiVsðtÞ

Amið0Þ
þ Ci þ EDSSmaxBi ð18Þ

EDSSiðtÞ ¼ EDSSmaxEDSSsðtÞ=Amið0Þ ð19Þ

And,

VsðtÞ ¼
Amið0Þ

EDSSmaxBi
ðCi þ EDSSmaxBi � BViðtÞÞ ð20Þ

EDSSsðtÞ ¼ EDSSiðtÞ
Amið0Þ

EDSSmax
ð21Þ

Where Ci and Bi are patient-specific linear coefficients, identified based on the dependence

between EDSS and BV measurements. EDSSs(t) and Vs(t) are normalized simulated values,

and Ami(0) is 1 for young people under 20 or dependent on the age as 1-(age of onset-20)�0.01,

bearing in mind that the decline in the volume of myelinated fibers is about 1% per year

[39, 40].

Parameter estimation

Considering the lack of quantitative data available to estimate the parameters, we approached

their estimation by first obtaining parameters from the literature (S1 Table), thereafter estab-

lishing a parameter search space by setting the largest possible intervals for each parameter

using the experimental EDSS time-series to restrict the parameters in the model. As such, the

parameters are not assumed but rather, they are the result of fitting to the experimental dataset

within biological ranges (S5 Table). The model proposed encompasses the expected linear neg-

ative correlation of the two MS read-outs, the EDSS and BV (S3 Fig). The characteristic
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coefficients Bi and Ci that display a linear dependence could be estimated for each patient:

Ve(t) = Ci + Bi � EDSS(t). As such, the clinical outcomes (BV and EDSS) and the simulated data

can be connected at the level of the individual patient through age-based adjustments for the

initial condition Ami(t = 0). However, as BV measurements were not available for the discovery

cohort, we fitted the model to all disability scores (EDSS) for each specific cluster and based on

the average initial condition Ami(t = 0) equal to 0.9. Therefore, the time-dependent parameter

λ(t) was tuned according to the cluster-specific statistics of ΔT described above for each of the

clusters. We obtained 100 random samples from the ΔT and ΔEDSS distributions of all the

patients in each cluster, and we assumed that the inflammatory infiltrates decreased sharply

and produced permanent CNS damage after each attack [3]. Without any loss of generality, we

randomly sampled from a normal distribution with a mean of 0 to simulate the baseline diver-

sity. The variances of the normal distributions were drawn from an inverse chi-squared distri-

bution and the smoothed splines were then fitted to all the points sampled. Next, we used

genetic algorithms to minimize the squared error between the model’s predicted values and

the experimental data (EDSS). This was achieved by dividing the dataset of the discovery

cohort into a training set composed of half of the EDSS data points and a test set with the other

half. The data fitting provided different sets of parameters that fit the data equally well (Fig 8

and S5 Table)

Fig 8. The distribution of the model’s parameters calculated for the four clusters. Each boxplot shows the distribution of each

parameter in the model for each of the clusters: km, kmd, kd, q, and δ.

https://doi.org/10.1371/journal.pcbi.1005757.g008
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Depending on the performance of the optimization algorithm (fourth order Runge–Kutta

method) to search the minima, the intervals were retuned to get the best possible value for the

parameter sets. Each optimization cycle runs up to 500 generations with a population size of

100 and a new population is produced for every generation using adaptive mutation function.

We collectively fitted the model’s parameters to a maximum 120 data points. To check the pos-

sibility that our algorithm is getting stuck in the minimum objective function (the sum of

squared errors for the model), we initiated the algorithm in different parts of the objective

function. Objective functions are equations to be optimized given certain constraints and with

variables that need to be minimized or maximized using non-linear programming techniques.

To deal with parameter uncertainty, we used an ensemble of parameter sets statistically drawn

from all the sets and that were consistent with the available data. In addition, we performed a

sensitivity analysis to investigate how parameter variation influenced the dynamic behavior of

the model.

Sensitivity analysis

In order to estimate the values of the model’s parameters, we used a sensitivity analysis to

investigate the effects of the uncertainties in parameters on the behavior of the model and to

rank the parameters in function of their effect on the output variables [47, 48]. We used the

extended version of a Fourier amplitude sensitivity test (eFAST) to quantify the relative impor-

tance of the input factors. The eFAST test allows the full effect of a parameter to be quantified

and the significance of the sensitivity indices to be determined, calculated by comparing with

dummy parameters. Indices with very small ranges were considered as zero. The mean values

of the parameters in the ODE model are given in Table 2. We assume that each parameter sat-

isfies a uniform distribution with a coefficient of variation (CV) of 100%. The model was eval-

uated for each input sample to produce a set of 1000 model outputs. The median result of the

eFAST test, and the full order of the sensitivity indices for brain atrophy and EDSS with respect

to the model’s parameters are shown in Fig 4A.
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