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SUMMARY

Building an integrated view of cellular responses to
environmental cues remains a fundamental chal-
lenge due to the complexity of intracellular networks
in mammalian cells. Here, we introduce an integra-
tive biochemical and genetic framework to dissect
signal transduction events using multiple data types
and, in particular, to unify signaling and transcrip-
tional networks. Using the Toll-like receptor (TLR)
system as a model cellular response, we generate
multifaceted datasets on physical, enzymatic, and
functional interactions and integrate these data to
reveal biochemical paths that connect TLR4
signaling to transcription. We define the roles of
proximal TLR4 kinases, identify and functionally
test two dozen candidate regulators, and demon-
strate a role for Ap1ar (encoding the Gadkin protein)
and its binding partner, Picalm, potentially linking
vesicle transport with pro-inflammatory responses.
Our study thus demonstrates how deciphering dy-
namic cellular responses by integrating datasets on
various regulatory layers defines key components
and higher-order logic underlying signaling-to-tran-
scription pathways.

INTRODUCTION

Signaling networks must coordinate multiple layers of regulation

throughout the cell to respond to environmental changes. For
Cell
This is an open access article under the CC BY-N
example, mammalian immune cells detect microbial molecules

thanks to pathogen-sensing pathways such as Toll-like recep-

tors (TLRs) (Takeuchi and Akira, 2010). Upon activation by their

cognate ligands, TLRs follow general principles of signal trans-

duction by recruiting cytosolic adaptors and downstream en-

zymes such as kinases, which triggers cascades of biochemical

changes leading to cellular outputs such as gene expression

changes (Figures 1A and 1B). A fundamental question in cellular

response systems, such as TLRs, is how to generate and

combine knowledge about signaling and transcription regulatory

networks to build an integrated view of the flow of information in

a cell. Answering this question will help close gaps in our knowl-

edge of intracellular wiring and inform therapeutic targeting of

cellular components that are central to disease.

Despite recent advances in measuring cellular processes

and associated biochemical changes frommany different angles

(e.g., post-translational modifications, gene expression, and

transcription factor binding), building integrated models of

signaling pathways that take into account multiple regulatory

layers remains an elusive task due to several challenges. First,

using prior knowledge from databases alone, it is hard to

compare and connect signaling nodes and processes that

have been studied in disparate systems and with different read-

outs. Furthermore, existing databases are largely incomplete, as

demonstrated by the fact that the vast majority of known phos-

phorylation sites remain orphans with respect to their matching

kinases. Second, acquiring data within a single cellular context

and across regulatory processes ranging from post-translational

modifications (PTMs) to protein complexes to kinase substrates

is difficult due to the various technical requirements of each

assay, making them hard to adapt within a unique and relevant

cellular context. Third, individual large-scale measurements are
Reports 19, 2853–2866, June 27, 2017 ª 2017 The Author(s). 2853
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Figure 1. TLR4 Stimulation with LPS Leads to Global and Dynamic Changes in the Phosphoproteome of DCs

(A and B) Diagram highlighting general principles of cellular signaling-to-transcription events (A) and their transposition to the TLR4 pathway (B).

(C) Temporal changes in the phosphoproteome of LPS-stimulated DCs. Shown are the distributions of log2 fold changes of phosphosites (x axis) between LPS-

treated and untreated cells at indicated times after LPS stimulation, as density (top of each panel) and dot plots (bottom of each panel, withMS2 spectra count in y

axis and showing phosphosites measured in all eight time points).

(D) Comparison between the phosphoproteome and total proteome of LPS-stimulated DCs. Shown are distributions of log2 fold changes of phosphosites (x axis)

and proteins (y axis) between LPS-treated and untreated cells at 120 (top) and 360 (bottom) min post-stimulation.

See also Figure S1 and Table S1.
inherently limited by their variability in sensitivity and specificity

and are often used to capture static snapshots rather than the

dynamic events of cellular responses. It is thus critical to address

these challenges to help to dissect the connections that form the

basis of multi-layered cellular responses (Bensimon et al., 2012;

Santra et al., 2014; Yugi et al., 2016).

Here, we hypothesized that integrating measurements

spanning, in the context of a single cellular response model,

both signaling and transcriptional regulatory layers will help to

reveal key network-wide properties that would otherwise not
2854 Cell Reports 19, 2853–2866, June 27, 2017
be observable. To test this, building upon prior work (Chevrier

et al., 2011), we developed an experimental and computational

framework to measure and integrate the information underlying

signaling-to-transcription events in the TLR system, from the

membrane to gene regulation. We measure dynamic changes

in two types of interactions: physical (i.e., phosphorylation, ki-

nase-substrate relationships, protein-protein and DNA-protein

interactions) and functional (i.e., effects of genetic perturbations

on gene expression or phosphorylation events) (Figure S1A). Us-

ing these datasets, we identify regulators of TLR4 responses in



dendritic cells (DCs), including AP1AR and its binding partner,

PICALM, and introduce a network-based computational

approach that takes advantage of these diverse measurements

to decipher the higher-order logic governing TLR signaling-to-

transcription events.

RESULTS

The Dynamic Phosphoproteome of LPS-Stimulated
Dendritic Cells
We reasoned that large-scale, dynamic measurements of the

changes in protein phosphorylation in lipopolysaccharide

(LPS)-treated DCs would help to reconstruct signaling-to-tran-

scription pathways, because TLR signaling functions through

phosphorylation of its own constituents, from kinases such as

mitogen-activated protein kinases (MAPKs), IRAKs, IKKs, or

TBK1 to transcription factors such as nuclear factor kB

(NF-kB) or IRFs (Figure 1B) (Takeuchi and Akira, 2010). Further-

more, work by others (Sharma et al., 2010; Sjoelund et al., 2014;

Weintz et al., 2010) and us (Chevrier et al., 2011) showed that

phosphoproteomics can identify regulators of the TLR system.

We used stable isotope labeling with amino acids in cell culture

(SILAC)-based phosphoproteomics to compare the levels of

phospho-serine, phospho-threonine, and phospho-tyrosine

sites between DCs left untreated as control or stimulated with

LPS at eight time points (15, 30, 45, 60, 120, 180, 240, and

360 min) (Figures S1B and S1C). We identified and quantified a

total of 20,975 phosphosites derived from 5,789 distinct proteins

in at least two LPS-stimulated samples (false discovery rate

[FDR] < 1%; Figure 1C; Table S1), of which 20.5% were present

in all eight time points (4,310/20,975 phosphosites from 1,952

proteins; Figure S1D) due to undersampling of highly complex

and low-signal-intensity phosphopeptide mixtures in individual

SILAC experiments. The largest changes in the DC phosphopro-

teome were observed at 30 and 45 min after LPS stimulation,

which covered 92.8% of all quantified phosphosites in this study

(19,456/20,795) (Figure S1E). In addition, these changes in phos-

phorylation were not due to changes in protein amounts, as only

0.65 and 1.81% of proteins showed an increase in both phos-

phorylation and protein levels at 2 and 6 hr after LPS stimulation,

respectively (Figure 1D). These results suggested that LPS stim-

ulation modifies a large fraction of the DC phosphoproteome

within an hour.

Temporal Analysis of Phosphorylation Changes
Highlights Known and Candidate Regulators of TLR4
Signaling
Next, to study the dynamics of the LPS-regulated phosphopro-

teome, we focused on the 3,557 phosphosites mapping onto

1,606 proteins that were quantified in at least six out of eight

time points and differentially regulated upon LPS stimulation in

a single or two consecutive time points (2,071/3,557 phospho-

sites for the latter) (Table S2). Overall, 53.4% (3,557/6,659) of

the phosphosites quantified in at least six independent time

points were found to be differentially regulated by LPS, which

corresponds to 61.4% (1,606/2,617) at the phosphoprotein

level. We used k-means clustering to partition these 3,557 phos-

phosites into ten co-abundance clusters with distinct temporal
profiles (Figures 2A and S2A). We found three general patterns

of changes in phosphorylation levels: (1) early upregulation until

45 min (clusters I and II), (2) late upregulation after 120 min (clus-

ter III), and (3) downregulation at various times (clusters IV–X)

(Figure 2B). Each temporal cluster contained known TLR

pathway proteins for a total of 43 out of 141 canonical TLR

components, including 7.8% (11/141) and 10.6% (15/141) for

clusters I and II, respectively (Figures 2B and S2B). Known

TLR proteins identified in this data encompassed both positive

(e.g., MAPK family, IRF3, and NF-kB) and negative (e.g., TANK

and TNFAIP3) regulators, and were differentially phosphory-

lated at multiple sites in some cases (Figure S2C). The 1,606

phosphoproteins present in these ten temporal clusters were

enriched for molecular functions, including kinases, transcrip-

tional regulators, or protein binding (Figure S2D). Some of the

enriched gene sets pointed to nascent areas of TLR biology,

such as the organization and regulation of the TLR systemwithin

the framework of intracellular organelles and structures (e.g.,

activity and regulation of GTPases, cytoskeleton; Figure S2D).

Cluster II, and to a lesser extent other clusters, showed a signif-

icant enrichment for other immune signaling pathways (e.g., B

and T cell receptor signaling or DNA-sensing pathways), high-

lighting the existence of shared proteins between these immune

response systems (Figure S2D). Taken together, these results

reveal the dynamic changes imparted on the DC phosphopro-

teome by LPS, which include known and putative regulators of

TLR4 signaling as well as processes linked to DC biology,

such as changes in cell shape, motility, metabolism, and antigen

processing.

Genetic Perturbations of Phosphorylated Proteins
Identify Putative Regulators of TLR4 Signaling
To test if the phosphoproteins identified above play a role in the

TLR system, we used our temporal and enrichment analyses to

prioritize candidates for genetic perturbations (Figure 3A). We

focused on 751 phosphoproteins from the 1,606 ones used for

temporal clustering, which were upregulated at 30 and 45min af-

ter LPS treatment (clusters I and II; Figure 2B). We reasoned that

using early clusters would help to identify candidate regulators

likely to be downstream of TLR4 by avoiding feedbacks from

transcription or autocrine and paracrine signaling. Third, we

selected 169 out of 751 phosphoproteins to test by retaining

all enzymes (e.g., kinases and GTPases) and enzyme binders

and regulators (e.g., GTPase regulators) (Figures S3A and S3B;

Table S3). All selected phosphoproteins were also found to be

expressed at the mRNA level in DCs (Garber et al., 2012). The

two TLR4 adaptor proteins MYD88 and TRIF (encoded by

Ticam1) were part of these candidate genes. MYD88 was added

manually as a positive control, although it was not found to be

differentially phosphorylated, whereas TRIF matched our selec-

tion criteria above.

We successfully perturbed 131 out of 168 candidate genes

with an average knockdown efficiency of 81% ± 9% SD (Fig-

ure S3C). We stimulated DCs with LPS and measured the effect

of gene silencing on the mRNA levels of 263 TLR response

signature genes, representing the inflammatory and antiviral

programs (Table S3). We determined statistically significant

changes in the expression of signature transcripts upon
Cell Reports 19, 2853–2866, June 27, 2017 2855
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Figure 2. Temporal Analysis of the LPS-Induced Phosphoproteome Reveals Known and Candidate Regulators of TLR4 Signaling

(A) Temporal phosphorylation profiles during LPS stimulation in DCs. Log2 fold changes between LPS-treated and untreated cells for 3,557 phosphosites (rows)

detected in at least six out of eight time points (columns). Phosphosites are partitioned into ten clusters using k-means (color bars, right). White indicates missing

values.

(B) Median log2 fold changes between LPS-treated and untreated cells (y axis) and median absolute deviation (MAD; colored error bar) at each time point (x axis)

for phosphosites in all ten k-means clusters from (A). Known TLR pathway proteins detected in each cluster are indicated on the right. Parentheses indicate the

number of phosphosites per proteins (when >1).

See also Figure S2 and Table S2.
individual knockdowns based on comparisons to 16 control

genes, whose expression remains unchanged upon TLR activa-

tion, and to 38 control short hairpin RNAs (shRNAs) that did not

affect TLR signature genes. 27 out of the 131 genes tested

significantly affected TLR signature gene expression, which

included known TLR signaling components such as TICAM1,

TBK1, MAPK9, RIPK3, and IRAK2 (Figure 3B). Furthermore,

several phosphoproteins were reported to function in TLR

signaling by independent studies: TRAFD1 (Sanada et al.,

2008), STK3 (Geng et al., 2015), ULK1 (Eriksen et al., 2015),

and CORO1A (Tanigawa et al., 2009). Interestingly, known

and candidate components had similar effects on the TLR

gene signature upon knockdown. By measuring the pairwise

similarity among these 27 perturbation profiles (using Pearson’s

correlation), we observed three major modules of signaling reg-

ulators: MYD88 and a set of four proteins (SAMHD1, TBC1D17,

AP1AR, and PDLIM7) affecting inflammatory gene expression

(module I), TICAM1 and five proteins (module II), and 16 proteins

displaying effects that overlap with MYD88 and/or TICAM1

(module III) (Figure 3B).
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Validation of AP1AR and Other Candidate Regulators of
the Myd88-Dependent Inflammatory Pathway
We next sought to validate the putative roles of the four phos-

phoproteins (AP1AR, PDLIM7, SAMHD1, and TBC1D17) whose

perturbation profiles closely resembled that ofMYD88 in control-

ling pro-inflammatory genes (Figure 4A). We measured the

expression levels of inflammatory and antiviral cytokines in

LPS-stimulated DCs infected by two independent, gene-specific

lentiviral shRNAs per candidate phosphoprotein. We observed a

decrease in inflammatory cytokine mRNA expression compared

to eight control hairpins in all cases (Il6, Cxcl1, and, to a lesser

extent, Tnf), whereas antiviral cytokines Ifit1 and Cxcl10 were

mostly unaffected (Figure 4B). Similarly, using mouse Ap1ar�/�

knockout DCs (Maritzen et al., 2012), we observed a strong

decrease in inflammatory cytokines, especially Il1b, Il12b, and

Tnf, whereas antiviral cytokines were not affected (Ifnb1) or

slightly reduced (Cxcl10) (Figure 4C).

To generate mechanistic insights about the putative role of

AP1AR in the TLR4 pathway, we sought to identify binding part-

ners of AP1AR in LPS-stimulated DCs using affinity purification
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Figure 3. Genetic Perturbations of Phos-

phorylated Proteins Identify Putative Regu-

lators of TLR4 Signaling

(A) Overview of phosphoprotein candidate selec-

tion for functional analysis.

(B) Perturbation profiles of the 27 phosphoproteins

that significantly impacted TLR4 outputs. Shown

are the perturbed candidates and control phos-

phoproteins (columns) and the log2 fold changes

for each target gene (rows) between gene-specific

and control shRNAs. The rightmost column cate-

gorizes target genes into antiviral (light green) and

inflammatory (light orange) programs.

See also Figure S3 and Table S3.
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Figure 4. Identification of Candidate Regulators in the MYD88-Dependent Inflammatory Pathway

(A) Perturbation profiles of genes affecting the MYD88 pathway. Shown are four perturbed candidate genes and MYD88 (columns) and the log2 fold changes

between gene-specific and control shRNAs (rows) of ten target genes. The rightmost column categorizes target genes into antiviral (light green) and inflammatory

(light orange) programs.

(B) Expression levels (qPCR) relative to control shRNAs (left bars, dark gray) for two antiviral cytokines (Ifit1 and Cxcl10) and three inflammatory cytokines (Il6,

Cxcl1, and Tnf) following LPS stimulation in DCs using two independent shRNAs. Bottom tick marks separate shRNAs controls and each gene (average indicates

the mean value for all eight control shRNAs). Two to three replicates for each experiment; error bars represent SD.

(legend continued on next page)
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followed by mass spectrometry in primary mouse DCs (Fig-

ure S4A). Protein overexpression was effective in nearly all trans-

duced cells asmeasured byGFP fluorescence anddid not impact

cell responsiveness to LPS, as shown by strong morphological

changes (Figure S4B). We overexpressed V5-tagged AP1AR

and GFP as control bait in SILAC-labeled DCs stimulated with

LPS for 30min (Figure S4C), which led to the identification of pro-

teins that co-precipitatedwithAP1AR, but notGFP (Figure4D;Ta-

ble S4). Several knowncomponents of the assembly protein com-

plex 2 (AP-2) were pulled down with AP1AR (AP2A1, AP2B1, and

AP2S1), as well as the AP-2 binding partner PICALM, which is an

important component of clathrin-mediated endocytosis (Miller

et al., 2015). Next, to test if some of these AP1AR binders affect

TLR4 signaling outputs, we turned back to genetic perturbations

followed by gene signature measurements. Out of ten putative

AP1AR binders (at least two peptides identified and >1.5 log2

SILAC ratio of AP1AR/GFP), six showed a knockdown efficiency

>50%. We found that PICALM led to a decrease in the induction

of LPS-induced inflammatory genes similarly to MYD88, TIRAP,

andAP1AR (Figure 4E). Altogether, these results suggest a poten-

tial mechanism whereby AP1AR and PICALM act together in the

regulation of MYD88-dependent inflammatory signaling.

For another candidate identified based on phosphorylation

changes, SAMHD1, we further tested its potential involvement

in TLR signaling using human skin fibroblasts derived from

Aicardi-Goutières syndrome (AGS) patients that carry deleterious

SAMHD1 mutations (Crow and Manel, 2015). We observed a

decrease in both inflammatory and antiviral gene expression

upon LPS stimulation in two independent patient cell lines

compared to three healthy controls (Figure 4F), which differed

fromknockoutmouseDCdata (FigureS4D). The latterobservation

might be attributable to the difference in cellular context or to

compensatorymechanisms in themouse knockout cells. Interest-

ingly, physical interactions between SAMHD1 and TLR pathway

proteins have been reported previously, such as the TLR4adaptor

protein TIRAP (Li et al., 2011), and also with CCNA2 and CDK2,

which can be activated by TLR4 signaling (Hasan et al., 2007;

Huttlin et al., 2015). Altogether, we gathered evidence supporting

that AP1AR, its binding partner PICALM, and SAMHD1 are likely

to act as regulators of pro-inflammatory TLR4 signaling.

Signaling Regulator Perturbation Profiles Overlap with
Transcription Factor Target Genes, Suggesting
Potential Signaling-to-Transcription Paths
Having shown that phosphorylation dynamics can help identify

potential regulators of TLR signaling-to-transcription events,

we next sought to identify how signaling regulators are con-
(C) Inhibition of transcription of inflammation cytokines in Ap1ar�/� DCs. mRNA

antiviral (light green) cytokines in three replicates per time point. Error bars repre

(D) Interaction proteomics identified putative binders for AP1AR in DCs. Log2 fold

tagged-AP1AR and -GFP (control bait) plotted against the number of peptides id

(E) Perturbation profiles of indicated genes (columns) and the log2 fold changes

rightmost column categorizes target genes into antiviral (light green) and inflamm

(F) Impact of SAMHD1mutations on human fibroblast cell response to LPS. Huma

c.445C > T p.Gln149* for M1 and c.1609-1G > C for M2) were stimulated with L

antiviral (light green) cytokine levels were measured by qPCR (relative to GAPDH

See also Figure S4 and Table S4.
nected to downstream transcriptional regulators. The two tar-

geted screens for candidate (1) phosphoproteins and (2)

AP1AR binders led to 29 perturbation profiles showing signifi-

cant changes in TLR signature genes upon LPS stimulation

(Figures 3B and 4E). Based on the similarity of these perturba-

tion-induced expression profiles (Pearson’s correlation), we par-

titioned these 29 proteins into three modules (Figure 5A; similar

to Figure 3B). Next, we asked what transcription factors (TFs)

are likely to act downstream of these three modules of proteins

by taking advantage of existing data on the binding sites across

the genome of 23 TFs involved in TLR4 signaling (Garber et al.,

2012). We reasoned that measuring the overlaps between genes

whose promoters are bound by a TF, and genes whose mRNA

levels are impacted by knockdown of a phosphoprotein, would

help to infer some of the signaling regulator-TF relationships

likely to be active upon TLR4 activation (Figure S5). For 20 out

of 23 TFs tested, we identified significant overlaps (p value <

0.05; hypergeometric test) between gene sets whose promoters

were bound by one or several TFs and those whosemRNA levels

were impacted by knockdown of 25 out of 29 candidate and

known regulators (Figure 5B; Table S5). Some of these overlaps

recapitulated known signaling regulator-TF relationships in the

TLR pathways, such as MYD88 and NF-kB family members

REL and RELB, or TRIF and IRFs and STATs. Gene targets of

AP1AR, MYD88, and PICALM overlapped significantly with

genes bound by RUNX1 and REL. Taken together, these results

further support a role for the 29 phosphoproteins identified

downstream of TLR4 and suggest the existence of signaling

regulator-TF relationships between 25 phosphoproteins and

20 TFs.

Physical and Functional Proteomics Pinpoint Binding
and Phosphorylation Events Downstream of the Myd88
Adaptor and Associate Kinases
Next, to decipher the biochemical events linking the signaling to

transcriptional regulator relationships identified above, we

measured protein-protein and kinase-substrate interactions by

focusing on MYD88-dependent signaling. First, in DCs stimu-

lated with LPS for 30 min, we rediscovered most known

MYD88 binding partners, including TIRAP, TRAF6, or IRAK fam-

ily kinases, which support the validity of our affinity-purification

coupled with mass spectrometry (AP-MS) assay in primary

DCs (Figures 6A and S6A; Table S6). IRAK2 immunoprecipitation

identified several interaction partners such as MYD88 and

TRAF6 but with lower enrichment ratios compared to MYD88,

which is likely due to the short-lived interaction dynamics of ki-

nases (Figure 6B).
levels (qPCR; relative to Gapdh) for indicated inflammatory (light orange) and

sent SD.

change (x axis) of proteins enriched differentially between DCs expressing V5-

entified per protein (y axis).

between gene-specific and control shRNAs (rows) of 150 target genes. The

atory (light orange) programs.

n fibroblasts from healthy (H) or mutant-carrying patients (M; with homozygous

PS or left untreated as control, and indicated inflammatory (light orange) and

). Error bars represent SD.
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Figure 5. Similarities in Perturbation Profiles and Overlap with TF Target Genes Suggest Three Functional Modules for the 29 Candidate

Phosphoproteins
(A) Functional classification based on similarity of perturbation profiles. Shown is a correlation matrix (Pearson correlation coefficient) of the perturbation profiles

from Figures 3B and 4E combined.

(B) Intersection between genes affected by a phosphoprotein perturbation and genes whose promoters are bound by transcription factors (TFs). Shown are the

overlaps between genes affected by 29 candidate signaling regulators knockdowns (columns, including positive control genes) and genes whose promoters are

bound by 20 TFs (rows). P values, hypergeometric test (purple: significant correlation; white: no correlation).

See also Figure S5 and Table S5.
Second, we used two complementary approaches to identify

the substrates downstream of MYD88-associated kinases,

which remain poorly characterized. Perturbation approaches fol-

lowed by phosphoproteomics have proven useful in determining

functional pathway components downstream of a given network

node (Bodenmiller et al., 2010; Chevrier et al., 2011). We

measured the impact of four knockout (KO) models (Myd88�/�,
Myd88�/�/Ticam1�/�, which abrogates all TLR4 signals),

Irak2�/� and Irak4�/�) on the DC phosphoproteome upon LPS

stimulation for 30 min (Figures 6C and 6D). To stringently eval-

uate KO effects on the LPS-dependent DC phosphoproteome,

we focused on the 1,628 phosphositesmapping onto 990 unique

proteins that were differentially regulated in both (1) LPS-treated

wild-type DCs at 30–45 min (time course data; Table S1) and (2)

Myd88�/�/Ticam1�/� DCs compared to wild-type (Table S6).

Out of these 1628 phosphosites, a third (38.1%, 621/1,628)

were only affected by Myd88�/�/Ticam1�/� double deletion,

whereas the remaining sites were affected by both double and

single mutants: 45.6% (742/1628) for Irak4�/�, 31.1% (506/

1628) for Myd88�/�, and 8.1% (132/1,628) for Irak2�/�. These
numbers agree with the essential role of IRAK4 in TLR signaling

(Picard et al., 2003; Suzuki et al., 2002) and the partially redun-

dant function of IRAK2 with IRAK1 (Kawagoe et al., 2008).

Furthermore, these 990 Myd88/Ticam1-dependent phospho-

proteins captured 32.6% (46/141) of the canonical TLR proteins,

including known phosphosites such as TBK1 S716 and JUN

S63/S73 downregulated in Myd88�/� and Irak4�/� cells, IRF3
2860 Cell Reports 19, 2853–2866, June 27, 2017
S379 impacted upon double KO only, or MAPK9 T183/Y185 by

MYD88- and TRIF-dependent pathways (Figure S6B).

To complement this genetic approach, we developed a large-

scale in vitro kinase (IVK) assay using recombinant kinases

IRAK4, TBK1, and IRAK2 mixed with native protein lysates

from SILAC-labeled DCs followed by phosphoproteomics (Fig-

ure 6E). We identified a total of 967 phosphosites upregulated

by IRAK4, 325 by TBK1, and 201 by IRAK2, which included sites

also upregulated in LPS-treated DCs: 55 out of 967 (5.7%) for

IRAK4 and 62 out of 325 (19.1%) for TBK1 (Figures 6F, 6G,

and S6C; Table S6). These results suggest that some of the

phosphosites identified by IVK are likely to be physiologically

relevant, although others might be due to off targets effects

(e.g., activation of secondary kinases, or proximity with proteins

in solution that would not exist in cells).

An IntegratedModel Reveals Signaling-to-Transcription
Paths across the TLR4 System
Lastly, we sought to combine ourmeasurements on physical and

functional interactions into an integrated model of signaling-to-

transcription relationships in the TLR4 system (Figure S7A). We

used a network-based approach that relies on three main steps

(Figure 7A). First, we assembled a ‘‘background’’ network of

92,610 protein-protein and 5,533 kinase-substrate interactions

from public repositories and 43 protein-protein and 230 ki-

nase-substrate interactions identified from this study using

DCs (Table S7). Second, we assigned weights to the edges
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Figure 6. Physical and Functional Prote-

omics Assays Pinpoint Binding and Phos-

phorylation Events Downstream of the

Myd88 Adaptor and Associated Kinases

(A and B) Affinity purification followed by prote-

omics. Shown are dot plots of SILAC ratios for

proteins identified in DCs overexpressing V5-tag-

gedMYD88 (A) or IRAK2 (B). Cells were stimulated

with LPS for 30 min and protein complexes puri-

fied using anti-V5 antibodies coupled to magnetic

beads. Each axis represents an independent

experiment.

(C) Diagram depicting our experimental approach

for measuring the impact of gene KO on the TLR4-

regulated phosphoproteome of mouse BMDCs.

(D) Phosphoproteomics in KO cells. Left: heatmap

for SILAC ratios of phosphosites (rows) in four KO

models (columns) at 30 min after LPS stimulation

compared to control wild-type cells, as indicated

(gray, missing values). Middle: phosphosites with

significant up- or downregulation in KO versus WT

(light brown). Right: phosphosites belonging to

known TLR proteins (black).

(E) Diagram depicting our experimental approach

for large-scale in vitro kinase assays using native

protein lysates from BMDCs and phosphopro-

teomics.

(F and G) In vitro kinase (IVK) assay followed by

phosphoproteomics. Shown are scatterplots of

SILAC ratios of phosphosites identified using the

purified kinases IRAK4 (F) and TBK1 (G). Light

gray, all data points; dark gray, phosphosites with

FDR < 0.1 in IVK; red, phosphosites with FDR < 0.1

in both IVK and cells stimulated with LPS, which

highlights the overlap between IVK and phos-

phoproteome measurements on stimulated cells

(denoted as IVK + cells). Gene names at the bot-

tom right of each plot indicate known TLR com-

ponents with the number of phosphosites in

parenthesis.

See also Figure S6 and Table S6.
(i.e., protein-protein and kinase-substrate interactions) and no-

des (i.e., signaling or transcriptional regulators) of the back-

ground network to create a ‘‘weighted’’ interaction network

based on the phosphorylation changes driven by LPS stimula-

tion and specific kinases (based on KO and IVK data). Third,

we searched the weighted network for biochemical paths linking

the 29 phosphoproteins/signaling regulators or ‘‘seed nodes’’ to

transcriptional regulators or ‘‘target nodes.’’ To test the validity

of this integrative algorithm, we quantified its performance in

retrieving known seed-target relationships between canonical

TLR pathway components using receiver-operator characteristic

(ROC) curves. In the high precision regime, using a weighted

network outperformed methods that used the background inter-

action network or phosphorylation data alone. For example, at a

false positive rate (FPR) of 0.001, the weighted network method
Cell Re
yielded a true positive rate (TPR) that was

3.9and10.4 timeshigher thanbackground

network and ‘‘phosphorylation only’’ ap-

proaches, respectively (Figure S7B). Thus,
our network-based approach correctly identified known signaling-

to-transcription relationships between canonical TLR pathway

components thanks to the information collected using DCs in this

study.

Next, we searched for biochemical paths connecting the 29

signaling regulators highlighted above as ‘‘seeds’’ (Figure 5A)

and the 782 TFs detected by mass spectrometry in bone

marrow-derived dendritic cells (BMDCs) as ‘‘targets’’ (Table S1).

We identified 420 significant relationships between 27 out of 29

seed(except for seed DMXL2 and RAB3IL1) and 95 out of 782

target nodes (p < 0.0005, FDR < 0.05), whereas only 12 relation-

ships linking 7 seeds to 11 targets can be foundwithout integrating

our DC-specific datasets with publicly available interactionswithin

our algorithmic framework (Figure 7B; Table S7). Each signaling

node reached between 51 (TBK1) and 3 (ARHGEF11) TFs, for an
ports 19, 2853–2866, June 27, 2017 2861
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Figure 7. An Integrative Analysis Reveals Known and Candidate Signaling-to-Transcription Paths and Helps Parse the Effects of Myd88 and

Associated Kinases in the TLR4 System

(A) A computational framework for integrative analysis of the functional and physical proteomics datasets collected in this study (from left to right). A background

interaction network is assembled using database and local data, nodes and edges are scored based on experimental evidence from this work, and statistically

significant relationships determined by bootstrap analysis.

(B) Cumulative number of significant relationships (bootstrap p value < 0.0005, FDR < 0.05) identified between seed nodes (29) and any of the transcriptional

regulators detected in BMDCs (782 possible target nodes in total) using background network (dark gray) and weighted network (light gray) methods.

(C) Total number of relationships linking seeds (29) and known TLR transcription regulators (14) for background network (dark gray) and weighted network (light

gray) methods.

(legend continued on next page)
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average of 14.5± 11.6 SD. TFs via 1.5± 0.7 SD intermediate nodes

(FigureS7C). Importantly, these signaling-to-transcription relation-

ships captured 11 out of the 14 canonical TLR TFs and 8 out of 20

of the TFs whose binding sites were compared to knockdown ef-

fects (Figures 5B, 7C, and 7D). Furthermore, 49% (47/95) of the

TFs were both upregulated at the phosphorylation level upon

LPS stimulation and downregulated inMyd88�/�/Ticam1�/� cells.

Overall, each of the three modules identified based on co-pheno-

types upon knockdown (Figure 5) appeared to be biochemically

linked to similar downstream TFs (Figure 7D).

We asked which intermediate nodes were most central be-

tween seed and target nodes (i.e., most connected to target

TF nodes). For the 420 significant relationships linking the 27

seed and 95 target nodes, we ranked the top 25 intermediates

present across each of our three modules (Figure 7D), which

lead to a total of 60 non-overlapping intermediate nodes that

included 16 canonical TLR pathway components (Figures 7E

and 7F). These 60 intermediate nodes displayed various levels

of specificity across the three modules identified above, with

for example IRAK4 being central to module II (i.e., connected

to a relatively high number of nodes), whereas MAPK8 (JNK)

and MAPK14 (P38) were more connected across modules I

and III, respectively. Other nodes appeared shared between

modules such as AKT1 for I and III or TAB2 for I, II, and III.

Thus, intermediate nodes display both specific and shared roles

across the regulatory modules of the TLR4 pathway, which likely

reflects crosstalk within pathways leading to the regulation of

overlapping sets of target genes.

To gain insights into how signal is distributed downstream of

TLR4, we asked how the 420 seed-target relationships identified

here were affected by the four KO strains used in this study (Fig-

ure 6D). We quantified how many of the nodes (seed, intermedi-

ate, and target) present in each of the 420 seed-target pairs were

impacted at their phosphorylation level by KO. 391 out of the 420

pairs were significantly affected by Myd88�/�/Ticam1�/�, and
261 out of these 391 pairs were also impacted by Myd88�/�,
Irak2�/�, and/or Irak4�/�, leading to four clusters of effects: (1)

double KO only or together with (2) IRAK4 alone, (3) IRAK4 and

MYD88, or (4) IRAK4, MYD88, and IRAK2 (although to a lesser

extent) (Figure 7G). Interestingly, a large fraction of TLR4 signals

were impacted by MYD88 deletion, as expected, but IRAK4 was

responsible for broader effects despite the presence of IRAK4

and MYD88 in the same complex. Seed-target pairs that were

impacted by double-KO cells, but not MYD88 KO cells, are likely

to be important for TRIF-dependent signaling (i.e., module II).

Overall, this quantitative measurement of KO effects on

signaling-to-transcription paths provides additional information

on how signal is transmitted and partitioned from MYD88 and
(D) Significant relationships (420 pairs) found between 29 seeds (columns) and 95

(columns) in light green (I), purple (II), and orange (III). Transcriptional regulators wi

versus WT and in time series are indicated on the right (light brown). P values, b

(E) An interaction network connects 27 seeds (blue) to 95 transcriptional regulators

centrality measure (see Experimental Procedures).

(F) Centrality score of the top 60 intermediate nodes across the three modules fr

(G) t-distributed stochastic neighbor embedding (t-SNE) analysis of the effects of g

the paths mediating the seed-transcriptional regulator relationships identified in

Ticam1�/� (gray dots). The effects of Irak4, Myd88, and Irak2 on these paths are

See also Figure S7 and Table S7.
some of its kinase partners to downstream signaling and tran-

scriptional regulatory layers.

DISCUSSION

We established an integrative framework to dissect signal prop-

agation in the TLR system using data spanning both signaling

and transcriptional regulatory events. Previous studies have

connected paths within networks largely using protein-protein

interaction or phosphorylation data alone or in conjunction with

one to two different types of experimental data (Gitter et al.,

2013; Huang and Fraenkel, 2009; Huang et al., 2013; Terfve

et al., 2015). This study provides a proof-of-principle example

of the power of integrative analyses that take into account regu-

latory layers not typically studied in conjunction, from phosphor-

ylation dynamics to relationships between kinases substrates to

proteins forming complexes or binding to DNA to gene regula-

tion. In future work, it will be crucial to take into account addi-

tional regulatory layers such as the spatial distribution of proteins

(Brubaker et al., 2015), other PTMs and their enzymes (e.g., ubiq-

uitination, acetylation) (Mertins et al., 2013), and post-transcrip-

tional modifications (RNA) or translational control events.

The observations that AP1AR, its binding partner PICALM,

and SAMHD1 might play a role in pro-inflammatory signaling

will require future mechanistic studies. Interestingly, both

AP1AR and its binding partner, PICALM, interact with clathrin

adaptor proteins (Maritzen and Haucke, 2010; Miller et al.,

2015), suggesting a link between the TLR4-MYD88 pathway

and intracellular vesicle transport regulation that is reminiscent

of the TLR4-TRIF axis (Kagan et al., 2008). In addition, previous

work linked the Ap1ar locus to TNF production by DCs triggering

colitis (Ermann et al., 2011), which further support our results on

the role of AP1AR in pro-inflammatory signaling. The other

candidate regulator reported here, SAMHD1, is best character-

ized in viral restriction (Ballana and Esté, 2015), but it also plays

a role in processes such as TNF-mediated pro-inflammatory

signaling in fibroblasts (Liao et al., 2008), cell cycle (Pauls

et al., 2014), or DNA damage (Clifford et al., 2014) and in disease

such as AGS (Crow and Manel, 2015) and cancer (Schuh et al.,

2012). LPS regulated both known and previously unrecognized

phosphosites on SAMHD1 such as T634, mouse ortholog site

for the known human T592 regulatory site targeted by CDK2

(Pauls et al., 2014), or T52 found in the poorly characterized

SAM domain and that was regulated in a MYD88-dependent

manner. Taken together, these observations provide valuable in-

formation for future mechanistic investigations.

The multi-layer datasets reported here will be useful for

further analyses, mining and hypothesis-generating purposes
transcriptional regulators (rows). Modules from Figures 3B and 5A are shown

th phosphosites with significant up- or downregulation inMyd88�/�/Ticam1�/�

ootstrap (purple).

(red) through the top 60 intermediate (yellow) nodes that were ranked based on

om (D).

ene KO (data from Figure 6D) on the phosphorylation levels of nodes present in

(D). Shown are all of the 391 out of 420 relationships affected by Myd88�/�/
overlaid in orange, blue, and yellow, respectively.
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on additional candidate regulators, from the protein to the phos-

phosite level. First, many of the 131 phosphoproteins selected

for genetic screening had little to no effect on gene expression.

While poor knockdown efficiency and functional redundancy

can likely explain some of these cases, measuring the effects

of perturbing these proteins on other aspects of DC biology

such as motility or antigen presentation might help uncover

important mechanisms. Second, we focused our targeted

screen for regulators of gene expression on enzymes and their

regulators, but screening additional molecular functions is likely

to uncover additional regulators. For example, 24 phosphopro-

teins downregulated between 180 and 240 min after LPS stimu-

lation are involved in RNA binding and include the known

pathogen-sensing regulators Ddx21, Ddx3x, or Adar and a host

of potential candidates for this nascent area in TLR biology

(Anderson, 2010).

Lastly, it will be critical to build upon this work to systematically

identify functional phosphosites and their matching kinases. Our

study correctly identified many phosphosites of canonical TLR

components or other pathogen-sensing pathways such as

NLRC4 S533, which is a key site for host immunity (Qu et al.,

2012). Our large-scale IVK assay uncovered many known and

candidate substrates that will be important to validate using

in vivo chemical genetics approaches (Allen et al., 2007) and

shorter timescales to increase confidence about substrate spec-

ificity as shown in bacteria and yeast (Kanshin et al., 2015;

Skerker et al., 2008). Thus, future research on screening func-

tional phosphosites using site-directed mutagenesis will help

to reveal phosphorylated residues with functional significance

and potential therapeutic value.

EXPERIMENTAL PROCEDURES

Cells

Bone-marrow-derived DCs were generated from 6- to 8-week-old female

C57BL/6J (The Jackson Laboratory), Ap1ar�/� (Maritzen et al., 2012),

Samhd1�/� (Rehwinkel et al., 2013),Myd88�/�,Myd88�/�/Ticam�/�, Irak2�/�,
Irak4�/�mice. All stimulations were performed using ultra-pure E. coliK12 LPS

(Invivogen) at 100 ng/mL. For shRNA knockdowns, high-titer lentiviruses ex-

pressing shRNAs were used to infect bone marrow cells as previously

described (Chevrier et al., 2011).

mRNA Measurements

Total or poly(A)+ RNA was extracted and reverse transcribed prior to qPCR

analysis with SYBR green (Roche) in triplicate with Gapdh for normalization.

For mRNA counting, 5 3 104 bone-marrow-derived DCs were lysed in RLT

buffer (QIAGEN) with 1% b-ME (beta-mercaptoethanol). 10% of the lysate

was used for mRNA counting using the nCounter Digital Analyzer (NanoString)

and a customCodeSet constructed to detect a total of 267 genes (including 16

control genes whose expression remain unaffected by TLR stimulation). To

determine significantly affected signature genes, a fold-change ratio is

computed for each pairwise comparison of a knockdown sample versus a

set of control samples (i.e., non-targeting shRNA; at least ten per experimental

batch).

Affinity Purification followed by Mass Spectrometry

Analysis of interaction partners of V5-tagged proteins (MYD88, IRAK2 and

AP1AR) was performed using a single-step purification procedure as pre-

viously described (Hubner and Mann, 2011), with several modifications.

Peptide samples were analyzed on a Q Exactive mass spectrometer

(Thermo Fisher Scientific), and mass spectra were processed as described

above.
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For temporal phosphoproteome analysis, BMDCs grown in SILACmedia were

stimulated with LPS and lysed and processed for enrichment of phosphopep-

tides using strong cation exchange chromatography (SCX)/IMAC (immobilized

metal affinity chromatography) as described previously (Chevrier et al., 2011).

For IVK and KO phosphoproteome analysis, peptide samples were separated

by basic reversed-phase (RP) prior to IMAC enrichment as described previ-

ously (Mertins et al., 2013). IVK reactions were performed with recombinant ki-

nases for IRAK2, IRAK4, or TBK1 on SILAC-labeled native cell lysates from

DCs. For proteome analysis, total peptides were separated into 12 fractions

using an Agilent 3100 Offgel fractionator. Peptide samples were analyzed on

LTQ Orbitrap, LTQ Orbitrap Velos, or Q Exactive mass spectrometer (Thermo

Fisher Scientific). To identify and quantify peptides, mass spectra were pro-

cessed with the Spectrum Mill (Agilent Technologies) and the MaxQuant

(version 1.2.2.5) software packages (Cox andMann, 2008). Details on differen-

tial expression, clustering, pathway enrichment, and network analyses are in

the Supplemental Experimental Procedures.
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CALM regulates clathrin-coated vesicle size and maturation by directly

sensing and driving membrane curvature. Dev. Cell 33, 163–175.

Pauls, E., Ruiz, A., Badia, R., Permanyer, M., Gubern, A., Riveira-Muñoz, E.,
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