

Supplementary Figure 1. Histology and EBV status of WHIM17 and WHIM46. (a) H&E stained histology slides of WHIM17, WHIM46, and their corresponding tumors in patient samples. (b) Gene expression levels across the EBV genome in WHIM17 and WHIM46.

Supplementary Figure 2. Comprehensive coverage and technical reproducibility of proteomic data. (a) Overlap of detected genes with quantitative information in the mRNA, LFQ proteome, and iTRAQ proteome datasets. 7,600 genes were successfully quantified in all three datasets. (b) Protein expression correlations of technical replicates in the iTRAQ proteome dataset (WHIM13). (c) Protein expression correlations of technical replicates in the LFQ proteome dataset (WHIM2 and WHIM16). (d) Phosphosite expression correlations of technical replicates in the iTRAQ phosphoproteome dataset. (e) The bland-altman plot showing the difference between two technical replicates and average expression of protein markers in the iTRAQ proteome dataset (WHIM13). The red points indicate druggable proteins used in the druggable outlier analysis. ***: P value < 0.001.

Supplementary Figure 3. Count distribution of number of samples where the protein or phosphosite marker is quantified in the iTRAQ phosphosite dataset, iTRAQ proteome dataset, and LFQ proteome dataset, separated by markers of druggable genes and all other genes. The markers to the right of the grey vertical lines are observed in more than 10 samples in the corresponding dataset.

-1.0

Gene

Supplementary Figure 5. Correlation between mRNA and LFQ protein expression levels and pathway enrichment analysis.

Supplementary Figure 6. Phosphosite expression levels of breast cancer-related genes.

Supplementary Figure 7. Unsupervised clustering of proteomes using the markers identified through iTRAQ proteomic analysis. (a) Transcriptome clustering. (b) Proteomic clustering based on the LFQ proteome.

Supplementary Figure 10. Differentially expressed proteins in basal and luminal B breast cancer xenografts. (a) The top 30 most differentially expressed proteins in the ITRAQ proteome dataset. (b) The top 30 most differentially expressed proteins in the LFQ proteome dataset. (c) qqplot showing the –logFDR values of the differentially-expressed proteins in both datasets.

	WHIM9-	IDH1	PDPK1	PTPN11	RAF1	AKT1	IDH1	AKT1	SRC	PDPK1	HSP90B1	-
	WHIM8-	ERBB2	TOP2A	AURKA	EGFR	PLK1	ERBB2	TOP2A	ARAF	SRC	EGFR	-
	WHIM6-	AURKA	RAF1	PRKDC	HDAC3	HDAC8	GNAS	HDAC3	PRKDC	RAC1	RAF1	-
١	NHIM47 -	RAF1	FGFR4	AKT1	CDK4	FLT1	IDH1	AKT1	MTOR	PDPK1	CTNNB1	outlier_score 4 3 2 1 0 outlier FALSE
١	NHIM43 -	AKT2	RET	MTOR	BCL2	АКТЗ	AKT2	MTOR	SRC	RAC1	PRKDC	
	WHIM4 -	АКТЗ	PIK3CA	KIT	ERBB2	MET	CDK4	ERBB2	MAPK1	MAPK14	CTNNB1	
١	VHIM27 -	PTPN11	HSP90AB1	KRAS	FLT3	AKT2	MAPK14	HSP90AB1	IDH1	MAPK3	PDPK1	
٩	VHIM25 -	HSP90B1	HDAC3	PRKDC	FGFR2	АКТЗ	TOP2A	HSP90B1	PARP1	HDAC3	PRKDC	
d'	VHIM24 -	MTOR	BRAF	BCL2	RARA	PRKCE	PARP1	MAPK14	MTOR	MAPK1	IDH1	
an an	VHIM21 -	HDAC8	HSP90AA1	AKT1	AURKA	EPHA2	CTNNB1	ARAF	MAP2K1	TOP2A	CDK4	
ω ^ν	VHIM20-	AKT2	HSP90B1	PIK3R2	AR	RARA	AKT2	GNAS	IDH1	HSP90B1	ARAF	
	WHIM2-	PRKCE	KIT	PLK1	ERBB2	PARP1	MAPK14	PARP1	AKT1	MTOR	HDAC3	
١	VHIM18-	AKT2	GNAS	ARAF	PTPN11	FGFR4	CTNNB1	PDPK1	RAF1	ERBB2	ARAF	
١	VHIM16-	FGFR2	ESR1	AKT3	AR	MAP2K1	AKT2	PRKDC	PIK3R2	IDH1	MAP2K1	
١	VHIM14-	MAPK8	FGFR2	MAP2K1	HDAC2	CTNNB1	PARP1	AKT1	EGFR	PRKDC	SRC	
١	VHIM13-	CDK4	PTPN11	HDAC3	MAPK8	SRC	CDK4	HDAC3	PTPN11	SRC	PARP1	
١	VHIM12-	MET	FGFR1	HSP90AA1	EPHA2	GNAS	MAP2K1	HSP90AA1	HSP90B1	RAC1	EGFR	-
١	VHIM11 -	FGFR4	RET	KRAS	PIK3R2	RARA	HSP90AA1	RAF1	HSP90AB1	PRKDC	HDAC3	
	_	TRAQ 1-	TRAQ 2-	TRAQ 3-	TRAQ 4-	TRAQ 5-	LFQ 1 -	LFQ 2 -	LFQ 3 -	LFQ 4 -	LFQ 5 -	-
		_	_	_		. –		-				

Top druggable protein

Supplemtary Figure 12. Immunochemistry staining of HER2 in WHIM8, WHIM14, WHIM35 and FGFR2 in WHIM2, WHIM16 at different section of the tumor.

Supplemental Figure 13

Annotated MS/MS spectra of the representative peptide for each of the outlier phosphorylation sites of the candidate druggable genes. See methods section for detailed description of the selection of the representative peptide from the multiple observations of a particular phosphosite across all 9 iTRAQ experiments. The phosphorylated amino acid is lowercase.

Supplementary Figure 14. Western blots of actin, HER2 protein and HER2 p.Y1248 expression levels in 5 WHIM models (WHIM6, WHIM8, WHIM12, WHIM14, and WHIM35).

Supplementary Figure 15. Targeted HER2-inhibition treatments in WHIM14. (a) In vivo treatment responses to a lower, clinically achievable dose of lapatinib (30mg/kg). (b) In vivo treatment responses to trastuzumab and pertuzumab. Values were represented by tumor volume [mm3] every 4 day following treatment.