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Abstract

Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic

patients should normalize these levels in order to avoid short and long term clinical compli-

cations. Presently, blood glucose monitoring is dependent on frequent finger pricking and

enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors

are already on market but suffer from technical problems, inaccuracy and short operation

time. A novel approach for continuous glucose monitoring is the development of implantable

cell-based biosensors that emit light signals corresponding to glucose concentrations. Such

devices use genetically modified cells expressing chimeric genes with glucose binding prop-

erties. MSCs are good candidates as carrier cells, as they can be genetically engineered

and expanded into large numbers. They also possess immunomodulatory properties that,

by reducing local inflammation, may assist long operation time.

Here, we generated a novel immortalized human MSC line co-expressing hTERT and a

secreted glucose biosensor transgene using the Sleeping Beauty transposon technology.

Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene

expression was validated biochemically. Increased activity of hTERT was accompanied by

elevated and constant level of stem cell pluripotency markers and subsequently, by MSC

immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR

transwell assays, indicating that they possess immunomodulatory properties. Finally, bio-

sensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our

results indicate that our immortalized MSCs are suitable for measuring glucose concentra-

tions in a physiological range. Thus, they are appropriate for incorporation into a cell-based,

immune-privileged, glucose-monitoring medical device.
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Introduction

During the past years diabetes has became a worldwide epidemic. It was ranked in the top ten

leading causes of worldwide death cases in 2012 [1]. Global prevalence in 2014 was estimated

at 8.5% and number of patients suffering from diabetes has risen from 108 million to 422 mil-

lion between 1980 and 2014 [2] with a forecast of ever increasing numbers in future years.

Diabetes is dependent on either the absence or on the malfunction of a single pancreatic

hormone, insulin. The disease is manifested by two related medical conditions, type I diabetes

(T1D) and type II diabetes (T2D), the latter comprising between 85% and 90% of the affected

population. In T2D, insulin signaling is affected while in T1D, pancreatic beta cells are

destroyed by an autoimmune attack. During progression towards T1D, pancreatic islets are

infiltrated by leukocytes consisting of CD4+ and CD8+ T cells, B cells, macrophages, plasma

cells and dendritic cells [3–5].

Insulin deficiency causes an increase in blood glucose levels, which—in the long term—is

the source of all diabetes complication, from nephropathy and retinopathy to neuropathy, car-

diovascular diseases, etc. In T1D patients, blood glucose is controlled by regular injections of

insulin. This is a demanding task as the dose of the injected hormone should be carefully calcu-

lated in order to avoid problematic hyperglycemia on the one hand but also life-threatening

hypoglycemia episodes on the other hand.

Current methods for controlling blood glucose include a combination of frequent finger

pricking used to measure glucose levels, followed by the administration of insulin at a pre-cal-

culated dose. This procedure is repeated several times every day. Still, despite close attention,

T1D patients experience risks of dangerously high and low blood-glucose levels. In order to

make the insulin treatment safer, the amount of the insulin injected into the subcutis, and fur-

ther acquired by the circulation, should precisely respond to differential changes in actual

blood glucose concentrations. This concept drove the invention of continuous glucose moni-

toring systems (CGM), which allow for real-time reading of blood glucose levels.

Electrochemical CGM systems have been present on the market for more than 10 years.

However, due to their insufficient accuracy, most of these commercial devices are cleared by

the regulator for adjunctive use only. Presently, the only analytical method cleared by the regu-

lator for indication of insulin dosing is finger pricking followed by enzyme-based glucose anal-

ysis (manual glucose meters). Recently, Dexcom (www.dexcom.com) received FDA

committee recommendation to clear their 5th generation CGM for insulin dosing, and to

’eliminate the need for confirmatory fingersticks for daily glucose management decisions’ [6].

In addition, in order to maintain accuracy, currently available CGMs should be calibrated

twice a day and replaced on a weekly basis. Despite these constrains, non-adjunctive CGM sys-

tems are expected to replace routine finger pricking [7] and be cost effective to the T1D com-

munity [8, 9].

Implantable CGM systems with improved accuracy and usable lifetime are presently being

tested. First, an electrochemical system comprising glucose oxidase/catalase pair of enzymes,

two complementary reading methods, independence from routine calibration and expected

lifetime of over one year is being developed by GlySens Inc. (http://glysens.com/). Few

attempts to develop fluorescent sensors were also executed during the past years. Among

them, Biotex (http://www.biotexmedical.com/index.html) reported on developing a fiber-

enclosed ConA-dextran FRET-based sensor [10–12]. However, the accuracy of the device

(tested in rats and pigs) was moderate, and the development of an improved device was, appar-

ently, ceased. The most advanced device in this category is the ’EverSense’ CGM by Senseonics

(http://www.senseonics.com/). It is a fluorescent, boronic acid based glucose-indicating poly-

mer, expected to function for a period of about three months [13]. Overall accuracy of the
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sensor is similar to that obtained by standard electrochemical CGMs. However, it suffers from

an accuracy Achilles heel when measuring hypoglycemic events where its precision is unsatis-

factory [14].

A novel approach for creating a long term and accurate glucose measurement system is the

use of engineered biosensor polypeptides. In this approach, a device containing an engineered

cell type that is producing a transgenic biosensor could, theoretically, be implanted under the

skin, where it may function for an indefinite period of time. To generate a chimeric glucose

biosensor one could use bacterial periplasmic glucose/galactose receptor sensors. Notably,

receptors from several bacterial species have been already cloned and their spatial organization

defined (e.g. PDB 2HPH from E. coli or PDB 1GCA from Salmonella typhimurium). The E. coli
Mglb has a natural dissociation constant of 0.21mM [15], which is inappropriate for measuring

physiological concentrations of blood glucose in human. However, various mutants of this

receptor with lower affinity values, in the millimolar range, render it suitable for being used as

a physiological glucose meter [16–18].

In order to convert the mutated Mglb into a functional glucose biosensor, Förster reso-

nance energy transfer (FRET) technology is being used. When two fluorescent proteins (e.g.

Cyan Fluorescent Protein (CFP) and Yellow Fluorescent Protein (YFP)) are coupled with

Mglb, a chimeric molecule is produced that have two conformational states. In the unbound

state, a relaxed conformation places the two fluorescent polypeptide moieties at a distance that

does not allow for FRET to occur. However, when glucose binds Mglb, conformational

changes in the chimeric molecule brings the CFP and YFP fluorophores closer, thereby allow-

ing FRET to occur. The intensity of the fluorescence emission is proportional to the ratio of

bound to free biosensor molecules and, therefore, to glucose concentration.

Chimeric polypeptides consisting of Mglb and the two adjacent fluorescent proteins have

been already designed and synthesized in several laboratories. A group led by Wolf Frommer

generated a family of intracellular glucose sensors that was used to follow the dynamics of

intracellular glucose and the activity of glucose transporters [19, 20]. Glucose affinity of the

founding chimeric biosensor could be genetically manipulated, resulting in a family of related

biosensors, characterized by dissociation constants in the range of 0.6 to 13.8mM [21]. Alter-

natively, Veetil et al. constructed a comparable biosensor comprising a red fluorescent accep-

tor protein (mCherry) with dissociation constant in a sub-millimolar range [22].

Cell-based biosensors usually use primary or immortalized cell lines as carriers [23, 24]. In

order to measure intracellular glucose concentrations using FRET technology Fehr et al. have

modified COS-7 cells [19]. However, monkey malignant cells are incompatible from being

used in medical devices. On the other side, cell based biosensors based upon primary cells suf-

fer from low lot to lot reproducibility and are, therefore, impractical for commercial use.

In this manuscript, we describe the generation of a human immortalized mesenchymal

stem cell (MSC) line, stably transfected with a glucose biosensor transgene. The fluorescent

polypeptides are secreted from the cells into a specific reservoir, where they may be used to

measure glucose concentration present in biological fluids. Considering their immunomodu-

latory properties, MSCs may turn to be good candidates for implanted medical devices. In this

paper, we explore a strategy of using engineered MSCs for continuous glucose monitoring.

Material and methods

Construction of transposon expression plasmids

A 63bp signal peptide [25] was synthesized and added at the N-terminus of a pcDNA3.1

FLII12Pglu-700uDelta6 plasmid, obtained from Addgene (https://www.addgene.org/) (plas-

mid #17866). Then, a 14-aa linker between the Mglb and citrine-YFP was deleted by site-
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directed mutagenesis, as previously described [20]. Finally, the Glucose Biosensor (GB) gene

(consisting of a signal peptide, CFP, Mglb, -14aa linker, citrine-YFP) and its polyA tail were

amplified by PCR using Phusion High-Fidelity polymerase (ThermoFischer, USA) and for-

ward/reverse primers possessing the unique NheI and BglII site, respectively (S1 Table).

Amplified DNA product was cloned into pJET1.2 vector using the CloneJet PCR Cloning Kit

(ThermoFischer, USA). Its identity was verified by DNA sequencing. The EYFP-GW-polyA

tail of a pT2-CAGGS-EYFP-GW [26] was replaced by the amplified Biosensor-polyA tail DNA

fragment using the unique NheI-BglII sites, resulting in the generation of a pT2-CAGGS-Glu-

cose Biosensor transposon expression plasmid. The nucleotide sequence of the final plasmid

was verified by restriction digestion.

The SV40-neoR-polyA tail cassette was excised from a pT2-SV40-neoR plasmid by HindIII

and inserted into a pT2-CAGGS-EYFP-GW plasmid. The identity of the resulting

pT2-SV40-neoR-CAGGS-EYFP-GW transposon expression plasmid was verified by restriction

digestion and DNA sequencing. An entry clone encoding human telomerase reverse transcrip-

tase (hTERT) (GeneID: 7015, clone ID: IOH36343) was shuttled into a pT2-SV40-neoR-

CAGGS-EYFP-GW plasmid using LR clonase (ThermoFischer, USA), according to manufac-

turer’s instructions. The reaction mixture was used for transformation of Mach1 E. coli cells

and transformants were selected on agar plates supplemented with 100μg/ml Ampicillin. The

identity of pT2-neoR-hTERT plasmid was verified by BsrGI restriction digestion.

Isolation of mesenchymal stem cells

MSCs were obtained from Biohellenika Biotechnology company. They were enzymatically iso-

lated from an experimental sample of umbilical cord Wharton’s jelly under a consent form.

Tissue pieces were digested with 2.7 mg/mL collagenase type I (ThermoFischer, USA) and 0.7

mg/mL hyaluronidase (Applichem, Germany) for 3h at 37˚C, followed by incubation with

2.5% trypsin (Merck, Germany) for 30 min. Cell suspension was centrifuged at 500g for 30min

at room temperature and pellet was resuspended in Dulbecco’s modified Eagle medium

(DMEM) supplemented with 10% fetal bovine serum, penicillin (100 IU/mL) and streptomy-

cin (100 μg/ mL). Isolated cells conformed with the minimal requirements of ISCT [27].

Transfection

MSCs (2x105 cells) were seeded in 6-well plates and transfected with 7.5 μg total plasmid DNA

using xFect transfection reagent (Clontech, USA), according to manufacturer’s instructions.

For generation of GB MSCs, cells were transfected with a mixture of SB100x transposase [28],

pT2-CAGGS-Biosensor and pT2-SV40-neoR transposon plasmids (1:8:1 ratio). Similarly, for

generation of GB/hTERT MSCs cells were transfected with a mixture of SB100x transposase,

pT2-CAGGS-Biosensor and pT2-SV40-neoR-hTERT transposon plasmids (1:8:1 ratio). Trans-

fected cells were selected in culture medium containing 100μg/ml G418 and subcultured at a

1:2 ratio when they reached 95% confluence.

Flow cytometry

Cells (1x106) were stained with antibodies against hemopoietic (CD34, 45) or mesenchymal

(CD29, 73, 90 and 105) stem cell markers. Unstained or MSCs stained with IgG isotype anti-

bodies were used as negative controls. Cells were measured in a Cytomics FC500 flow cytome-

ter (Beckman Coulter, USA) using the CXP2.2 software. Analysis of flow cytometry results was

performed using the Flowing Software 2.5.1.
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Multilineage differentiation

MSCs were grown to 90% confluency and cultured for 28 days in StemPro Adipogenesis or

Osteogenesis differentiation medium (Thermo Fisher, USA). Adipogenic and osteogenic ter-

minal differentiation was monitored by Oil Red O (Sigma Aldrich, USA) or Alizarine Red S

(Sigma Aldrich, USA) staining, respectively.

RT-qPCR

Total RNA was extracted from MSCs using the NucleoSpin RNA kit (Macherey-Nagel, Ger-

many) according to manufacturer’s instructions. Specific primers for Oct-4, Nanog and Sox-2

genes were designed using the Primer-Blast program. Their sequences are shown in S1 Table.

cDNA generation and RT-qPCR reactions were performed using the KAPA SYBR Fast 1-step

kit (Kapa Biosystems, USA) in a Rotor-Gene 6000 operating system. Each experiment was per-

formed in triplicate. Amplified RT-qPCR products were analyzed in a 2% agarose gel

electrophoresis.

Microscopy

Cells were observed in an inverted AxioVert CFL40 Zeiss microscope equipped with an HBO

50 mercury lamp and reflectors, under brightfield or fluorescence filter sets for YFP (excitation

488 nm, emission 517 nm). Image acquisition was performed using the Fluorescence Lite soft-

ware module of AxioVision LE (Carl Zeiss, Germany).

Western blot

MSCs (5x105 cells) were lysed in 200ul 1% SDS PBS. Cell extracts and supernatants were ana-

lyzed in SDS-PAGE electrophoresis followed by electrotransfer onto nitrocellulose membrane

(Macherey-Nagel, Germany) using a semidry apparatus. Membranes were blocked with 5% w/

v skim milk powder (Sigma Aldrich, USA) in PBST for 1h and incubated with mouse anti-

GFP mAb (Millipore, MAB2510, 1:2000 dilution) or rabbit anti-TERT (Novus Biologicals,

USA, NB120-32020, 1:2000 dilution) antibodies overnight. For loading controls, membranes

were blotted with rabbit anti-GAPDH (Santa Cruz, USA, sc-25778, 1:1000 dilution) antibody.

After incubation with the appropriate secondary alkaline phosphatase-conjugated antibody

(Merck, Germany), membranes were developed with AP substrate NBT/BCIP (Applichem,

Germany).

Telomerase activity

Telomerase activity was determined using the TeloTAGGG Telomerase PCR Elisa Kit (Roche,

Switzerland). MSCs (2x105 cells) were lysed in 200ul Lysis buffer and used for the telomeric

repeat amplification protocol (TRAP) with PCR. Telomerase activity was described in a semi-

quantitative manner as “relative telomerase activity” (RTA), compared to a control template

sample with a known number of telomeric repeats.

Soft agar assay

For soft agar assays, 6x104 MSCs or HEK293T cells were mixed with complete culture medium

containing 0.7% agar (DIFCO, USA) and poured onto a layer of 1% agarose DMEM (Appli-

chem, Germany) in 10cm tissue culture plates. Cells were cultured for 21 days.
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Mixed lymphocyte reaction

Human peripheral blood monocyte cells (PBMCs) from a healthy donor were isolated on His-

topaque (1.077 g/ml, Sigma Aldrich, USA) density gradient centrifugation and resuspended in

DMEM supplemented with 10% FBS, penicillin (100 IU/mL) and streptomycin (100μg/ml).

For mixed lymphocyte reactions (MLR), 0.4μM pore size transwells (Greiner Bio-One, Ger-

many) were used. To induce T cell proliferation, transwell plates were coated with anti-CD3

antibody (5μg/ml, AbD Serotec, UK). Then, PBMCs (2.5x106) were resuspended in 500μl cul-

ture medium containing anti-CD28 antibody (1μg/ml, AbD Serotec, UK) and IL-2 (5U, Sino

Biological, China) and added in the lower chamber. Control experiments were performed in

the absence of stimulants. MSCs (0.5x106) were resuspended in 200μl culture medium and

placed onto the upper chamber of transwells. Cells were cultured for three days. Then, cell via-

bility and total cell number or PBMCs in the lower chamber was measured using the Cyto

Tox-Glo cytotoxicity kit (Promega, USA), according to manufacturer’s instructions.

Fluorescence measurements

Control or GB/hTERT MSCs were cultured in phenol-red free Dulbecco’s modified Eagle

medium (DMEM) supplemented with 10% fetal bovine serum, penicillin (100 IU/mL) and

streptomycin (100μg/mL). Then, supernatants were collected and YFP fluorescent intensity

correlating to secreted GB protein was measured in a Victor3 plate reader (PerkinElmer, USA)

equipped with the appropriate filters. For fluorescence spectral scans, samples were measured

in emission range from 450 to 690nm with 2nm intervals.

FRET assay

For estimation of FRET signal, cells were cultured in phenol-red free low glucose DMEM/F12

(Sigma Aldrich, USA) supplemented with 2% fetal bovine serum, penicillin (100 IU/mL) and

streptomycin (100 μg/ mL) for 72 hrs. Culture medium containing secreted biosensor was col-

lected and concentrated using Vivaspin 6 50K centrifugal filters (Sartorius, Germany). The

media was exchanged three times with 50mM Tris-HCl pH 7.6, 100mM NaCl, 1mM CaCl2

buffer to reduce glucose concentration to <0.1mM. Samples were then mixed with increasing

concentrations of glucose solutions (0.01-100mM final glucose concentration). Fluorescence

was measured using ZEISS Observer D1 microscope system and the following excitation/

emission filter sets: CFP 436nm/480nm, FRET 436nm/530nm at 25˚C. FRET signal was calcu-

lated as the ratio of:

FRET 436nm=530nmðGBþglucoseÞ

CFP 436nm=480nmðGBþglucoseÞ

Statistical analysis and densitometry

Statistical analysis of the results (p value calculation) was performed using the GraphPad

prism software. Data from three different experiments are presented as mean ± SD. Quantifi-

cation of proteins in each sample was performed using the ImageJ software.

Results

Characterization of control MSCs

Wharton’s jelly MSCs are stem cells present in several adult tissues and have a good prolifer-

ative potential. First, plastic-adherent human MSCs with a fibroblastic morphology were
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isolated and expanded ex vivo (S1A Fig). Flow cytometry analysis verified their mesenchymal

origin, as they were negative for the hematopoietic stem cell markers CD34 and CD45, but

expressed high levels of the mesenchymal stem cell markers CD29, CD73, CD90 and CD105

(S1B Fig). The expanded cells also retained their differentiation potential towards the osteocy-

tic and adipocytic lineages. Differentiated cells were positively stained with Alizarin Red,

which detects calcium deposits of functional osteocytes and with Oil Red O, indicating cyto-

plasmic lipid droplets of adipocytes, respectively (S1C Fig).

Generation of MSCs stably expressing glucose biosensor gene

MSCs at passage 5 were genetically modified as to express a previously described glucose bio-

sensor (GB) transgene [20] using the Sleeping Beauty transposon technology. This synthetic

gene encodes a fusion protein consisting of an N’-terminal signal peptide, Cyan Fluorescent

Protein (CFP), a glucose binding domain and Yellow Fluorescent Protein (YFP) (Fig 1A).

Upon glucose binding to its binding domain, GB protein releases a measurable FRET signal,

which is proportional to glucose concentration. GB MSCs were tested whether they retain

their mesenchymal properties. After G418 selection, cells with a fibroblastic morphology

homogeneously expressed the GB gene as indicated by fluorescence microscopy (S2A Fig). GB

MSCs also expressed most mesenchymal stem cell markers at high levels (S2B Fig), and

retained their differentiation potential towards osteocytes and adipocytes (S2C Fig).

MSCs are known to undergo replicative senescence upon ex vivo expansion; this phenome-

non reduces their productive lifespan, their usability in some cell therapy approaches and

alters their mesenchymal properties. To overcome this limitation, we generated a cell line co-

expressing both the GB transgene and the hTERT gene. GB/hTERT MSCs displayed fibroblas-

tic morphology, expressed mesenchymal stem cell markers (CD29, CD73 and CD90), and

were homogeneously fluorescent, indicating that they properly express the GB transgene (Fig

1B). The cells also expressed mesenchymal stem cell markers (CD29, CD73 and CD90) (Fig

1C). Interestingly, compared with control MSCs, only 25.7% of genetically modified cells

expressed the CD105 antigen. Multilineage differentiation potential of GB/hTERT MSCs was

also tested. Differentiated cells were efficiently stained with Alizarin Red or Oil Red O, con-

firming that genetically modified cells retain their mesenchymal properties (Fig 1D).

Next, we tested the expression of GB protein in GB- and GB/hTERT MSCs. Extracts from

genetically modified cells at passage 20 (1/8 of total cell extract) were analyzed by SDS-PAGE.

While immunoblotting with an anti-GFP antibody detected a band at 90kDa, no such band

was detected in non-engineered, control MSCs, confirming that both GB and GB/hTERT

MSCs properly express the GB protein. Supernatants from these cell cultures (1/40 of total cell

culture supernatant) were also probed for the GB protein. A band at 90kDa (the expected

molecular mass of GB) was detected in samples from genetically modified cells, but not in sam-

ples from control MSCs (Fig 2A). This indicates that GB and GB/hTERT MSCs secrete the GB

protein in cell culture supernatant. Finally, the intensity of the bands corresponding to the GB

protein was measured in both cell extracts and cell culture supernatants. Protein amounts

were estimated by densitometry. Data analysis indicated that around 95% of the total GB pro-

tein produced by GB/hTERT MSCs is secreted into the supernatant (Fig 2B).

Expression of hTERT in GB and GB/hTERT MSCs

Next, we investigated the expression of hTERT in genetically modified MSCs. Cell extracts

were analyzed by SDS-PAGE, and probed with an anti-hTERT antibody. Immunoblotting

detected a 127 kDa band (the expected molecular mass of endogenously expressed hTERT) in

samples from control, GB or GB/hTERT MSCs, corresponding to endogenous hTERT. As
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expected, densitometry analysis indicated that both control and GB MSCs express significantly

lower levels of endogenous TERT at passage 15 and 20, respectively, compared to GB/hTERT

MSCs at passage number 20 (S3 Fig). Additionally, an extra band at 147 kDa was also detected

in GB/hTERT MSCs. This high intensity band corresponds to ectopically expressed YFP-

hTERT, and confirms that GB/hTERT MSCs express high levels of the hTERT transgene (Fig

3A). Next we asked whether higher hTERT expression in GB/hTERT MSCs is associated with

correspondingly higher telomerase activity. Relative telomerase activity was estimated in GB

or GB/hTERT cells at passage 20 using an assay which allows quantitative determination of tel-

omerase levels. Our analysis showed that GB/hTERT MSCs have a 4.5-fold increase in

Fig 1. Characterization of GB/hTERT MSCs. (A) Schematic representation of a Glucose Biosensor (GB) gene used for the genetic

modification of MSCs. The gene encodes a chimeric protein consisting of a signal peptide allowing protein secretion followed by Cyan

Fluorescent Protein (CFP), a glucose binding domain and Yellow Fluorescent Protein (YFP). (B) Optical and YFP fluorescence microscopy

of GB/hTERT MSCs (scale bar: 100μm). (C) Flow cytometry of GB/hTERT MSCs for mesenchymal CD29, 73, 90, 105 markers. Unstained

cells were used as control. (D) Staining of control or differentiated GB/hTERT cells with Alizarine Red/Oil Red O indicative of osteogenic/

adipogenic differentiation, respectively (scale bar: 100μm).

https://doi.org/10.1371/journal.pone.0185498.g001

Fig 2. GB production in genetically modified MSCs. (A) Immunoblots for GB protein in control, GB and GB/hTERT MSC extract and cell

culture supernatants (12.5% and 2.5% of total, respectively) using an anti-GFP antibody. GAPDH was used as a loading control. (B)

Densitometry quantification of GB production in GB/hTERT cells and secretion in cell culture supernatant. Data from 3 independent

experiments are presented as mean ± SD (***: p<0.001).

https://doi.org/10.1371/journal.pone.0185498.g002
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telomerase activity compared to GB MSCs at a similar passage (Fig 3B). Taken together, these

results suggest that GB/hTERT MSCs produce high levels of a functional hTERT protein.

The maintenance of telomerase activity in MSCs potentially protects them from senescence.

To test this assumption, we maintained long-term cultures of genetically modified MSCs and

calculated their growth curves. GB MSCs were cultured up to passage 28. At this time point,

cells increased in size, were growth-arrested and eventually died in culture. These observations

are in agreement with the previous result that GB MSCs at passage 20 express only low levels

of endogenous hTERT (Fig 3A) that cannot support their long-term proliferation potential. In

contrast, GB/hTERT MSCs were maintained in culture for over 300 days, and cultured up to

127 passages with a population doubling time of 48-72hrs (Fig 3C). This indicates that ectopic

expression of YFP-hTERT preserves the proliferation potential of GB/hTERT MSCs and pro-

tects these cells from senescence.

Fig 3. Self-renewal potential of genetically modified MSCs. (A) Immunoblots for hTERT in control, GB and GB/hTERT MSC extract

using an anti-hTERT antibody. GAPDH was used as a loading control (B) Relative telomerase activity in GB and GB/hTERT MSCs at

passage 20. (C) Cumulative population doublings of GB and GB/hTERT MSCs over time. GB MSCs reached replicative senescence at

passage 28. (D) mRNA levels of Oct-4, Sox-2 and Nanog pluripotency markers in GB and GB/hTERT MSCs (***: p<0.001, **: p<0.01).

Results in (B) and (D) are shown as mean ± SD of 3 independent experiments.

https://doi.org/10.1371/journal.pone.0185498.g003
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The self-renewal capacity of adult stem cells correlates with the expression of pluripotency

markers Oct-4, Sox-2 and Nanog. To determine whether the proliferative capacity of GB/

hTERT MSCs is associated with the high expression of these markers, we estimated their tran-

scription levels by RT-qPCR. The identity of the amplified fragments in RT-qPCR was vali-

dated by melting curve analysis and agarose gel electrophoresis (S4 Fig). Our analysis showed

that GB/hTERT MSCs have significantly higher mRNA levels of pluripotency markers than

GB MSCs at a similar passage. More specifically, GB/hTERT MSCs expressed 31% and 86%

higher mRNA levels of Oct-4 and Sox-2, respectively. Interestingly, GB/hTERT MSCs had a

10-fold increase in Nanog mRNA levels (Fig 3D). These results suggest that the higher prolifer-

ative capacity of GB/hTERT versus GB MSCs is associated with the higher expression levels of

pluripotency stem cell mediators.

In principle, immortalized MSCs may spontaneously transform into cancer stem cells. We

therefore evaluated the tumorigenic potential of immortalized GB/hTERT MSCs. Cells at pas-

sage 85 were negative for the expression of CD133, a well-known cancer cell marker which is

ubiquitously expressed in e.g. lung cancer A549 cells (S5A Fig). Additionally, GB/hTERT

MSCs at passage 85 were tested for their potential to form colonies in soft-agar assays, indica-

tive of cellular transformation. Neither GB/hTERT at passage 85 nor control MSCs at passage

15 formed colonies in contrast to positive control HEK293 cells (S5B Fig). Taken together,

these results suggest that overexpression of hTERT in GB/hTERT MSCs and their subsequent

immortalization do not transform them into cancer stem cells; they also indicate that GB/

hTERT MSCs might be safe for biomedical applications.

GB/hTERT MSCs suppress the proliferation of lymphocytes in vitro

MSCs have the ability to suppress the proliferation of lymphocytes in a paracrine manner.

Cells with such properties express high levels of CD200, CD274 and CD276 markers. Unmodi-

fied MSCs used in our study expressed high levels of these markers, suggesting that they pos-

sess certain immunomodulatory properties (S6 Fig). Next, we asked whether GB/hTERT

MSCs are still capable of suppressing the proliferation of lymphocytes. To this end, we first set

up PBMC proliferation assays. 78.89% of isolated PBMCs were positive for the CD3 T cell

marker as measured by flow cytometry (S7C Fig), indicating that this fraction is highly

enriched in T cells. Then, PBMCs were stimulated with mitogens and their proliferation was

quantified. Cells efficiently proliferated forming visible rods in cell culture (S7A Fig). Stimula-

tion of PBMCs resulted in a 52% increase in the total cell number as indicated by cell-titration

assays (S7B Fig). Flow cytometry indicated that the fraction of stimulated PBMCs was still

highly enriched in T cells; 86.03% of all cells were positive for CD3. Additionally, there was a

2.8-fold increase in the absolute number of CD3+ cells (S7C Fig), suggesting that T cells effi-

ciently proliferated under these conditions.

In order to quantify the effect of MSCs on PBMC proliferation, we performed MLR assays

using transwell plates. The design of these plates allows for chemical communication between

MSC-containing upper chamber and PBMC-loaded lower chamber but prevents migration

and physical mixing of the different cell populations. Cell-titration assays in the lower chamber

containing stimulated PBMCs indicated that GB/hTERT MSCs significantly suppressed

PBMC and subsequently T cell proliferation (32% reduction in total cell number compared to

control/stimulated PBMCs co-cultured with DMEM). A similar result was obtained with GB

MSCs (28% reduction in total cell number compared to control/stimulated PBMCs co-cul-

tured with DMEM) (Fig 4A). We also quantified the number of dead cells in the lower cham-

ber. Interestingly, we found an almost double amount of dead cells in co-culture experiments

of stimulated PBMCs with GB or GB/hTERT MSCs. This indicates that secreted cytokines
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from genetically modified MSCs induce cell death mechanisms in PBMCs in vitro (S8 Fig).

Taken together, these results indicate that GB/hTERT MSCs have an immunosuppressive

effect in vitro and retain their immunomodulatory properties.

Estimation of glucose concentration in vitro using GB protein

GB/hTERT MSCs produce high levels of secreted GB protein, which could be used to quantify

glucose concentration in a biological sample by FRET measurements. To do so, we first mea-

sured GB protein secretion in cell culture supernatants using a fluorescence plate reader. We

detected an increasing YFP signal within 72hrs corresponding to the increasing amounts of

the secreted GB protein. No such signal was detected in supernatants from control MSC cul-

tures (S9A Fig). Then, cells were cultured in glucose-free medium; supernatants containing

GB protein were collected, and mixed with a 25mM glucose solution. Upon glucose addition, a

measurable shift in the basal FRET signal was detected (S9B Fig), indicating the formation of a

glucose-GB protein complex.

Then, GB protein was mixed with increasing concentrations of glucose (0-55mM) and fluo-

rescence spectral scan analysis was performed after CFP excitation at 436nm. A FRET signal

was detected with a peak at 530nm corresponding to YFP fluorescence. Fluorescence intensity

increased at higher glucose concentrations and reached a plateau at 20mM glucose in solution.

No such signal was observed in supernatants from control MSCs (S9C Fig). Finally, a quantita-

tive FRET assay was developed for the estimation of glucose concentration in solution. GB

protein was mixed with increasing concentrations of glucose (0.01-100mM). FRET signal cor-

responding to a glucose-GB protein complex was calculated after subtraction of a background

CFP signal. Dose-dependent analysis showed that increasing glucose concentrations correlate

with a proportional FRET signal in solvents. The resulting kinetic curve had a Kd value of

2.5419mM at 24˚C (Fig 4B). This assay may efficiently detect glucose concentrations between

1-10mM in vitro which is within the range of blood glucose levels, while the FRET signal

becomes saturated at higher concentrations. Taken together, these results indicate that GB/

hTERT MSCs produce and secrete a functional glucose biosensor protein, which may be used

to measure glucose concentrations in biological fluids.

Fig 4. A. Immunosuppressive properties of genetically modified MSCs. Transwell co-cultures of stimulated PBMCs with GB or GB/

hTERT MSCs. Cultures with DMEM were used as control. Total cell number in lower chamber containing stimulated PBMCs is expressed as

luminescence units (**: p<0.01, *: p<0.05). B. Detection of a glucose-dependent FRET signal using GB protein. FRET signal detected

in a GB/hTERT MSC culture supernatant and mixed with increasing glucose concentrations (0.01-100mM). Signal corresponds to a

proportional GB protein/glucose complex depicted in a kinetic curve with Kd value of 2.5419mM and delta R of 18.6% at 24˚C.

https://doi.org/10.1371/journal.pone.0185498.g004
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Discussion

In the present study, we describe the generation and properties of an immortalized human

MSC line that can be used to measure extracellular glucose levels. To do so, we stably trans-

fected Wharton’s Jelly hMSCs with both hTERT and a FRET-based biosensor gene which per-

mits glucose measurements in a physiological range [20]. We used the Sleeping Beauty system

that is highly suitable for stable expression of a transgene in various stem cells [29–31].

FRET technology offers several advantages. Response time is fast and proper design allows

for high sensitivity to a specific ligand. It also provides both proximity and kinetic information.

Therefore, it is widely used to identify and also quantify protein-protein interactions [32].

Likewise, FRET-based biosensors have been successfully used to quantify activity of intracellu-

lar kinases and their response to drugs in living cells [33]. Thus, such biosensors are valuable

tools with potential applications in the field of personalized medicine.

A signal peptide was attached at the N-terminus of the GB gene, allowing the recombinant

protein to be secreted. Essentially, our results demonstrated that the majority of the expressed

GB was properly secreted and was detected in the cell culture supernatant (Fig 2). Also, the

secreted biosensor protein was functional. When combined with glucose it gave a measurable

FRET signal, proportional to the concentration of glucose (Fig 4B and S9C Fig). These results

collectively indicate that our reporter is suitable for quantitative estimation of glucose concen-

tration in cell-free assays.

Wharton’s Jelly MSCs were selected for the production of the recombinant GB protein.

This decision was based on several reasons. Firstly, MSCs are primary cells that do not carry

any genetic modification and can be easily expanded to high numbers. Secondly, MSCs are

hypoimmunogenic. They do not express HLA class II antigens [34] or the co-stimulatory mol-

ecules CD40, CD80 and CD86. On the other hand, they differentially express various HLA

class I antigen subtypes. While HLA-G, induces Treg cell proliferation [35] that protects them

against NK cells [36], expression of HLA-B is low thus, protecting the cells from complement-

dependent cytotoxicity [37]. MSCs also produce molecular mediators like IDO, TGF-β and

PGE2 that suppress T cell proliferation [38–40]. These cells are, thus, ideal for transplantation

or immunomodulation in in vivo applications.

Our results showed that MSCs retain their immunomodulatory characteristics after being

genetically modified with GB gene. The transgenic cells are plastic-adherent, have fibroblastic

morphology, can differentiate into mesodermal cell lineages and express mesenchymal stem

cell CD surface markers (Fig 1 and S2 Fig). Interestingly, we observed that genetically modified

MSCs express low levels of CD105, an auxiliary component of the TGF-β receptor complex.

CD105 is involved in cell proliferation, differentiation and migration [41]. Its expression is

affected by passage number and cell confluency in culture. CD105- and CD105+ MSCs were

shown to have similar properties (growth potential and CD marker expression) but varied in

their differentiation potential. CD105- MSCs define a subpopulation of cells characterized by

increased immunosuppressive capabilities [42] rendering them more appropriate for our

applications. However, we cannot exclude the possibility that expression of CD105 in GB and

GB/hTERT MSCs is affected by their genetic modification.

MSCs when cultured are subjected to replicative senescence, a phenomenon known as the

Hayflick limit. This limit indicates that cells may divide for a specific number of passages, but

then enter into a phase in which they can no longer proliferate. Replicative senescence is

accompanied by loss of their differentiation ability, morphological and biochemical changes

[43].

One of the most important changes in cells entering senescence is the shortening of

telomeres with each cell division, resulting from gradual loss of hTERT activity. In our
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experiments, replicative senescence was more intense in GB MSCs as these cells stopped prolif-

erating at passage 28 (Fig 3C), and showed reduced expression of endogenous hTERT com-

pared to their control counterparts (Fig 3A and S3 Fig). However, co-expression of GB and

hTERT restored the proliferative potential of MSCs. This observation was accompanied with

the relatively constant expression levels of pluripotency markers Oct-4, Sox-2 and Nanog (Fig

3D). We recently showed that Oct-4 and Nanog regulate the expression of genes associated

with the replicative senescence of MSCs [44]. Thus, increased levels of these markers in GB/

hTERT MSCs may upregulate genes with anti-aging activity contributing to the preservation

of MSC stemness. GB/hTERT MSCs express and secrete a functional GB protein (Fig 2) that

may measure glucose concentrations in solutions in vitro (Fig 4B and S9C Fig). Given their

high proliferative capacity, supernatants from GB/hTERT MSC cultures can be used for the

purification of large amounts of GB protein appropriate for the measurement of glucose in

high-throughput cell-free assays.

In contrast to strategies using primary cells that suffer from low reproducibility, and are

therefore not practical for commercial use, we propose that GB/hTERT MSCs can also be

incorporated in cell-based biosensors. The good proliferation rate of GB/hTERT MSCs allows

for the construction of large biobanks with cells of identical characteristics. Although immor-

talization of GB/hTERT MSCs may also raise biosafety concerns, we show that these cells, by

contrast to certain common laboratory cell lines [45], do not form colonies in soft agar assays.

Thus, they do not spontaneously transform into cancer cells (S5B Fig), indicating that GB/

hTERT MSCs might be suitable for use in biomedical applications from a biosafety point of

view.

Besides their stem cell properties, MSCs possess the ability to impart profound immuno-

modulatory effects which may be due to the presence of cytokines secreted in conditioned

medium. Nevertheless, these immunomodulatory roles have been recently assigned to MSCs

[46], and markers describing this lineage were established [47]. MSCs have been already tested

in small animal models to treat diseases where immunomodulation is thought to be the main

operative mechanism [48]. They have been reported to suppress T cell proliferation in a variety

of assays using stimuli including mitogens, CD3/CD28 and alloantigens. Although the exact

mechanism remains largely unknown, suppression occurs independently of the MHC complex,

and appears to be mediated by secreted cytokines, such as TGFβ-1, hepatocyte growth factors

[49–51] and factors like PGE-2 and NO [52]. Importantly, our GB/hTERT MSCs retained their

immunomodulatory properties, and efficiently suppressed T cell proliferation in MLR assays

(Fig 4A). Transplantation devices, even if partially protected from the host immune system by a

semi-permeable membrane, induce immune response, resulting in a decreased efficacy of the

system. Although anti-inflammatory drugs such as steroids and NSAID could extend the pro-

ductive life span of the device, long term use of these drugs is not recommended. In principle,

transplantation of GB/hTERT cells in vivo may generate a local immunosuppressive microenvi-

ronment for the cell-based glucose biosensor. A cell-based glucose biosensor containing GB/

hTERT MSCs may measure glucose levels at the physiological range and in parallel create an

immune privileged implantation site, extending the life span of the biosensor.

Supporting information

S1 Fig. Characterization of control MSCs. (A) Optical microscopy of control MSCs (scale

bar: 100μm). (B) Flow cytometry for hemopoietic CD34, 45 or mesenchymal CD29, 73, 90,

105 markers. (C) Staining of control or differentiated cells with Alizarine Red/Oil Red O indic-

ative of osteogenic/adipogenic differentiation, respectively (scale bar: 100μm).

(TIF)
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S2 Fig. Characterization of GB MSCs. (A) Optical and fluorescence microscopy of GB MSCs

(scale bar: 100μm). (B) Flow cytometry for mesenchymal CD29, 73, 90, 105 markers. (C) Stain-

ing of control or differentiated cells with Alizarine Red/Oil Red O indicative of osteogenic/adi-

pogenic differentiation, respectively (scale bar: 100μm).

(TIF)

S3 Fig. Endogenous hTERT levels in control and genetically modified MSCs. Protein levels

of endogenous hTERT (Fig 3A) were quantified in control (passage 15), GB or GB/hTERT

MSCs (passage 20) using the ImageJ software. GAPDH protein levels were used as loading

controls.

(TIF)

S4 Fig. Real time PCR. Amplified fragments of Oct-4, Nanog and Sox-2 mRNA in RT-qPCR

reactions.

(TIF)

S5 Fig. Tumorigenicity assays. (A) Flow cytometry of GB/hTERT MSCs and lung cancer

A549 cells for the cancer cell marker CD133. (B) Soft agar assays of GB/hTERT MSCs at pas-

sage 85. HEK293T cells and control MSCs at passage 15 were used as positive and negative

control, respectively (scale bar: 50μm).

(TIF)

S6 Fig. Expression of immunomodulatory markers. Flow cytometry of control MSCs for the

immunomodulatory cell markers CD200, 276 and 274.

(TIF)

S7 Fig. Proliferation of stimulated PBMCs. (A) Optical microscopy of unstimulated and

stimulated PBMCs (scale bar: 100μm). (B) Measurement of cell proliferation. Luminescence

units (LU) correspond to total cell number. Data from 3 independent experiments are pre-

sented as mean ± SD (���: p<0.001). (C) Flow cytometry of unstimulated and stimulated

PBMCs for CD3 T cell marker.

(TIF)

S8 Fig. Quantification of PBMC death in MLR assays. Cell death of stimulated PBMCs co-

cultured with GB or GB/hTERT MSCs in transwell plates is expressed as a percentage (%) of

total cell number. Control experiments were performed in the absence of MSCs in MLR assays.

Data from 3 independent experiments are presented as mean ± SD (��: p<0.01, �: p<0.05).

(TIF)

S9 Fig. (A) Quantification of GB secretion by GB/hTERT MSCs as indicated by YFP measure-

ment in cell culture supernatant (24-72h cultures). Control measurements were performed in

samples from control MSC culture. (B) Detection of FRET signal in GB/hTERT cell culture

supernatant in the absence or presence of glucose (25mM). Data from 3 independent experi-

ments are presented as mean ± SD (���: p<0.001). (C) Fluorescence spectral scan analysis and

detection of FRET signal in GB/hTERT cell culture supernatant mixed with various glucose

concentrations (0-55mM) (RFU: Relative Fluorescence Units).

(TIF)

S10 Fig. Original immunoblots presented in (A) Fig 2A and (B) Fig 3A.

(TIF)
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S1 Table. Primer sequences. Sequences of primers used for the amplification of GB gene or

fragments of target genes in RT-qPCR reactions.

(XLSX)

S2 Table. Individual data points of bar and curve graphs presented in main and supple-

mentary figures of the manuscript.

(XLS)
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