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ABSTRACT




Muscarinic acetylcholine receptors are G protein-coupled receptors (GPCRs) which
are broadly expressed in the central nervous system (CNS) and other tissues in the
periphery. They emerge as important drug targets for a number of diseases including
Alzheimer’s disease, Parkinson’s disease, and schizophrenia. Muscarinic receptors
are divided into five subtypes (M1-Ms) of which M{-M4 have been crystalized. All
subtypes possess at least one allosteric binding site which is located in the
extracellular region of the receptor on top of the ACh (i.e. orthosteric) binding site.
The former can be specifically targeted by chemical compounds (mostly small
molecules) and binding of such allosteric modulators affects the affinity and/or
efficacy of orthosteric ligands. This allows highly specific modulation of GPCR
function and, from a drug discovery point of view, may be advantageous in terms of
subtype selectivity and biased signaling. There is a plethora of allosteric modulators
for all five muscarinic receptor subtypes. This review presents the basic principles of
allosteric modulation of GPCRs on both the molecular and structural level focusing
on allosteric modulators of the muscarinic receptor family. Further we discuss
dualsteric (i.e. bitopic orthosteric/allosteric) ligands emphasizing their potential in
modulating muscarinic receptor dynamics and signaling. The common mechanisms
of muscarinic receptor allosteric modulation have been proven to be generalizable
and are at play at many, if not all GPCRs. Given this paradigmatic role of muscarinic
receptors we suggest that also new developments in muscarinic allosteric modulation

may also be extended to other members of the GPCR superfamily.

Keywords: Muscarinic acetylcholine receptors, allosteric modulation, bitopic ligands,

biased signaling, dualsteric ligands, subtype-selectivity



1. Introduction

Muscarinic acetylcholine receptors (muscarinic receptors) belong to the amine group
of class A (“rhodopsin-like”) G protein-coupled receptors (GPCRs) and comprise five
distinct subtypes: M¢-Ms (Fredriksson et al., 2003). The subtypes differ mainly in their

expression pattern, G protein-specificity and in their molecular structure.

All subtypes are widely expressed in mammalian organisms and mediate a variety of
physiological functions (Caulfield and Birdsall, 1998; Wess, 2004; Wess et al., 2007).
For instance, muscarinic MaRs are the cardinal receptors mediating vagal modulation
of heart tissue, whereas the muscarinic M3Rs are located mainly on glandular and
respiratory tissues, regulating glandular mucus secretion and bronchoconstriction,
respectively (Alagha et al., 2014). Some of these functions are exploited
therapeutically: muscarinic receptor antagonists are used in the treatment of chronic
obstructive pulmonary disease, overactive bladder, Sjérengen’s syndrome, and
motion sickness (Novelli et al., 2012; Spinks and Wasiak, 2011; Wess et al., 2007).
Alongside their peripheral effects, muscarinic receptors are abundant in the central
nervous system where they play an important role in neuronal functions including the
regulation of the dopaminergic system which is responsible for various cognitive and
motor functions (Dencker et al., 2012). Imbalances in this system are implicated in
various pathological conditions such as Alzheimer’s disease, schizophrenia,
Parkinson’s disease and drug addiction, which enabled muscarinic receptors to
emerge as potential drug targets for CNS disorders (Conn et al., 2009; Foster et al.,

2014; Kruse et al., 2014a; Kruse et al., 2014b).

Activation of muscarinic receptors by agonists induces cellular signaling mainly by
recruitment and activation of heterotrimeric G proteins. Three subtypes, M+, Ms, and

Ms, transmit their signals predominantly via the activation of Gy11 proteins, which



stimulate phospholipase C that ultimately leads to an increase in intracellular Ca®*
concentrations, whereas Mz and M4 receptors favor activation of G, proteins,
thereby inhibiting adenylyl cyclases and decreasing the intracellular levels of cAMP

(Kruse et al., 2014b).

To date, four receptor subtypes (M1-M4) have been crystalized in an inactive
conformation (Haga et al., 2012; Kruse et al., 2012; Thal et al., 2016). The overall
structures are highly similar with the greatest structural homology within the ACh
binding site (i.e. the orthosteric binding site). In line with countless mutagenesis
studies, the receptor structures highlight why subtype-selective targeting of
muscarinic receptors has not been achieved so far. However, there are also marked
structural differences. Especially in the extracellular parts of the transmembrane
domains and extracellular loops of the receptors there is low degree of sequence
homology. The regions of low conservation comprise the ‘common’ allosteric binding
site of muscarinic receptors (Ellis and Seidenberg, 1992). This gives the opportunity
to exploit these allosteric binding sites as drug targets for subtype selective targeting

of muscarinic receptors.

The concept of allosteric modulation at GPCRs was initially described at muscarinic
receptors several decades ago (Lullmann et al., 1969; Mohr et al., 2013; Stockton et
al., 1983). To date, they serve as the paradigm for allosteric modulation of GPCRs. A
wealth of biochemical data and more recent structural data have revealed the basic
molecular and structural mechanism of allosteric modulation at muscarinic receptors
(Dror et al., 2013; Haga et al., 2012; Kruse et al., 2012; Kruse et al., 2014b; Kruse et
al., 2013). In addition, numerous allosteric modulators are now available spanning an
array of distinct pharmacological profiles. This makes targeting allosteric binding sites

highly attractive for current drug development.



This review presents an overview of allosteric modulators of muscarinic receptors
and their molecular and structural mechanisms in the light of potential advantages
over classical orthosteric drugs. More recent developments, e.g. bitopic
orthosteric/allosteric ligands, are described with regard to their molecular
mechanisms and putative therapeutic advantages over purely allosteric modulators.
The paradigmatic role of muscarinic receptors for allosteric modulation of GPCRs will

be highlighted throughout this review.

2. Advantages of allosteric modulation of muscarinic receptors

Targeting allosteric binding sites of GPCRs appears to be a promising approach in
particular for those receptors with structurally similar subtypes (i.e. muscarinic
receptors) because high structural homology within the orthosteric binding site has
severely hampered the identification of subtype selective ligands. In this light it is not
surprising that although GPCRs are still one of the most important drug targets
(Overington et al., 2006), and many still “un-drugged” GPCRs are associated with
various diseases (Garland, 2013), novel drugs targeting GPCRs do not enter the
market as frequent as one might expect. This may be because of unwanted off-target
effects by engagement of different subtypes of the same receptor family (Allen and
Roth, 2011). For instance, the M1/M4 preferring muscarinic partial agonist xanomeline
was a promising compound for the treatment of Alzheimers disease. However,
cholinomimetic adverse events such as gastrointestinal side effects have led to high
dropout rates in clinical trials and discontinuation of the program (Bodick et al., 1997).
In this regard, muscarinic receptors are a prominent example. They are implicated in
the pathophysiology of Alzheimer’s disease, Parkinson’s disease, and schizophrenia.
However, despite their prominent role in these CNS disorders and the great need for
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improved therapeutic options in such due to frequent dose-limiting side effects, no
modulators of CNS muscarinic receptors have entered the market until now (Foster
et al., 2014).

In line with this, targeting allosteric binding sites can be highly advantageous as it
offers specific modulation of GPCRs not achievable with orthosteric ligands. Most
importantly, allosteric modulators exhibit a greater degree of subtype selectivity over
classical orthosteric ligands. Mechanistically, this is mainly due to two mechanisms of
selectivity. First, due to lower sequence conservation of allosteric binding sites,
specific allosteric modulators can be identified with higher affinity for one subtype
over the others. Second, subtype selectivity can also emerge from cooperativity
rather than affinity, a phenomenon which has been termed ‘absolute subtype
selectivity’ (Lazareno et al., 2004). The prime example is the allosteric modulator
thiochrome (Table 1). Thiochrome has almost equal affinity for all muscarinic
subtypes, however, it selectively enhances the binding of ACh at the M4 subtype
(Lazareno et al., 2004). Another advantage of allosteric modulators is that the
allosteric effects only happen in the presence of an endogenous tone of the
endogenous agonist (e.g. ACh in the case of muscarinic receptors). Given the fact
that neuronal signal transduction is tightly controlled, allosteric modulation offers the
opportunity to keep the spatial and temporal aspects of physiological signaling intact
(Christopoulos, 2014; Christopoulos et al., 2014). In addition, allosteric effects are
saturable, i.e. they exhibit a ceiling effect. This can be particularly advantageous in
situations in which there is danger of overdosing. Beside these therapeutic
advantages, two additional mechanistic considerations of allosteric modulators can
be rated favorably. First, allosteric modulators mediate their effects in a probe-
dependent manner. For instance, the allosteric modulator brucine (Table 1)

enhances the affinity of ACh at M{AChRs but shows neutral cooperativity with the



orthosteric antagonist N-methylscopolamine (NMS) (Lazareno et al., 1998). Another
example is the alkaloid strychnine (Table 1) which is negatively cooperative with ACh
at M2Rs but is positively cooperative with NMS (Lazareno et al., 1998). In a
physiological setting, probe dependence is especially important for receptors where
multiple endogenous ligands are known, e.g. the chemokine receptor family. Second,
allosteric ligands, in addition to their probe dependency, may preferably modulate a
subset of all possible signaling pathways stimulated by the orthosteric agonist. This
phenomenon termed ‘biased allosteric modulation’ adds another level of specificity to
the pharmacological spectrum of allosteric modulators. For example, at M1AChRs,
the positive allosteric modulator VU029767 (Table 1) displays strong enhancement
of ACh-stimulated intracellular Ca** release but does less so when ACh-stimulated
phosphoinositide hydrolysis and phospholipase D activity are measured (Marlo et al.,
2009). At M4Rs, LY2033298 behaves as a positive allosteric modulator for ACh at
multiple pathways. However, the degree of cooperativity between LY2033298 (Table
1) and ACh differs significantly between pathways (Leach et al., 2010). Hence,
allosteric modulators may be able to fine-tune therapeutically beneficial signaling

pathways.

3. Molecular principles of allosteric modulators

In the field of experimental pharmacology, the effects of allosteric modulators are
commonly quantified by the allosteric ternary complex model (Christopoulos and

Kenakin, 2002; Christopoulos and Mitchelson, 1997; Ehlert, 1988; Stockton et al.,
1983). According to this model, binding of an allosteric ligand to an allosteric site

modulates the affinity and/or efficacy of an orthosteric ligand and vice versa

(Langmead and Christopoulos, 2014; Stockton et al., 1983). Conceptually, allosteric



modulators can be classified into three groups: positive allosteric modulators (PAMs),
negative allosteric modulators (NAMs), and neutral allosteric ligands (NALs)

(Christopoulos et al., 2014).

Positive allosteric modulators (PAMs) increase the affinity or efficacy or both of an
orthosteric ligand or orthosteric agonist-receptor complex. Negative allosteric
modulators (NAMs) decrease the affinity or efficacy of an orthosteric ligand or
orthosteric agonist-receptor complex. Neutral allosteric ligands (NALs) bind to an
allosteric site but have no effect on the affinity or efficacy of the orthosteric ligand
(Christopoulos et al., 2014). Mechanistically, upon binding to an allosteric site,
allosteric modulators alter the receptor structure in such a way that binding of an
orthosteric ligand is enhanced (in the case of PAMs) or hampered (in the case of
NAMSs). NALs will also have an effect on receptor structure causing a conformational
change, however, this does not affect the binding affinity of an orthosteric ligand.
These allosteric mechanisms have first been identified at muscarinic receptors and
are applicable to allosteric modulators of other GPCR families. Of note, allosteric
modulators may have efficacy for receptor activation on their own (Christopoulos et
al., 2014) which can therapeutically be beneficial, for instance, under particular
pathological conditions in which the endogenous tone of neurotransmitter is reduced
or even completely missing. Those allosteric modulators are termed ‘allosteric
agonists’.

The complex behavior of allosteric modulators is best illustrated by simulations of
functional experiments using the operational model of agonism and allosterism
(Figure 1). This model (Leach et al., 2007) is useful for analyzing experiments (e.g.
measuring receptor activation or downstream signaling) when both an orthosteric and
an allosteric ligand are present. This model allows quantifying the cooperativity

between an orthosteric and an allosteric ligand with regard to modulation of binding



(i.e. affinity) and signaling (i.e. efficacy) of the orthosteric ligand using the parameters
o and B, respectively (Figure 1). Dependent on the values of cooperativity, allosteric
ligands can be classified with the aforementioned nomenclature (Christopoulos et al.,
2014): a,p<1; a,p=1; a,f>1 indicate negative, neutral and positive allosteric
modulation of the orthosteric ligand’s affinity (o)) and efficacy (B), respectively.

In many cases, a PAM may display positive cooperativity with respect to both affinity
and efficacy (a,f>1). In functional experiments such allosteric behavior is detected as
a left-ward shift of the concentration-effect curve of the orthosteric agonist upon
addition of increasing concentrations of the allosteric ligand (Figure 1 a,b). This PAM
activity can be accompanied with allosteric agonism itself (PAM-agonism) in which
case an elevation of the lower plateau (i.e. in the absence of the orthosteric ligand) is
also observed (parameterized by ta, Figure 1a). As an example, BQCA behaves as
a PAM for ACh because it increases ACh binding and efficacy in Ca®*-release and
[**S]GTPyS-binding assays (Ma et al., 2009). At high concentrations BQCA
additionally behaves as a weak allosteric agonist (Ma et al., 2009). Another example
is LY2119620 which shows similar PAM behavior for ACh and partial allosteric
agonism at Mz and M4Rs in [**S]GTPyS-binding assays (Croy et al., 2014; Schober et
al., 2014). Interestingly, the effects of allosteric modulators on the affinity of the
orthosteric ligand not always come along with their effects on the efficacy of
orthosteric agonist-bound receptors (Figure 1 c¢,d). For example, LY2033298, a PAM
with ACh at M2Rs and M4Rs, has also been shown to display allosteric agonism at
M2Rs (and less so at other subtypes) (Valant et al., 2012a). Moreover, LY2033298
also shows positive cooperativity in binding with the partial agonists pilocarpine and
xanomeline, however, it displays negative cooperativity in signaling with both

agonists when examined in ERK1/2 activation and [*°*S]GTPyS-binding assays



(Valant et al., 2012a). This is particularly striking as LY2033298 itself is an allosteric
agonist. Hence, albeit both the allosteric and orthosteric ligands alone produce active
receptors, the ternary complex is inactive (at least with regard to the two signaling
pathways). Such a behavior (simulated in Figure 1 ¢,d) is represented by opposite
changes in the measured effect in the absence or presence of increasing
concentrations of the allosteric ligand: in the absence of the orthosteric agonist
increasing concentrations of the allosteric PAM-agonist lead to an increase of the
lower plateau which is due to allosteric agonism. In contrast, at high concentrations
of the orthosteric agonist increasing concentrations of the allosteric ligand lead to a
decrease of the measured effect because the formed ternary complex produces less
active receptors due to the negative cooperativity in signaling (B<1) of the allosteric
ligand. The experimental signature of NAMs is represented by a right-ward shift of
the concentration-effect curve of the orthosteric agonist (Figure 1e,f). For example,
N-chloromethylbrucine is a NAM for ACh when measured in [**S]GTPyS-binding
assays at MoRs (Lazareno et al., 1998). Interestingly, the same allosteric modulator
behaves as a PAM with ACh at M3Rs — a clear example of allosteric subtype

selectivity (Lazareno et al., 1998).

4. Structure and dynamics of allosteric modulation

The molecular details of allosteric modulation outlined above have been discovered
using classical biochemical techniques such as radioligand binding experiments,
mutagenesis and downstream signaling assays. Although they permit a mechanistic
interpretation of allosteric modulation the structural insights obtained from these
studies is limited. Technical breakthroughs in structural biology of GPCRs in the last
decade have led to inactive-state structures of the My (Thal et al., 2016), Mz (Haga et
al., 2012), M3 (Kruse et al., 2012), and M4R (Thal et al., 2016). Particularly interesting
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from an allosteric point of view, the crystal structure of a ternary complex consisting
of the active MzR, the orthosteric agonist iperoxo and the PAM LY2119620 has been
solved (Kruse et al., 2013). In addition, atomic-level molecular dynamics simulations
of allosteric modulators for the MR have contributed to the understanding of the
structural basis of allosteric modulation (Dror et al., 2013). These studies have shed
light on the structural basis of allosteric ligand binding and have elucidated
mechanisms of cooperativity between an allosteric and an orthosteric ligand.

The allosteric binding site of the MzR is located in the extracellular vestibule of the
receptor, 15 A on top of the orthosteric binding site (Dror et al., 2013; Haga et al.,
2012; Kruse et al., 2012; Kruse et al., 2013). Together, both binding sites form a
large and coherent binding crevice in the inactive state of the M2R (Haga et al.,
2012). Upon activation of the receptor by the agonist iperoxo (Schrage et al., 2014;
Schrage et al., 2013) the orthosteric site contracts and closes off towards the
extracellular space. In the active state, both binding sites are virtually separated
(Kruse et al., 2013). Noteworthy, also the allosteric binding site contracts upon
receptor activation (Kruse et al., 2013). The allosteric binding site is mainly
characterized by two aromatic centers. Center 1 is formed by Y1775 and W4227-%
and center 2 is formed by Y80%®' and Y832%* (Dror et al., 2013). These residues,
among others, have been shown to be crucial for the affinity of classical bis-
ammonium alkane allosteric modulators such as W84 (Huang et al., 2005; Lullmann
et al., 1969; May et al., 2007; Prilla et al., 2006). The bis-ammonium alkane-type
allosteric modulators (Table 1) form extensive cation-r interactions with both
aromatic centers (Dror et al., 2013). The binding modes of other well-known allosteric
modulators such as C+/3-phth (Lanzafame et al., 1996), gallamine (Clark and
Mitchelson, 1976), strychnine (Lazareno and Birdsall, 1995) and alcuronium (Jakubik
et al., 1997) are highly similar and also involve cation-rt interactions between their
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positively-charged nitrogens and the two aromatic centers of the allosteric binding
site (Dror et al., 2013). The PAM LY2119620, which is structurally different from the
well-known allosteric modulators, has a different binding mode. However, LY2119620
also engages the residues of the aromatic center 1 albeit through n-n stacking rather
than cation-w interactions (Kruse et al., 2013).

Besides the insights into allosteric ligand binding, the structural studies also suggest
mechanisms for cooperativity (Dror et al., 2013; Kruse et al., 2013). This is best
illustrated when comparing the active MzR structure bound to iperoxo with the ternary
complex with the PAM LY2119620 (Kruse et al., 2013). Both structures are
remarkably similar which indicates that binding of iperoxo to the orthosteric binding
site already shapes the conformation of the allosteric binding site. This mechanism
defined as ‘conformational coupling’ between the orthosteric and allosteric binding
sites can also explain the negative cooperativity observed between bis-ammonium
alkane-type allosteric modulators and the orthosteric ligand NMS. The microsecond
molecular dynamic simulations of MzRs show that the negative cooperativity between
C7/3-phth (and also gallamine) and the orthosteric ligand NMS are due to
conformational coupling: NMS binding increases the volume of the allosteric binding
site which makes C7/3-phth (and also gallamine) binding less favorable as it prefers a
smaller allosteric binding site (Dror et al., 2013). In addition to conformational
coupling, electrostatic repulsion between positively-charged allosteric modulators
(e.g. C;/3-phth, W84, gallamine) and orthosteric ligands (e.g. NMS) has been
suggested to be an underlying mechanism for negative cooperativity (Dror et al.,
2013).

In contrast to the detailed structural insights into allosteric ligand affinity and allosteric
mechanisms of cooperativity, little is known about the structural dynamics of
allosteric modulation. Recent biophysical studies with the B.-adrenergic receptor
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(Manglik et al., 2015; Nygaard et al., 2013; Staus et al., 2016), the metabotropic
glutamate receptor (mGIuR) (Olofsson et al., 2014; Vafabakhsh et al., 2015) and the
adenosine AA receptor (Ye et al., 2016) have provided evidence that GPCRs reside
in a dynamic equilibrium of multiple inactive and active states. This equilibrium is
modulated in a ligand- and G protein-dependent manner. In the light of GPCR
dynamics, it would be interesting to understand how allosteric modulators influence
the equilibrium of multiple receptor conformations in the absence and presence of
different orthosteric ligands and intracellular signaling proteins. First evidence has
been provided in a recent study where the influence of intracellular allosteric
nanobodies has been studied on the equilibrium of the B2 adrenoceptor upon
stimulation with a library of different agonists (Staus et al., 2016). However, there are
yet no data on how endogenous allosteric modulators - including the G protein itself -
and other small-molecule allosteric modulators influence the conformational
equilibrium of GPCRs. These future experiments will provide insight into allosteric

mechanisms with a more dynamic focus.

5. Further developments of allosteric modulators:

Bitopic orthosteric/allosteric ligands

The detailed molecular and structural knowledge of allosteric modulation of
muscarinic receptors has enabled the design of bitopic orthosteric/allosteric (i.e.
dualsteric) ligands (Bock and Mohr, 2013; Davie et al., 2013; Lane et al., 2013; Mohr
et al., 2013; Mohr et al., 2010; Valant et al., 2012b; Valant et al., 2009). These
ligands consist of an orthosteric moiety (either agonist or antagonist) which is

connected by a chemical linker to an allosteric modulator (either PAM or NAM).
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Bitopic orthosteric/allosteric ligands are a special case of bivalent ligands and target

two distinct binding sites at the same receptor protomer.

Initially, the design of dualsteric ligands was based on the idea to combine the
positive effects of orthosteric agonists with the higher subtype-selectivity of allosteric
modulators (Disingrini et al., 2006). Such dualsteric agonists would retain the high
binding affinity of the orthoster, be endowed with the subtype-selectivity of the
alloster and, in contrast to allosteric modulators, would exert their effects also in the
absence of an endogenous tone of ACh (Bock and Mohr, 2013; Lane et al., 2013).
The first designed dualsteric ligands were ‘hybrid 1’ (i.e. iper-6-phth, Table 2) and
‘hybrid 2’ (i.e. iper-6-naph, Table 2) which were built from the orthosteric agonist
iperoxo and parts of the bis-ammonium alkane NAMs (with ACh) W84 (iper-6-phth)
and naphmethonium (iper-6-naph) connected via a flexible hexamethylene linker
(Disingrini et al., 2006). Pharmacological studies have shown that the promise of
muscarinic dualsteric agonists may hold true: they bind with high affinity to
muscarinic receptors, exhibit a modest degree of selectivity for MxRs and robustly
activate MyRs (Antony et al., 2009). Most interestingly, dualsteric activation of MxRs
leads to preferential signaling through G, proteins. Activation of Gg proteins and f3-
arrestin recruitment are severely hampered, which classifies these dualsteric ligands
as Gij-biased agonists (Bock et al., 2012). In addition, a number of dualsteric ligands
for the M2R and also MR have been described (Table 2). The spectrum of dualsteric
ligands includes combinations of moieties with different functional properties, e.g.
dualsteric antagonist-NAM (e.g. atr-6-naph)(Schmitz et al., 2014) or dualsteric

agonist-PAM ligands (iperoxo-BQCAd)(Chen et al., 2015).

Dualsteric ligands have a complex chemistry, which results in an equally complex

binding mode. Due to the two pharmacophores, which address distinct binding sites
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of the receptor (i.e. the orthosteric and allosteric binding site), a dualsteric ligand can
have multiple binding modes. This has been shown for iper-6-naph, a prototypical
dualsteric ligand at the M2R (Bock et al., 2016; Bock et al., 2014). Iper-6-naph (and
also its congeners) can adopt at least two distinct binding modes (Figure 2a). One
binding mode termed the ‘dualsteric binding mode’ is characterized by binding of
iperoxo to the orthosteric site while the allosteric moiety 6-naph protrudes toward the
extracellular part of the receptor and engages residues of the allosteric binding site
(Figure 2a, left panel). The dualsteric binding mode produces active receptors and
leads to activation of G proteins and cellular signaling albeit in a functionally selective
manner (see below)(Bock et al., 2016; Bock et al., 2014; Bock et al., 2012). The
second binding mode termed the ‘purely allosteric binding mode’ (Figure 2a, right
panel) is characterized by the entire dualsteric ligand residing in the allosteric
vestibule (both the orthosteric and the allosteric moieties), highly similar to the
binding modes of typical allosteric modulators (e.g. W84, C7/3-phth, gallamine) (Bock
et al., 2016; Dror et al., 2013). The purely allosteric binding mode stabilizes inactive
receptors and blocks receptor activation (Bock et al., 2016; Bock et al., 2014). Both
binding modes occur in the same given ensemble of receptors and form a ‘ligand
binding ensemble’ (Bock et al., 2016) of active and inactive receptors bound to the
same dualsteric ligand in two distinct binding modes. The extent of either binding
mode is dependent on the affinities of either pharmacophore to its preferred binding
site and the overall affinity of the dualsteric ligand in both binding modes (Bock et al.,
2014). The formation of the ligand binding ensembile is theoretically possible for all
dualsteric ligands but has so far only been shown for iperoxo-derived dualsteric
ligands at the M2R (Bock et al., 2016; Bock et al., 2014) and the MR (Chen et al.,

2015). However, the existence of the dualsteric binding mode alone has been
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demonstrated for a number of ligands, e.g. McN-A-343 (Valant et al., 2008) for M2Rs,

77-LH-28-1 (Keov et al., 2014) and pirenzepin-BODIPY (Daval et al., 2013) for M4Rs.

Dualsteric ligands display specific functional properties due to their complex binding
mode(s). This has been studied most notably in terms of ligand efficacy and biased
signaling (Figure 2b). Most of the dualsteric agonists, especially McN-A-343 and the
iperoxo-derived dualsteric ligands for the M2R are partial agonists. The molecular
mechanisms underlying this special type of partial agonism at MzRs are highly
complex and not yet fully understood. Multiple lines of evidence suggest that the
partial agonist behavior of dualsteric ligands may come from both the dualsteric
binding mode itself and from the equilibrium of active and inactive receptors, i.e. the
ligand binding ensemble. With regard to receptor conformations, the dualsteric
binding mode is likely to stabilize a conformation which will be different from the one
stabilized by an orthosteric agonist alone. For example, in contrast to the parental
orthosteric agonist iperoxo, the dualsteric ligands iper-6-phth and iper-6-naph
stabilize a different MoR conformation as measured by Fluorescence Resonance
Energy Transfer (FRET) techniques using a MR FRET-sensor which reports on
conformational changes between ICL3 and the C terminus of the receptor (Bock et
al., 2012). In line with this, the activation of Gy, proteins by iper-6-phth and iper-6-
naph is also reduced as demonstrated by Bioluminescence Resonance Energy
Transfer (BRET) techniques using a Gi/o-BRET sensor which reports conformational
changes of G protein-activation (Bock et al., 2012; Gales et al., 2005). Moreover, the
dualsteric binding mode of McN-A-343 has also been suggested to be responsible for
the resulting partial agonism because the allosteric moiety behaves as an antagonist
and counteracts the agonism encoded in the orthosteric part of McN-A-343 (i.e.
tetramethylammonium})(Valant et al., 2008). In addition to this mechanism the

presence of dualsteric ligand-bound inactive receptors (the ligand is bound in the
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purely allosteric binding mode, Figure 2a right panel) can reduce the overall efficacy
of a dualsteric agonist (Bock et al., 2016; Bock et al., 2014; Chen et al., 2015). The
greater the fraction of these inactive receptors, the less is the overall efficacy of the

dualsteric ligand (Figure 2b).

Dualsteric ligands have been shown to exhibit functional selectivity, i.e. they
preferentially activate one pathway over others (Kenakin, 2005). At MzRs, iper-6-phth
and iper-6-naph have been classified as Gyo-biased agonists (Bock et al., 2012) and
McN-A-343 preferentially activates Gaus proteins (Griffin et al., 2007; Valant et al.,
2008). At M4Rs, the dualsteric ligands VU0357017 (=ML071) and VU0364572 are
biased towards Ca®* signaling and ERK1/2 activation and fail to recruit B-arrestin
(Digby et al., 2012). The mechanism by which dualsteric ligand activation of
muscarinic receptors leads to functional selectivity is not known. However, it is likely
that dualsteric agonists stabilize a distinct subset of receptor conformations. In line
with this, we have recently shown that the dualsteric binding mode (Figure 2a, left
panel) interferes with the closure of the orthosteric binding site upon receptor
activation. This may lead to different intracellular TM6 conformations which may

result in altered signaling (Bermudez et al., 2017).

Lastly, alongside partial and biased agonism, dualsteric targeting of muscarinic
receptors may offer a third, rather unexplored, signaling feature, i.e. protean
agonism. Protean agonists behave as weak partial agonists when the receptor is
inactive, however, when the receptor is spontaneously active, they show inverse
agonism (Kenakin, 2007). In a recent study, we have demonstrated that dualsteric
ligands with very weak efficacy (Figure 2b) can be protean agonists (De Min et al.,

2017).

6. Summary and outlook
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Allosteric modulation of GPCRs offers the possibility to fine-tune GPCR signaling in
ways not achievable with classical orthosteric drugs. The importance of allosteric
modulators is highlighted by drugs which have already entered the market: e.g.
cinacalcet (Mimpara®), a PAM enhancing the effect of calcium ions at the calcium-
sensing receptor used for the treatment of secondary hyperparathyroidism, maraviroc
(Celsentri®), a NAM of the CC-motif chemokine receptor 5, blocking the HIV gp120
protein from binding to the receptor (Lagane et al., 2013), and plerixafor (Mozobil®),
an allosteric antagonist at the CXC-motif chemokine receptor 4 that is used for stem
cell mobilization in transplantations (Scholten et al., 2012).

Muscarinic receptors are the prime example of allosteric modulation of GPCRs and
allosteric mechanisms identified at muscarinic receptors are paradigmatic for the
entire GPCR superfamily. However, there are many aspects of allosteric modulation
remaining to be discovered, two of them are highlighted here. First, although a
plethora of allosteric ligands exist for all receptor subtypes, the chemical space of the
modulators is far from being complete. With muscarinic receptor crystal structures at
hand, many new scaffolds of allosteric modulators should be discovered by structure-
based drug design and virtual screening. First evidence comes from a very recent
study at the MR which used accelerated molecular dynamics simulations and has
led to allosteric modulators with novel chemical scaffolds (Miao et al., 2016). A
second aspect applies to the generalizability of the principles of dualsteric ligand
binding and formation of ligand binding ensembles. One could argue that these
mechanisms are somewhat specific for muscarinic receptors and will not be
transferable to other receptors. However, dualsteric/bitopic ligands have been
designed and discovered for other GPCR families, e.g. LUF6258 and VCP746 for the
adenosine A1A receptor (Narlawar et al., 2010; Valant et al., 2014) and SB269652

for the dopamine D2 receptor (Lane et al., 2014). The dualsteric ligands for the A1A
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receptor also display biased agonism which suggest that a dualsteric binding mode
more generally induces an altered signaling profile of the receptor. Moreover, at
serotonin 5-HTog receptors lysergic acid diethylamide and its precursor ergotamine
are B-arrestin-biased agonists and the 5-HTog crystal structures reveal an ‘extended’
binding mode which is similar to the dualsteric binding mode discussed here at
muscarinic receptors (Wacker et al., 2013; Wang et al., 2013). In addition, given the
progress in understanding dualsteric ligands at muscarinic receptors, several ligands
which were thought to be allosteric modulators were re-classified as dualsteric
ligands (e.g. AC-42 at MRs). Hence, one can be optimistic that more dualsteric
ligands at different GPCRs will be discovered and, using structure-based drug

discovery, even be designed.

Taken together, advancing our understanding of allosteric modulation at muscarinic
receptors will not only be important to discover subtype-selective drugs for
muscarinic receptors but, beyond, may lead to attractive allosteric strategies to

improve drug targeting of other GPCR families.
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Figure 1: Modulation of GPCR signaling by allosteric modulators: theory and
experiments. Effects of allosteric modulators on orthosteric agonist-induced GPCR
signaling can be described by an operational model of agonism and allosterism (see
formula). Ewax is the maximal effect of the system; [X] and [A] are the molar
concentrations of the orthosteric and allosteric ligand, respectively; Kx and Kaare the
equilibrium dissociation constants (reflecting affinity) of the orthosteric and allosteric
ligand, respectively; tx and ta are operational measures of orthosteric and allosteric
efficacy, respectively. Allosteric modulators have three key aspects which can be
quantified with this model: cooperativity of binding (o), cooperativity of signaling ()
with the orthosteric agonist and allosteric agonism itself (ta).

(a-f) Simulation of experimental scenarios (ACh as the orthosteric agonist) which
may be obtained with allosteric modulators of various properties. For simulations, the
following parameters have been constrained: Epax=100, logKx=-6, logKa=-7, tx=10.
The concentration of the allosteric modulator was increased from 0.3 nM to 3 uM
(blue line to yellow line). The values for oo and 3 are indicated in the graph. (a,c,e)

allosteric agonism: ta=1. (b,d,f) no allosteric agonism: t4=0.01.
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Figure 2: Ligand binding ensembles and functional implications. (a)

Dualsteric/bitopic ligands can have at least two distinct binding modes: one dualsteric

binding mode which produces active receptors (R*, left panel) and one purely
allosteric binding mode which does not lead to receptor activation (R, right panel).
Shown are snapshots from all-atom molecular dynamics simulations of active and
inactive muscarinic Mz2Rs bound to the dualsteric ligand iper-6-naph. (b) Depending
on the nature of the ligand and its preference for either active or inactive receptors,
the equilibrium of ligand-bound receptor ensembles determines the functional
response detected in experiments. The efficacy spectrum can range from nearly full
agonism (mostly biased, for details see text) to partial agonism or even inverse

agonism (in spontaneously active systems).
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Table 1

Receptor subtype

Modulator

Cooperativity with ACh

Reference

Binding Functional
experiments experiments
brucine + + (Birdsall et al., 1997)
KT5720 + n.d. (Lazareno et al., 2000)
BQCA + + (Ma et al., 2009)
VU0119498 n.d. + (Bridges et al., 2009)
VU0027414 nd. + (Marlo et al., 2009)
VU0090157 + + (Marlo et al., 2009)
vU0029767 + + (Marlo et al., 2009)
ML137 (=VU0366369) n.d. + (Bridges et al., 2010a; Bridges et al., 2010b)
Lu AE51090 nd. + (Sams et al., 2010)
MK7622 (=PQCA) nd. + (Kuduk et al., 2011)
M 1 ML169 (=VU0405652) nd. + (Reid et al., 2011)
VU0456940 nd. + (Tarr et al., 2012)
VU0413162 nd. + (Poslusney et al., 2013)
VU0448350 nd. + (Melancon et al., 2013)
4-phenylpyridin-2-one derivatives + + (Mistry et al., 20186)
MT3 nd. (Jolkkonen et al., 1994; Olianas et al., 1999)
MT7 = = (Olianas et al., 2000; Onali et al., 2005)
staurosporine = = (Lazareno et al., 2000)
tacrine = n.d. (Fang et al., 2010; Potter et al., 1989)
(-)eburnamonine (=vinburnine) + n.d. (Jakubik et al., 1997)
LY2033298 + + (Valant et al., 2012a)
LY2119620 + + (Croy et al., 2014; Kruse et al., 2013)
Wa4 n.d. = (Lullmann et al., 1969)
M 2 gallamine nd. - (Clark and Mitchelson, 1976)
G7/3-phth nd. - (Lanzafame et al., 1996)
alcuronium = n.d. (Jakubik et al., 1997)
strychnine - - (Jakubik et al., 1997; Lazareno and Birdsall, 1995)
brucine - n.d. (Jakubik et al., 1997)
WIN-51708 - n.d. (Lazareno et al., 2002)
WIN-62577 = n.d. (Lazareno et al., 2002)
dimethyl-W84 nd. - (Maier-Peuschel et al., 2010)
brucine + n.d. (Jakubik et al., 1997; Lazareno et al., 1998)
N-chloromethyl-brucine + n.d. (Lazareno et al., 1998)
N-Benzyl-brucine + n.d. (Lazareno et al., 1998)
brucine-N-oxide + n.d. (Lazareno et al., 1998)
WIN-62577 + n.d. (Lazareno et al., 2002)
M 3 VU0119498 n.d. + (Bridges et al., 2009)
alcuronium = n.d. (Jakubik et al., 1997)
brucine = n.d. (Jakubik et al., 1997; Lazareno et al., 1998)
WIN-51708 - n.d. (Lazareno et al., 2002)
thiochrome + + (Lazareno et al., 2004)
LY2033298 + + (Chan et al., 2008)
VU0010010 + + (Shirey et al., 2008)
VU0152099 + + (Brady et al., 2008)
VU0152100 + + (Brady et al., 2008)
ML293 nd. + (Salovich et al., 2012)
M4 ML253 nd. + (Le et al., 2013)
LY2119620 + + (Croy et al., 2014)
VU0467154 + + (Bubser et al., 2014)
MT3 n.d. = (Jolkkonen et al., 1994; Olianas et al., 1999)
alcuronium = n.d. (Jakubik et al., 1997)
VU0119498 n.d. + (Bridges et al., 2009)
VU0238429 + + (Bridges et al., 2009)
VU0365114 n.d. + (Bridges et al., 2010a)
VU0400265 nd. + (Bridges et al., 2010a)
M ML326 (=VU0467903) nd. + (Gentry et al., 2013a)
ML380 + + (Gentry et al., 2014)
ML375 (=VU0483253) n.d. (Gentry et al., 2013b)
VUB000181 n.d. = (Kurata et al., 2015)
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Table 1: Allosteric modulators of muscarinic acetylcholine receptors. The most
important allosteric modulators of muscarinic receptors are listed. The cooperativity
with ACh is indicated (‘+ = positive cooperativity, - = negative cooperativity, ‘n.d.’

not determined).
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Table 2

Receptor APyt F Functional
Dualsteric/bitopic ligand . Reference
subtype piclig properties
VU0357017/MLO71 (Digby et al., 2012)
vU0364572 (Digby et al., 2012)
TBPB : (Keov et al., 2014; Keov et al., 2013)
77-LH-28-1 agonist (Keov et al., 2014)
iperoxo-BQCAd (Chen et al., 2015)
AC-42 (Avlani et al., 2010; Lebon et al., 2009)
M 1 Lu AE51090 (Sams et al., 2010)
Pirenzepin-BODIPY antagonist (Daval et al., 2013)
para-LRB-AC42 n.d. (Daval et al., 2012)
McN-A343 (Valant et al., 2008)
iper-6-phth (=hybrid 1) (Antony et al., 2009; Bock et al., 2012)
iper-6-naph (=hybrid 2) agonist (Antony et al., 2009; Bock et al., 2012)
isox-6-phth (Bock et al., 2014)
isox-6-naph (Bock et al., 2014)
THRX-160209 (Steinfeld et al., 2007)
atr-6-phth (Schmitz et al., 2014)
atr-6-naph antagonist (Schmitz et al., 2014)
sco-6-phth (Schmitz et al., 2014)
sco-6-naph (Schmitz et al., 2014)

Table 2: Dualsteric/bitopic ligands for muscarinic receptors. The most important

dualsteric ligands for the M{-and MxRs are listed. The functional properties

(agonist/antagonism) are indicated. n.d.: not determined.
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Highlights

In this review, we

outline the importance of allosteric modulation for GPCR drug discovery,
present the molecular and structural principles of allosteric modulation,
provide tables of the most important allosteric modulators for all subtypes,
and discuss more recent developments in the field of allosteric modulation of

muscarinic receptors (e.g. bitopic ligands and biased signaling).
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