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Abstract 

Gene therapies will only become a widespread tool in the clinical treatment of human 

diseases with the advent of gene transfer vectors that integrate genetic information 

stably, safely, effectively, and economically. Two decades after the discovery of the 

Sleeping Beauty (SB) transposon, it has been transformed into a vector system that is 

fulfilling these requirements. SB may well overcome some of the limitations associated 

with viral gene transfer vectors and transient non-viral gene delivery approaches that are 

being used in the majority of ongoing clinical trials. The SB system has achieved a high 

level of stable gene transfer and sustained transgene expression in multiple primary 

human somatic cell types, representing crucial steps that may permit its clinical use in 

the near future. Here we review the most important aspects of SB as a tool for gene 

therapy, including aspects of its vectorization and genomic integration. As an illustration 

we highlight clinical development of the SB system towards gene therapy of age-related 

macular degeneration and cancer immunotherapy.  
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Non-viral gene transfer using the Sleeping Beauty transposon  

DNA transposons are genetic elements with the ability to change their positions within 

the genome. They mainly achieve this through a cut-and-paste mechanism. Natural 

transposons are mobile (“jumping”) units of DNA encoding a gene for a transposase 

enzyme flanked by terminal inverted repeats (TIRs) that represent the sites where the 

transposase binds (Fig. 1A). A crucial point in turning transposons into vectors is the 

possibility of separating these two functions (the TIRs and the transposase) to establish 

a two-component system: one component supplying the transposase and the other 

component carrying a DNA sequence of interest between the TIRs (Fig. 1B). The 

transposase enzyme mediates the excision of the element from its donor plasmid, then 

reintegrates the transposon construct into a chromosomal locus (Fig. 1C). The result is 

an easily controllable DNA delivery vehicle that has a vast potential for diverse 

applications in genetic engineering, including gene therapies. 

 Although over the course of evolution transposons became dormant in 

vertebrates, it was possible to reconstruct an active sequence from ancient inactive 

transposon sequences isolated from fish genomes. This transposon was named 

Sleeping Beauty (SB) after the Grimm brothers’ famous fairy tale1. SB was the first 

transposon ever shown to be capable of efficient transposition in vertebrate cells, and it 

opened entirely new avenues for genetic engineering. A vision developed of using SB for 

gene therapies (reviewed in 2-10). A transposon-based gene delivery system would have 

the advantage of combining the favorable features of viral vectors with those of naked 

DNA molecules. First, permanent insertion of transgene constructs into the genome by 

the transpositional mechanism (in the case of SB this occurs at genomic TA 

dinucleotides1) leads to sustained and efficient transgene expression in preclinical 

animal models6. Second, in contrast to viral vectors, transposon vectors can be 
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maintained and propagated as plasmid DNA, which makes them simple and inexpensive 

to manufacture, another important consideration for implementations and a scale-up into 

real clinical practice. SB has further advantages as a gene-transfer system: its 

immunogenicity in vivo is much lower than that of viral vectors11; it can deliver larger 

genetic cargoes12, and poses far fewer safety issues9, 13-15. Another transposon that has  

become a widely used, popular tool for a variety of applications including gene therapy16-

20 is the piggyBac (PB) transposon originally isolated from the cabbage looper moth21. 

 

Optimized vector components for enhanced Sleeping Beauty-mediated gene delivery 

A number of improvements needed to be made to transform the original version of the 

SB transposon (pT) into an efficient tool for gene delivery in vertebrates. While originally 

the rate of transposition was low, steady improvements were made to optimize the 

vector architecture. Genetic engineering produced the variants pT/2/3/4, the most recent 

of which optimizes transposon binding22-25. In addition, the so-called “sandwich” vector 

architecture (containing two full-lengh copies of SB flanking a gene-of-interest) was 

developed to aid transposition of large transgenes12. 

Advanced genetic engineering also required variants of the transposase that 

were hyperactive compared to the original. Amino acid substitutions spanning almost the 

entire SB transposase polypeptide were screened to improve its catalytic activity. A 

second-generation SB transposase called SB1126 proved to be about 3-fold more active 

than the first-generation SB transposase, and has been primarily employed in clinical 

trials based on chimeric antigen receptor (CAR)-engineered T cells that are currently 

underway27. Further improvements produced SB100X, the most hyperactive SB 

transposase version currently available, whose activity is ~100-fold that of the originally 

resurrected transposase28. SB100X transposase enables highly efficient germline 
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transgenesis in relevant mammalian models, including mice, rats, rabbits, pigs, sheep 

and cattle29-34. The system has also yielded robust gene transfer efficiencies into human 

hematopoietic stem cells (HSCs)28, 35, mesenchymal stem cells, muscle stem/progenitor 

cells (myoblasts), iPSCs36 and T cells37, which are crucial targets for regenerative 

medicine and gene- and cell-based therapies aimed at complex genetic diseases. 

Importantly, recent insights into structure-function relationships in the SB transposase 

based on modeling38 and  crystallography39 will likely be informative for structure-based 

design of next-generation SB transposases for therapeutic gene delivery.  

 Typically, the delivery of the SB transposon system into cells supplies the two 

components of the vector system as conventional plasmids (Fig. 1B). But the 

transposase expression plasmid typically used as the source of the transposase in 

cultured cell lines can be replaced by mRNA that is synthesized in in vitro transcription 

reactions (Fig. 1D), which was originally tested in a mammalian cell line in vitro and in 

the mouse liver in vivo, using the SB11 transposase40, 41. Although the nucleic acids 

carrying the SB vector components can only be partially be represented by RNA (the 

transposon is by definition DNA), the ex vivo application of mRNA for intracellular 

delivery of the transposase in therapeutically relevant cells avoids some of the hurdles 

typically encountered with DNA-based vectors. For example, nucleofecting primary 

human cells including HSCs and T cells with mRNA has a significantly lower toxicity than 

when plasmid DNA is used42, 43. Importantly, using mRNA source to transiently deliver 

the SB transposase increases biosafety, because mRNA does not run the risk of 

chromosomal integration. The risk of integrating the SB transposase coding sequence 

into the genome would represent a finite risk in gene therapy applications, because it 

could lead to the prolonged and uncontrollable expression of the transposase and could 

cause a continuous remobilization of the already integrated SB transposon.  
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 Recently, a new generation of SB vectors have been produced, which will be 

even more useful for clinical applications by employing minicircle (MC) vectors as 

carriers of the SB transposon components. This technology permits a significant 

reduction in the size of SB vectors by removing most of the backbone sequences from 

parental plasmids44. The first evident advantage of MC vectors over plasmids has to do 

with the fact that they increase the surival rates of human T cells following 

nucleofection43. Alongside a lower cytotoxicity, stable genome modification with MCs 

was more efficient than with conventional plasmid vectors in T cells43. Transfection of 

MC components is more efficient than that of plasmids owing to their smaller size, which 

enables them to cross cellular membranes more efficiently than plasmids45, 46. Another 

reason for their higher levels of transposition is likely the relatively short distance 

between the ends of the transposons, ~200-bp in MC vectors, resulting from the removal 

of the backbone of the bacterial plasmid. Shortening the length of the DNA sequence 

lying outside the transposon unit leads to a much higher SB transposition, probably 

because it makes the formation of the transposon/transposase complex easier47.  

 The biosafety advantages of MC technology also have to do with the absence of 

bacterial plasmid backbone elements in therapeutic vectors, a factor which is highly 

relevant in clinical applications. Otherwise the result may be an inclusion of antibiotic 

resistance genes in a therapeutic cell product. Variants of the MC technology are 

miniplasmids that are “free of antibiotic resistance markers” (pFAR)48; the lack of 

antibiotic-resistance genes significantly enhances the safety of methods of non-viral 

gene delivery in clinical settings. One of the newest innovations has been to combine the 

pFAR and SB technologies49, and a Phase Ia/IIb clinical trial to treat age-related macular 

degeneration based on this approach is planned in the near future50 (see further details 

on this approach below). 
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 In addition to purely non-viral strategies, there has been a development of 

various SB-based viral hybrid technologies that merge the excellent nucleic acid delivery 

properties of a non-integrating viral vector and the integrative properties of SB in 

advantageous ways (reviewed in 3, 10). One can pack the SB system, including both the 

transposase and the transposon, into various recombinant viruses for delivery (by 

transduction) into cells. In principle, these hybrid vectors could be used as alternatives to 

the viral vectors that have been established, and they are suitable for cell-type specific 

genome engineering. Such hybrids of viruses and transposons have been established 

for the integrase-deficient lentivirus (IDLV)51-53, adenovirus54, 55, AAV56, herpes simplex 

virus57, 58 and baculovirus59, 60. In these cases the SB transposon provides stable gene 

integration.  

 

 

Safety aspects of Sleeping Beauty transposition 

One of the most important risk factors associated with an integrating genetic element is 

genotoxicity: mutational damage that can shift cellular homeostasis toward some 

pathological path. This has happened in a number of recent clinical trials, in which 

retroviruses were used to transfer genes into HSCs, as described above: in some 

patients this has led to a clonal imbalance and tumorigenic transformation. Two 

fundamental properties of a transposon vector system potentially contribute to 

genotoxicity: i) if the transposase interacts with endogenous human DNA sequences or 

human proteins that are highly similar to the transposon vector sequences, or ii) if the 

vector is inserted into the genome at unsafe sites.  

 The SB system appears to be safe with respect to “off-target” cleavage of the 

transposase in human cells. Because the SB was reconstructed from fish genomes, the 

mammalian lineage does not contain transposons similar enough to it that they would be 
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cleaved by the SB transposase. It is always possible that chance might produce 

genomic sequences similar to the SB TIRs, some of which might bind the SB 

transposase. However, SB transposition is such a highly controlled process25 that it is 

extremely unlikely that these sequences would mobilize. Secondly, human cells do not 

express a protein similar enough to the SB transposase to re-mobilize a genomically 

integrated SB vector. In sharp contrast, the human transposase-derived protein PGBD5 

can mobilize insect PB transposon vectors in human cells61. Despite the vast 

evolutionary distance between human PGBD5 and insect PB transposons, there may be 

cross-reactions between an endogenous human transposase that is catalytically active 

and transposon vector sequences that are exogenously delivered into human cells by 

gene transfer. The findings suggest that there may be stability issues for applications 

involving PB vectors in human cells expressing PGBD562. 

 To estimate the genotoxic potential of different vector types and designs, it is 

important to characterize the properties, which influence their selection of target sites63. 

We previously carried out a comparative study of the target site selection properties of 

the SB and PB transposons as well as MLV-derived gammaretroviral and HIV-derived 

lentiviral systems in primary human CD4+ T cells. Our bioinformatic analyses included 

mapping of integration sites generated by these four vector systems against the T cell 

genome with respect to their proximity to genes, transcriptional start sites (TSSs), CpG 

islands, DNaseI hypersensitive sites, chromatin marks, the transcriptional status of 

genes and criteria that qualify sequences as genomic safe harbors (GSHs)64, 65. Of the 

different systems, SB transposon targets displayed the least deviation from random in 

terms of genome-wide distribution. We found no apparent bias for either 

heterochromatin marks or euchromatin marks, and detected only a weak correlation with 

the transcriptional status of targeted genes66. Collectively, these analyses established 

that the SB transposon had a favorable integration profile compared to other vectors, 
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suggesting that it might be safer for therapeutic gene delivery than the viral vectors that 

are currently being used to integrate sequences in clinical trials. Importantly, no adverse 

effects have been associated with SB in preclinical animal studies6, 8, 67, 68. Finally, SB's 

safety profile can probably be further improved through molecular strategies that 

enhance target-selected transgene integration69. 

 

Therapeutic gene delivery with the Sleeping Beauty transposon system 

In vivo application of the Sleeping Beauty system in pre-clinical models  

In vivo applications use a gene vector system to shuttle a therapeutic nucleic acid 

delivered directly in the body; the delivery can be systemic, but more typically, it is 

targeted to a specific organ or cell type (Fig. 2A). The in vivo delivery of transposon 

vectors is challenging, because naked nucleic acids (DNA and mRNA) are unable to 

pass through the cell membrane through infection, unlike viruses. Thus, it is necessary 

to combine a transposon vector with a technology that can deliver a non-viral vector into 

cells. One of the most promising strategies is an in vivo gene transduction system based 

on a hybrid adenovirus/transposon vector54 and the hyperactive SB100X transposase55 

(Fig. 2A). In a recent study, autologous HSCs were mobilized into peripheral blood, and 

directly targeted using such a hybrid adenovirus/transposon vector system in vivo, 

producing functional HSCs in a transgenic animal model70, 71. The procedure involves the 

systemic, intravenous injection of an integrating, helper-dependent hybrid adenovirus 

(HD-Ad5/35++)/SB vector system into the bloodstream. The hybrid vector targets human 

CD46, a receptor that is uniformly expressed on HSCs in these transgenic mice, and 

permits the stable genetic engineering of HSCs in vivo. This procedure has the potential 

advantage that it does not require the ex vivo expansion and transduction of HSCs. A 

potential disadvantage is that the efficiency of gene manipulation was not as high as that 



 10

reported from clinical trials using lentiviral vectors and ex vivo cell processing. This 

indicates that the strategy needs further characterization and improvements. 

Nevertheless, this system has the potential to overcome existing technical/medical 

difficulties associated with the collection and ex vivo manufacturing of cells, and thus 

represents a significant technical advance over current systems. 

 Immune complications following adenoviral vector delivery in vivo can lead to 

acute toxicity (reviewed in 72) associated with activation of the innate inflammatory 

immune response. Importantly, the toxicity is dosage dependent, suggesting that it is 

possible to find a therapeutic window, in which the vector can be safely used. The other 

problem with adenoviral vectors that they cannot support long-term transgene 

expression due to the transient nature of the vector. Thus, especially for in vivo 

approaches, the use of hybrid adenovirus/transposon vectors could be advantageous, 

because i) due to stable chromosomal integration only a single administration of vector 

is required and, consequently ii) their use may allow reduction of the applied viral dose, 

thereby alleviating vector-associated immune complications. Indeed, delivery of 

adenovirus/transposon hybrid vectors was well tolerated in mice71 and in dogs73. 

 

Ex vivo application of the Sleeping Beauty system in pre-clinical models  

In ex vivo gene delivery, the therapeutic gene vector is introduced into a selected cell 

population that has been isolated from a donor, followed by the transplantation of the 

genetically engineered cells into a patient (Fig. 2B). We distinguish between autologous 

or allogeneic cell products depending on whether the donor is the same patient or 

another person. As for in vivo applications, the efficiency of transposition depends on the 

efficiency, at which the nucleic acids that are introduced are taken up by cells. In 

principle, any technology developed to transfer nucleic acids into cells can be combined 
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with transposon vectors. In cells that are hard to transfect, including primary human cell 

types, nucleofection can significantly facilitate the delivery of transposon-based vectors. 

This has been achieved in CD34+ HSCs28, 35, 74-76, primary T cells66, 77-79 and human 

embryonic stem cells41, 80. Importantly, this ex vivo procedure did not appear to 

compromise the engraftment and multi-lineage differentiation potential of CD34+ cells in 

the context of the hematopoietic system28, 35.  

 SB transposition-based non-viral gene delivery has an outstanding potential to 

provide innovative treatments and potential cures for an array of genetic disorders 

(reviewed in 3, 5-8, 10, 50, 67, 81-83). Prime examples for the use of SB in gene therapy include 

the treatment of haematologic disorders, lysosomal storage diseases, pulmonary 

disorders, dermatologic diseases, a variety of metabolic disorders, neurologic disorders, 

muscle disorders and cancer (Table 1). This robust, non-viral, transposon-based 

procedure is currently being tested in human clinical trials27, discussed in the following 

section. 

 

Sleeping Beauty non-viral gene delivery for gene therapy of neovascular age-

related macular degeneration 

Neovascular age-related macular degeneration (nvAMD) involves a degeneration of 

retinal pigment epithelial cells in the macula area and thus a loss of functions that are 

essential for central vision. Affecting over 13 million people world-wide, AMD is the 

fourth most common cause of blindness after cataract, retinopathy of prematurity, and 

glaucoma and is the leading cause of irreversible blindness in people over 50 years of 

age in developed countries84. The development of nvAMD has been traced to the 

development of subretinal neovascularization, caused by an overexpression of vascular 
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endothelial growth factor (VEGF)84, 85. Current treatments are based on monthly, life-

long, intravitreal injections of inhibitors of VEGF, a strategy that is effective in 30-40% of 

patients. Anti-VEGFs have two major limitations: 60-70% of patients do not experience 

an improvement of vision, and treatments often produce adverse effects86 including 

increased intraocular pressure, retinal detachment, endophthalmitis, photoreceptor cell 

death and a thinning of the inner neuronal layer of the retina87, 88. In addition, the 

logistical problems encountered by blind or low-vision patients who have to travel to a 

clinic on a monthly basis lead to a significant proportion of discontinued treatments, 

which has been reported at levels of 57% over 5 years89 to as high as 71% within 24 

months90. Obviously, new approaches are required for an efficient treatment of nvAMD.   

 The link between nvAMD and retinal pigment epithelial (RPE) cell degeneration 

has stimulated the idea that the condition could be treated by replacing the degenerated 

RPE cells with healthy RPE cells, which would synthesize and secrete the anti-

angiogenic and neuroprotective pigment epithelium-derived factor (PEDF) in vivo. 

Administering recombinant PEDF is not feasible because of its short half-life, and 

transplantations of RPE or iris pigment epithelial (IPE) cells as substitutes for 

degenerated RPE cells have not led to significant improvements in the visual acuity of 

nvAMD patients91-94. This indicates that the replacement cells do not produce levels of 

anti-angiogenic factors that are sufficient to overcome the pathological overexpression of 

VEGF.   

 An alternative to frequent, life-long intravitreal injections would be a mode of 

treatment that provides the retina with an inhibitor of neovascularization that lasts for the 

lifetime of the patient. This would require a constant inhibition of VEGF and a proper 

balance between angiogenic and anti-angiogenic activities; in other words, the stable 

integration of a transgene and continuous PEDF expression are critical for re-acquiring 

vision. To avoid the risks accompanied by gene delivery mediated by viral vectors, the 
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TargetAMD consortium (an international consortium of universities, research institutes 

and commercial organizations funded by the European Commission) has been pursuing 

the use of the hyperactive SB100X system for efficient delivery of a human PEDF 

transgene cassette to cultured and freshly isolated RPE and IPE cells. Cells that have 

been transfected this way have been found to express recombinant PEDF over the 

entire duration of 16 months that the cells have been in culture95. The effectiveness of 

this strategy requires establishing whether RPE cells that express elevated levels of 

PEDF inhibit choroidal neovascularization. To determine this, 10000 rat RPE cells 

transfected with the PEDF gene using SB100X, which secreted approximately 2 ng 

PEDF/day, were transplanted to the subretinal space of rats, in which choroidal 

neovascularization had been induced by laser rupture of Bruch’s membrane96. A marked 

reduction of neovascularization was observed at 7 and 14 days post-transplantation, 

with the area of neovascularization reduced by 50%97.  

 TargetAMD is pursuing a strategy, by which genetically modified RPE or IPE 

cells that overexpress PEDF are transplanted into the subretinal space of the eye50 (Fig. 

3). Specifically, RPE or IPE cells isolated from the peripheral retina or obtained from an 

iris biopsy of a patient will be transfected with an SB transposon vector carrying a PEDF 

expression cassette. They will then be transplanted back into the same patient during 

one surgical session lasting about 60 minutes (Fig. 3). A standard operating procedure 

has been established that i) consistently shows highly efficient transfer of the PEDF 

gene in RPE and IPE cells obtained from donor eyes, ii) permits the expression of 

recombinant PEDF at high levels of recombinant protein in cultured PEDF-transfected 

cells, and iii) achieves the sustained expression of the transgene (for over one year that 

the cells have been in culture) in genetically engineered cells. The robustness of this 

procedure is coupled with salient safety features including a close-to-random transgene 

integration profile of the SB transposon in human IPE and RPE cells and a lack of 
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antibiotic resistance genes in the vector components. Based on the results described 

here and approval by the Swissmedic regulatory agency, TargetAMD will shortly begin 

patient recruitment for a Phase Ia/IIb clinical trial, and expects to launch the first 

European human clinical trial using SB transposon and pFAR technologies50.  

 

Cancer immunotherapy with tumor-reactive CAR T-cells  

A new approach to the treatment of advanced malignancies is based on adoptive 

immunotherapy: gene transfer is used to engineer T cells to express a synthetic CAR 

that reacts to a tumor and uses the immune system to destroy it. CARs are designer 

molecules comprised of several components: an extracellular antigen binding domain, 

usually the variable light and heavy chains of a monoclonal antibody; a spacer and 

transmembrane region that anchors the receptor on the T-cell surface and provides the 

reach and flexibility necessary to bind to the target epitope; and an intracellular signaling 

module, most commonly CD3 zeta and one or more costimulatory domains that mediate 

T-cell activation after antigen binding98, 99.  

 Currently the most advanced clinical development has been the use of CARs 

specific for the B-lineage marker CD19, which is expressed on B cells in acute and 

chronic lymphocytic leukemia and B-cell lymphomas. Several groups have administered 

patient-derived CD19-CAR T cells to achieve rates of complete remission of up to 90% 

in patients with chemotherapy- and radiotherapy-refractory B-cell acute lymphoblastic 

leukemia (ALL) and >60% complete remissions in patients with non-Hodgkin lymphoma 

(NHL)100-106. Many consider this a major medical breakthrough, given the advanced 

stage of the disease and the failure of conventional treatments in many of the patients 

included in these clinical trials. The side effects that have been reported for CD19-CAR 

T-cell therapies are a consequence of the strong anti-tumor immune response: they 

include tumor lysis syndrome due to the rapid destruction of a large number of tumor 
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cells, cytokine release syndrome due to the rapid release of cytokines by CAR T cells 

and other immune cells, and the depletion of normal B-cells due to their physiological 

expression of CD19.  

 The potential of SB transposition as a means of integrating the genetic 

information of the CAR into T cells was first explored by the group of Cooper et al. 77. 

They demonstrated that functional CD19-CAR T cells can be produced by providing the 

SB transposase either as plasmid DNA or mRNA in combination with a plasmid-encoded 

CAR transposon and introduced into T cells by electroporation (Fig. 2B). Consistent with 

observations in other mammalian cell types, SB11 and hyperactive SB100X 

accomplished higher rates of gene transfer than the first-generation SB transposase37, 

107. The same group has also provided the successful clinical debut of SB-engineered 

CD19-CAR T cells, and recently reported results of two pilot clinical trials in 26 patients 

with ALL and NHL who had undergone HSC transplantation (HSCT) based on 

autologous (n=7, ClinicalTrials.gov Identifier 00968760) or allogeneic (n=19, 

ClinicalTrials.gov Identifier NCT01497184) cells prior to CAR T cell therapy27. These 

clinical studies demonstrated that the administration of SB-engineered CD19-CAR T 

cells is safe and may provide additional tumor control in patients after HSCT. They are 

the first CAR T cell clinical trials that rely on non-viral SB-based gene transfer, and 

provide a proof-of-concept for the use of SB transposition in CAR T-cell engineering.  

 A clinical trial with CD19-CAR T cells engineered from MC vectors by SB 

transposition is in preparation at the Universitätsklinikum Würzburg, Germany, with the 

aim of obtaining a clinical proof-of-concept for this novel approach50. This trial will make 

use of a CD19-CAR construct that has been selected from pre-clinical analyses for its 

optimal anti-tumor functions. It has already been validated in clinical trials of a CD19-

CAR therapy based on lentiviral gene transfer100, 108. An additional step will be the 
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formulation of cell products that contain equal proportions of CAR-modified CD8+ killer 

and CD4+ helper T cells, based on previous work showing that this has advantages over 

the use of cell products with random subset composition109. The key advantages of CAR 

T-cell products with defined subset compositions are that i) lower total numbers of CAR 

T cells are needed to have clinical efficacy, reducing the risk of side effects and 

shortening the manufacturing process; and ii) there is less product-to-product variability 

between patients, making the time and level of CAR T-cell engraftment and proliferation 

more consistent and predictable, and allowing the establishment of dose-response 

relationships as well as parameters for the immune pharmacokinetics and 

pharmacodynamics of CAR T cells as medicinal products.  

 

Concluding Remarks and Future Perspectives 

A number of studies have established that SB-mediated transposition provides long-term 

expression in vivo. Stable transgene expression from SB vectors has been observed in 

mice in the liver11, 110-112, lung113, 114, brain115 and blood after hematopoietic reconstitution 

in vivo28, 35. The long-term expression of transgenes from SB transposon vectors can 

thus be achieved both ex vivo and in vivo, which is a crucial step in the use of the 

technology in clinical applications. The first such uses of the system are ongoing; T cells 

whose genes have been modified with SB vectors have been outfitted with a CAR to 

render the cells specifically cytotoxic toward CD19+ hematologic tumors27, 77, 78. 

Lymphocytes represent a suitable initial platform for testing new gene transfer systems, 

as T cells can apparently be genetically modified using viral and non-viral approaches 

without leading to genotoxicity. There remains, however, a major hurdle in ex vivo 

delivery of transposon components into relevant primary cell types due to the toxicity of 
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contemporary transfection/electroporation protocols. This is a serious issue that may 

undermine clinical applications in situations where target cells are scarce and/or the 

culturing and expansion of the transfected cells is impossible or cannot be solved 

without compromising cell identity and grafting potential. There is hope: recent 

experimental data indicate that cellular toxicity can be reduced through the use of 

transposon cassettes vectorized as MCs and providing the transposase in the form of 

mRNA43, followed by in vivo selective proliferation based on cytokine signaling116. This 

puts clinical applications with SB well within reach, at least in the area of T-cell 

engineering. 

These developments are accompanied by rapid advances in alternative 

technologies for genetic engineering in clinically relevant cell types. Designer nucleases, 

including zinc finger nucleases (ZFNs), transcription activator-like effector nucleases 

(TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas 

nucleases are excellent tools for genome engineering, permitting the editing and addition 

of genes117-120. Designer nucleases have the particular feature of introducing a double-

strand break (DSB) into the DNA, and are therefore highly efficient in mutagenizing a 

target site121, 122. However, adding a gene at the cut site requires the cellular process of 

homology-directed repair (HDR), whose efficiency is considerably lower than introducing 

the DSB in the first place123. In other words, using designer nucleases is far more 

efficient at knocking out a gene than inserting a gene into a specific site. In eukaryotic 

cells, DSBs can be repaired by at least two pathways: HDR and non-homologous end 

joining (NHEJ). HDR is strongly downregulated in most post-mitotic cells124; thus, gene 

addition and gene repair require target cells that divide. In sharp contrast to designer 

nucleases, gene integration is a fundamental step of the life cycle of integrating viruses 

and transposable elements, and they have evolved machineries to achieve that. That 
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means that vector systems based on such genetic elements exhibit a robust efficiency of 

gene insertion – a key requirement for medically relevant applications. An additional 

benefit is that some integrating vectors, particularly those based on transposons, can 

deliver their cargo into the genomes of non-dividing cells11, 125.  

 The advantages of using the SB system for gene therapy include i) the ease and 

reduced cost of manufacturing of clinical-grade, plasmid-based vectors compared to 

recombinant viral vectors, ii) scalability: SB vectors can be manufactured in any quantity, 

iii) the ease of ensuring quality control for clinical use, and iii) indefinite storage with 

absolute fidelity. There is a rapidly growing interest in using the SB system for gene 

therapy and other applications. The unique and salient features of this gene vector 

system have led to the use of SB in 12 clinical trials worldwide at the moment, and has 

stimulated the formation of a number of companies devoted to refining and developing 

the system for further uses126. It is remarkable that in two decades, the SB system has 

been resurrected from its dormant state in vertebrates to become a powerful tool on the 

threshold of joining the clinical arsenal, with a potential to address diseases that have 

long resisted classical therapies. 
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Table 1. Preclinical studies with Sleeping Beauty gene transfer in disease models 

Disease Delivery Site of delivery Reference 

Hematologic disorders 
Hemophilia A and B Tail vein hydrodynamic 

injection of naked DNA 
In vivo, mouse liver 

11, 110
 

Intravenous injection of 
DNA/polyethyleneimine 
(PEI) complexes 

In vivo, mouse 
lungs 

127
 

Intravenous injection of 
nanocapsules 

In vivo, mouse liver 
112

 

Intravenous injection of 
adenovirus/SB hybrid 
vector 

In vivo, dog liver 
73
 

Sickle cell disease  Transfection In vitro, human cell 
lines 

128
 

Tail vain hydrodynamic 
injection of naked DNA 

In vivo, mouse liver 
129

 

Transfection In vitro, patient 
HSCs 

130
 

Fanconi anemia Transfection In vitro, human cell 
lines 

131
 

Congenital 
thromboticthrombocytopenic 
purpura 

Tail vain hydrodynamic 
injection of naked DNA 

In vivo, mouse liver 
132

 

Lysosomal storage diseases 
Mucopolysaccharidosis Tail vein hydrodynamic 

injection of naked DNA 
In vivo, mouse liver 

111, 133, 134
 

Immunologic diseases 
Severe combined 
immunodeficiency 

Transfection In vitro, human cell 
lines 

135
 

Pulmonary disorders  
Fibrosis Intravenous injection of 

DNA/polyethyleneimine 
(PEI) complexes 

In vivo, mouse 
lungs 

136
 

Pulmonary hypertension  Intravenous injection of 
DNA/polyethyleneimine 
(PEI) complexes 

In vivo, rat lungs 
137

 

Dermatologic disorders 
Junctional epidermolysis 
bullosa  

Transfection Ex vivo, patient 
epidermis 

138
 

Dystrophic epidermolysis 
bullosa 

Transfection Ex vivo, human 
keratinocytes, 
followed by 
xenograft in mice 

139
 

Metabolic disorders  
Tyrosinemia type I Tail vain hydrodynamic 

injection of naked DNA 
In vivo, mouse liver 

41, 140, 141
 

Diabetes type I Tail vain hydrodynamic 
injection of naked DNA 

In vivo, mouse liver 
142

  

Hypercholesterolemia Tail vain hydrodynamic 
injection of naked DNA 

In vivo, mouse liver 
143

 

Crigler-Najjar syndrome 
type I (hyperbilirubinemia) 

Intravenous injection of 
proteoliposomes 

In vivo, mouse liver 
144
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Neurologic disorders  
Huntington disease  Transfection In vitro, human cell 

lines 

145
 

Alzheimer’s Transfection followed 
by encapsulated cell 
biodelivery 

In vitro, human cell 
line, followed by 
graft in patient 
brain 

146
 

Muscular dystrophy 

 Transfection In vitro, mouse cell 
line, followed by 
transplantation into 
mice 

147
 

 Transfection Ex vivo, mouse 
myoblasts, 
followed by 
transplantation into 
mice 

148
 

Cancer 

 Electroporation, TCR 
gene transfer 

Ex vivo, human 
PBMCs or T cells 

149, 150
 

 Electroporatiion, CAR 
gene transfer 

Ex vivo, human 
PBMCs or T cells 

37, 77, 78, 151
 

 Transfection In vitro, 
hepatocellular 
carcinoma cell 
lines 

152
 

 Intratumoral injection In vivo, human 
glioblastoma 
xenografts in mice 

115
 

 Tail vain hydrodynamic 
injection of naked DNA 

In vivo, mouse liver 
153
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Figure Legends 

Figure 1. The Sleeping Beauty transposon system. A) Autonomous transposable 

elements consist of terminal inverted repeats (TIRs, black arrows) that flank the 

transposase gene (orange). The transposon is flanked by TA target site duplications. 

B) Bi-component, trans-arrangement transposon vector system for delivering 

transgenes that are maintained in plasmids. One component contains a gene of 

interest (GOI, yellow) between the transposon TIRs carried by a plasmid vector, 

whereas the other component is a transposase expression plasmid, in which the 

black arrow represents the promoter driving expression of the transposase. C) The 

transposon carrying a GOI is excised from the donor plasmid and is integrated at a 

TA site in the genome by the transposase. D) Plasmid-based transposon cassettes 

can be mobilized by transposase supplied as in vitro-transcribed mRNA. 

 

Figure 2. Strategies for gene therapy. A) Direct in vivo gene delivery. A 

therapeutic gene vector, typically a viral vector, is directly inroduced into the patient’s 

body. The example depicts the use of an integrating, hybrid adenovirus/SB 

transposon vector sytem, wherein an expression cassette producing the SB 

transposase (shown in red) and an SB transposon carrying a gene-of-interest (GOI) 

(shown in green) are packaged into helper-dependent adenoviral (HD-Ad5/35++) 

vectors. B) Ex vivo gene therapy involves isolation of somatic cells (such as T cells 

and RPE or IPE cells) from the patient’s body (autologous cells) followed by genetic 

engineering by electrotransfer (e. g., nucleofection) of naked nucleic acid  

components of the SB vector system and reinfusion of the genetically modified cells 

into the patient. The example depicts transposition-mediated genetic engineering to 

stably express a CAR. Genetically engineered cells may or may not undergo a period 

of ex vivo expansion. 

 



Figure 3. TargetAMD therapy protocol. Harvest (Step 1), isolation (Step 2), 

transfection (Step 3) and transplantation (Step 4) of autologous RPE or IPE cells will 

be accomplished in one surgical session. Autologous RPE or IPE cells 

overexpressing the antiangiogenic factor PEDF will be transplanted subretinally to 

deliver a life-long solution for the patient. Source: http://www.targetamd.eu/scientific-

background/targetamd-surgery/. 
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