Genetic variants including markers from the exome chip and metabolite traits of type 2 diabetes

Susanne Jäger^{1,2}, Simone Wahl^{2,3,4}, Janine Kröger^{1,2}, Sapna Sharma^{2,3,4}, Per Hoffmann^{5,6,7}, Anna Floegel⁸, Tobias Pischon^{9,10,11}, Cornelia Prehn¹², Jerzy Adamski^{2,12,13}, Martina Müller-Nurasyid^{14,15,16}, Melanie Waldenberger^{3,4}, Konstantin Strauch^{14,17}, Annette Peters^{2,3,16}, Christian Gieger^{3,4}, Karsten Suhre¹⁸, Harald Grallert ^{2,3,4}, Heiner Boeing⁸, Matthias B. Schulze^{1,2}, Karina Meidtner^{1,2}

¹ Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany

² German Center for Diabetes Research (DZD), Neuherberg, Germany

³ Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

⁴ Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

⁵ Division of Medical Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland

⁶ Department of Genomics, Life and Brain Center, Bonn, Germany

⁷ Institute of Human Genetics, University of Bonn, Bonn, Germany

⁸ Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany

⁹ Molecular Epidemiology Group Max Delbrueck Center for Molecular Medicine in the Helmholtz Association (MDC) Berlin-Buch Germany

¹⁰ Charité – Universitätsmedizin Berlin, Berlin, Germany

¹¹ DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany

¹² Genome Analysis Center, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

¹³ Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany

¹⁴ Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

¹⁵ Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany

¹⁶ DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany

¹⁷ Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, Munich, Germany

¹⁸ Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Qatar Foundation-Education City, Doha, Qatar

Supplementary Fig. S1. Design of the nested case-cohort study in EPIC-Potsdam with randomly drawn sub-cohort and incident cases of type 2 diabetes

	EPIC-Potsdam	KORA F4
N (%women)	2283 (61.8)	2818 (47.6)
Age at baseline in years	49 (15)	55 (22)
BMI in kg/m²	25.5 (5.18)	
Waist circumference in cm	85.0 (18.8)	
Hexose in µmol/L	4556 (886)	4962 (781)
Glycine in µmol/L	241 (85.0)	295 (93.0)
Isoleucine + Leucine in µmol/L	200 (69.0)	206 (59.0)
Phenylalanine in µmol/L	54.9 (13.3)	61.0 (13.5)
Tryptophan in µmol/L	80.0 (15.1)	82.6 (12.6)
Tyrosine in µmol/L	78.6 (27.4)	83.2 (23.2)
Valine in µmol/L	286 (83.0)	270 (83.0)
C3 in µmol/L	0.36 (0.18)	0.37 (0.15)
PC ae C32:1 in µmol/L	2.81 (0.79)	2.81 (0.87)
PC ae C32:2 in µmol/L	0.71 (0.22)	0.74 (0.24)
PC ae C34:2 in µmol/L	13.0 (4.60)	12.4 (4.50)
PC ae C34:3 in µmol/L	8.21 (3.11)	8.17 (3.12)
PC ae C36:2 in µmol/L	16.8 (5.60)	14.8 (5.30)
PC ae C36:3 in µmol/L	9.36 (2.93)	8.47 (2.80)
PC ae C40:5 in µmol/L	3.91 (1.01)	3.52 (0.88)
PC ae C40:6 in µmol/L	5.36 (1.81)	4.90 (1.70)
PC ae C42:3 in µmol/L	0.84 (0.25)	0.85 (0.27)
PC ae C42:4 in µmol/L	0.92 (0.29)	0.99 (0.33)
PC ae C42:5 in µmol/L	2.30 (0.67)	2.30 (0.64)
PC ae C44:4 in µmol/L	0.37 (0.13)	0.42 (0.14)
PC ae C44:5 in µmol/L	1.72 (0.60)	2.06 (0.71)
PC ae C44:6 in µmol/L	1.14 (0.40)	1.34 (0.48)
PC aa C32:1 in µmol/L	14.7 (10.0)	19.0 (11.8)
PC aa C36:1 in µmol/L	55.4 (17.7)	51.8 (16.5)
PC aa C36:3 in µmol/L	149 (43.0)	147 (42.0)
PC aa C38:3 in µmol/L	53.5 (18.2)	52.2 (17.7)
PC aa C40:4 in µmol/L	3.83 (1.34)	3.94 (1.40)

Supplementary Table S1. Baseline characteristics in EPIC-Potsdam and KORA F4

PC aa C40:5 in µmol/L	10.9 (4.32)	11.0 (3.80)
PC aa C42:0 in µmol/L	0.58 (0.22)	0.57 (0.22)
PC aa C42:1 in µmol/L	0.29 (0.11)	0.29 (0.10)
SM C16:1 in µmol/L	17.3 (4.70)	15.6 (4.60)
SM (OH) C22:2 in µmol/L	12.0 (4.31)	11.2 (3.83)
LysoPC a C17:0 in µmol/L	1.94 (0.77)	1.68 (0.69)
LysoPC a C18:2 in µmol/L	33.2 (17.0)	25.9 (12.1)

Age, BMI, waist circumference and 34 diabetes-associated metabolites are depicted as medians (interquartile range)

SNP	Reported Locus	Chr	Most severe consequence *	Scaled CADD score ¹	Minor allele	MAF	Metabolite trait	Metabolite trait N		p-value ^b	Adj. R² in %
rs541503 [°]	PHGDH	1	intron variant	4.82	С	37.5	Glycine/Serine	2204	0.1677 (0.1071 -0.2283)	6.31E-08	2.87
rs715 ^d	CPS1	2	3 prime UTR variant	3.20	С	30.1	Glycine	2196	0.5870 (0.5277 -0.6464)	1.81E-77	16.1
							Glycine/Serine	2197	0.4895 (0.4286 -0.5504)	3.77E-53	11.7
							Serine/Phenylalanine	2197	0.1763 (0.1137 -0.2388)	3.65E-08	6.76
rs12641551 [°]	ACSL1	4	intron variant	3.93	G	31.9	PC ae C44:5/ PC ae C42:5	2202	0.2533 (0.1915 -0.3150)	1.36E-15	3.47
							PC ae C44:6/ PC aa C42:1	2203	0.1347 (0.0728 -0.1966)	2.04E-05	2.87
rs272893 ^c	SLC22A4, OCTN1	5	lle306Thr	12.57	А	38.4	PC ae C44:5/ PC ae C42:5	2202	0.1406 (0.0812 -0.2000)	3.70E-06	1.59
rs9393903 °	ELOVL2	6	intron variant	2.19	А	24.5	PC aa C40:4/ PC aa C42:6	2240	0.1582 (0.0915 -0.2249)	3.52E-06	3.11
							PC aa C40:5/ PC aa C42:5	2240	0.2276 (0.1624 -0.2928)	9.74E-12	7.50
							PC aa C40:5/ PC aa C40:6	2241	0.1499 (0.0836 -0.2161)	9.59E-06	4.43
rs603424 ^c	SCD	10	intron variant	6.86	А	18.7	PC ae C42:5/ PC ae C40:4	2195	-0.1632 (-0.23820.0883)	2.04E-05	0.99
							SM (OH) C22:2/ SM C18:1	2194	-0.1828 (-0.25740.1081)	1.71E-06	1.74
							SM C16:1/ SM C18:1	2190	-0.1565 (-0.23050.0826)	3.45E-05	3.79
							PC aa C36:3/	2192	0.1745	4.32E-06	2.89

Supplementary Table S2. Replicated genetic variants associated with diabetes-associated metabolite traits in EPIC-Potsdam

							PC aa C34:3		(0.1002 -0.2488)		
							PC aa C32:1/		-0.1734		0.00
							PC aa C34:1	2193	(-0.24790.0988)	5.30E-00	2.20
							SM (OH) C22:2/	0400	-0.1529		0.40
							SM C18:0	2193	(-0.22510.0807)	3.41E-05	8.18
rs174547 ^c	FADS1	11	intron variant	6.23	G	33.5		2204	-0.1288	2 00E-05	7 12
13174347	TADST	11		0.25	9	55.5	r C ae C40.0	2204	(-0.18800.0695)	2.092-05	1.12
							PC ae C42.5	2203	-0.2469	3 00E-16	8 52
							1 0 00 042.0	2200	(-0.30570.1881)	0.00L-10	0.02
							PC ae C44.5	2204	-0.2031	3 41F-11	5 38
								2201	(-0.26280.1433)	0.112 11	0.00
							PC aa C40:5	2203	-0.2194	5.28E-13	7.09
									(-0.27860.1601)	0.202 .0	
							PC ae C34:1/	2200	0.1593	2.75E-07	2.91
							PC ae C32:1		(0.0987 -0.2199)		
							PC ae C34:2/	2204	0.4321	8.09E-51	19.7
							PC ae C38:5		(0.3770 -0.4872)		
							PC ae C34:2/	2203	0.4302	4.60E-50	19.1
							PC ae C36:4		(0.3749 -0.4855)		
							PC ae C34:2/	2202	-0.1384	7.92E-06	2.79
							PC ae C36:3		(-0.19900.0778)		
							PC aa C36:3/	2201	0.3573	2.39E-32	10.3
							PC aa C36:5		(0.2991 -0.4155)		
							PC ae C36:3/	2204	0.5707	1.91E-90	25.8
							PC ae C38:5		(0.5178-0.6237)		
							PC ae C36:3/	2204	0.2875	1.28E-20	4.81
							PC ae C34:3		(0.2275 - 0.3474)		
							PC ae C34:3/	2204	0.3832	6.63E-40	17.8
							PC ae C36:5		(0.3275 -0.4389)		
							PC ae C40:6/	2202	0.1954	1.47E-10	6.31
							PC ae C38:4		(0.1359 -0.2549)		
							PC ae C42:4/	2202	0.2263	2.53E-13	3.91
							PC ae C40:4		(0.1660-0.2865)		

PC ae C42:4/ PC ae C44:4	2200	-0.2573 (-0.31780.1968)	1.28E-16	3.22
PC ae C44:4/ PC ae C44:5	2201	0.4018	2.39E-39	8.38
PC ae C44:6/ PC aa C42:0	2204	-0.1787 (-0.23860.1188)	5.69E-09	4.98
PC aa C42:0/ PC ae C42:5	2204	0.1273 (0.0674 -0.1872)	3.17E-05	5.08
PC ae C40:5/ PC ae C36:0	2203	-0.1381 (-0.19880.0774)	8.53E-06	2.46
PC ae C42:3/ PC ae C42:2	2202	0.1701 (0.1113 -0.2289)	1.59E-08	8.52
PC ae C42:3/ PC ae C40:1	2202	0.2522 (0.1941 -0.3103)	2.93E-17	10.8
SM (OH) C22:2/ PC ae C38:2	2198	-0.1699 (-0.23000.1099)	3.17E-08	4.89
PC aa C40:5/ PC aa C36:5	2203	0.1419 (0.0809 -0.2029)	5.31E-06	1.51
PC aa C40:5/ PC aa C36:3	2204	-0.3824 (-0.43890.3259)	9.65E-39	15.5
PC aa C40:5/ PC aa C38:5	2203	0.1624 (0.1022 -0.2226)	1.33E-07	4.16
PC aa C36:3/ PC aa C36:4	2201	0.7445 (0.6919 -0.7971)	1.71E- 145	26.7
PC aa C36:3/ PC aa C38:4	2204	0.7213 (0.6684 -0.7742)	1.31E- 136	25.9
PC aa C36:3/ PC aa C38:3	2202	0.1901 (0.1313 -0.2490)	2.83E-10	8.42
PC aa C36:3/ PC aa C38:5	2201	0.5330 (0.4772 -0.5888)	8.70E-73	17.7
PC aa C38:3/ PC aa C36:5	2201	0.2954 (0.2356 -0.3553)	9.90E-22	5.23
PC aa C38:3/ PC aa C38:4	2204	0.7252 (0.6728 -0.7776)	4.85E- 140	27.2

							PC aa C38:3/ PC aa C36:4	2204	0.4537 (0.3972 -0.5103)	6.76E-53	15.2
							PC aa C38:3/ PC aa C38:5	2201	0.4306 (0.3721 -0.4892)	4.08E-45	9.30
							PC ae C36:2/ PC ae C36:1	2203	0.1981 (0.1387 -0.2575)	7.52E-11	6.66
							PC ae C36:2/ LysoPC a C17:0	2202	0.1847 (0.1262 -0.2432)	7.01E-10	9.52
							LysoPC a C18:2/ LysoPC a C20:4	2204	0.4978 (0.4401 -0.5556)	2.28E-60	11.7
rs1718306 ^d	PAH	12	intron variant	0.72	Т	39.9	Phenylalanine/ Arginine	2211	0.1526 (0.0922 -0.2131)	7.92E-07	1.89
rs7156144 ^c	PLEKHH1	14	intron variant	0.38	А	42.5	PC ae C34:1/ PC ae C32:1	2174	0.2608 (0.2004 -0.3212)	4.52E-17	4.80
							PC ae C34:3/ PC ae C36:5	2178	0.1955 (0.1377 -0.2532)	3.96E-11	12.7
rs11158519 ^c	SYNE2	14	intron variant	5.24	А	13.5	SM (OH) C22:2/ SM(OH)C22:1	2209	0.2092 (0.1300 -0.2885)	2.47E-07	13.4
							SM (OH) C22:2/ SM(OH)C14:1	2210	-0.3690 (-0.45110.2868)	2.50E-18	6.97
							SM C16:1/ PC aa C28:1	2210	-0.3822 (-0.46580.2987)	5.93E-19	3.81
rs364585 ^c	SPTLC3	20	intergenic variant	0.77	А	38.1	SM (OH) C22:2/ SM C16:1	2201	0.1552 (0.0979 -0.2125)	1.22E-07	6.56
							SM C16:1/ SM C18:0	2202	-0.1866 (-0.24510.1281)	4.79E-10	2.66
							SM C16:1/ PC aa C28:1	2203	-0.1441 (-0.20300.0853)	1.68E-06	1.36

CADD, Combined Annotation Dependent Depletion; MAF, minor allele frequency

^a metabolite traits (µmol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, models are adjusted for age and sex; ^b significance threshold: 0.05/(19 × 61 Outcomes) = 4.31E-05; ^c reported in study from Illig et al. 2010²; ^d reported in study from Shin et al. 2014 ³;

*Ensembl annotation version 84 (GRCh37)

						Women Men								
SNP	Locus	Chr	Minor allele	MAF in %	Metabolite trait	Ν	β (95% CI) ^a	P-value	Adj. R² in %	Ν	β (95% Cl) ^a	P-value	Adj. R² in %	p-value (interaction) ^b
rs715 ^c	CPS1	2	С	30.1	Glycine	1361	0.6920 (0.6181 - 0.7659)	1.77E-67	20.8	835	0.4016 (0.3015 - 0.5016)	1.06E-14	6.94	4.02E-14
					Glycine/Serine	1361	0.6106 (0.5358 - 0.6854)	5.81E-53	18.8	836	0.2623 (0.1601 - 0.3646)	5.86E-07	2.73	6.36E-12

Supplementary Table S3. Replicated genetic variants and diabetes-associated metabolite traits with significant sex-interaction

MAF, minor allele frequency

^a metabolite traits (μ mol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, models are adjusted for age; ^b significance threshold for interaction of SNP with sex: 0.05/(19 SNPs × 61 Outcomes) = 4.31E-05; ^c reported in study from Shin et al. 2014 ³; Supplementary Table S4. Exploratory identified exome chip variants and diabetes-associated metabolite traits with suggestive significance within EPIC-Potsdam

Metabolite trait	Exome chip name	SNP	Locus	Chr	Coded allele on forward strand ^a	CAF in %	Ν	p-value (GC) ^b	Beta ^c	SE	Most severe consequence *	Scaled CADD score ¹
PC aa C36:3/ PC aa C36:4	exm- rs174550	rs174550	FADS1	11	Т	66.5	2201	1.16E-146	-0.7470	0.0268	5 prime UTR variant	3.57
PC aa C38:3/ PC aa C38:4	exm- rs174550	rs174550	FADS1	11	Т	66.5	2204	2.09E-140	-0.7259	0.0267	5 prime UTR variant	3.57
PC aa C36:3/ PC aa C38:4	exm- rs174550	rs174550	FADS1	11	Т	66.5	2204	4.07E-137	-0.7224	0.0270	5 prime UTR variant	3.57
PC ae C36:3/ PC ae C38:5	exm- rs174550	rs174550	FADS1	11	Т	66.5	2204	1.13E-88	-0.5712	0.0270	5 prime UTR variant	3.57
PC aa C36:3/ PC aa C38:5	exm- rs174550	rs174550	FADS1	11	Т	66.5	2201	3.06E-73	-0.5346	0.0284	5 prime UTR variant	3.57
LysoPC a C18:2/ LysoPC a C20:4	exm- rs174546	rs174546	FADS1	11	С	66.6	2204	9.16E-60	-0.4984	0.0294	3 prime UTR variant	12.1
PC aa C38:3/ PC aa C36:4	exm- rs174550	rs174550	FADS1	11	Т	66.5	2204	1.02E-52	-0.4546	0.0288	5 prime UTR variant	3.57
PC ae C34:2/ PC ae C36:4	exm- rs174546	rs174546	FADS1	11	С	66.6	2203	1.15E-49	-0.4303	0.0282	3 prime UTR variant	12.1
PC ae C34:2/ PC ae C38:5	exm- rs174546	rs174546	FADS1	11	С	66.6	2204	5.17E-49	-0.4323	0.0281	3 prime UTR variant	12.1
PC aa C38:3/ PC aa C38:5	exm- rs174550	rs174550	FADS1	11	Т	66.5	2201	3.25E-45	-0.4310	0.0299	5 prime UTR variant	3.57
PC ae C44:4/ PC ae C44:5	exm- rs174550	rs174550	FADS1	11	Т	66.5	2201	2.37E-39	-0.4024	0.0300	5 prime UTR variant	3.57
PC ae C34:3/ PC ae C36:5	exm- rs174546	rs174546	FADS1	11	С	66.6	2204	5.05E-39	-0.3841	0.0284	3 prime UTR variant	12.1
PC aa C40:5/ PC aa C36:3	exm- rs174550	rs174550	FADS1	11	Т	66.5	2204	1.41E-38	0.3831	0.0288	5 prime UTR variant	3.57
SM C16:1/ PC aa C28:1	exm- rs7157785	rs7157785	SGPP1	14	G	83.6	2203	1.45E-35	0.4924	0.0389	Regulatory region variant	1.91

PC aa C36:3/	exm-	rs174550	FADS1	11	т	66 5	2201	4 16E-32	-0 3582	0 0297	5 prime LITR variant	3 57
PC aa C36:5	rs174550	1317 4330	TADOT		I	00.5	2201	4.10L − 3Z	-0.5502	0.0237	5 prime of its variant	0.07
SM(OH)C22:2/ SM(OH)C14:1	exm-	rs7157785	SGPP1	14	G	83.6	2202	2.79E-27	0.4234	0.0385	Regulatory region	1.91
	rs/15//85										variant	
PC aa C38:3/	exm-		54004	4.4	–	00.5	0004	0.445.04	0.0050	0.0005		0.57
PC aa C36:5	rs174550	18174550	FADST	11	I	00.5	2201	3.44⊏-21	-0.2956	0.0305	5 prime UTR variant	3.57
PC ae C36:3/	exm-	ro174500		4.4	0	66.4	0004	2 205 20	0.0000	0.0206	intron voriant	10.0
PC ae C34:3	rs174583	15174583	FAD52	11	C	00.1	2204	2.39E-20	-0.2890	0.0306	intron variant	13.8
Glycine	exm2269212	rs4672596	CPS1	2	Т	39.2	2203	1.73E-17	-0.2616	0.0303	intergenic	3.86
PC ae C42:3/	exm-			4.4	т	66 F	2202		0.0506	0.0006	E prime LITD verient	2.57
PC ae C40:1	rs174550	18174550	FADST	11	I	00.5	2202	4.20E-17	-0.2536	0.0296	5 prime UTR variant	3.57
PC ae C42:4/	exm-	ro174546		11	<u> </u>	66.6	2200	9.675 17	0.2596	0 0 2 0 9	2 prime LITD verient	10.1
PC ae C44:4	rs174546	15174540	FADST	11	C	00.0	2200	0.07 E-17	0.2000	0.0306	5 prime OTR variant	12.1
PC ae C44:5/	avm2260800	ro10641551		4	C	22.0	2202	1 015 15	0.0507	0.0215	intron voriant	2.02
PC ae C42:5	exiii2209090	1512041551	AUSLI	4	C	32.0	2202	1.21E-13	0.2557	0.0315	intron variant	3.93
PC ae C42:5	exm- rs174547	rs174547	FADS1	11	Т	66.5	2203	1.21E-15	0.2471	0.0300	intron variant	3.57
SM(OH)C22:2/	exm-	re7157785	SCDD1	14	G	83.6	2202	6 00E 15	0 2071	0 0372	Regulatory region	1 01
SM(OH)C22:1	rs7157785	187 1377 03	SGFFI	14	9	05.0	2202	0.00E-15	-0.2971	0.0372	variant	1.91
SM(OH)C22:2/	eym1106800	re17751301	SVNE2	14	C	02.0	2202	1 22⊑ 14	0 4382	0.0563	Ara1303Tro	10 1
SM(OH)C14:1	exiii 100000	1317731301	STILL	14	0	32.3	2202	1.222-14	0.4302	0.0000	Algiosofip	10.1
SM C16:1/	eym1106800	re17751301	SVNE2	14	C	02.0	2203	2 355-14	0 4401	0 0573	Ara1303Tro	10 1
PC aa C28:1	exiii 100000	1317731301	STILL	14	0	32.3	2203	2.330-14	0.4401	0.0070	Algiosofip	10.1
PC ae C42:4/	exm-	rs174550	FADS1	11	т	66 5	2202	3 60E-13	-0 2270	0 0307	5 prime LITR variant	3 57
PC ae C40:4	rs174550	1317 4000	TADOT		•	00.0	2202	0.00L-10	-0.2270	0.0007		0.07
Gly/Ser	exm2269212	rs4672596	CPS1	2	Т	39.2	2204	4.58E-13	-0.2238	0.0305	intergenic	3.86
PC aa 40:5	exm- rs174547	rs174547	FADS1	11	Т	66.5	2203	5.16E-13	0.2197	0.0302	intron variant	3.57
Tyr/Met	exm572044	rs3204953	REV3L	6	С	85.2	2201	9.80E-12	-0.2841	0.0412	Val3064lle	32.0
PC aa C36:3/	exm-	ro174570	EADOO	11	C	0F 7	2202	2 62 - 14	0 0700	0.0440	intron voriant	2.02
PC aa C38:3	rs174570	15174570	FAD52	11	C	00.7	2202	3.03E-11	-0.2739	0.0412	intron variant	3.93
PC ae C44:5	exm- rs174547	rs174547	FADS1	11	Т	66.5	2204	1.11E-10	0.2031	0.0305	intron variant	3.57

PC ae C40:6/ PC ae C38:4	exm- rs174546	rs174546	FADS1	11	С	66.5	2202	1.28E-10	-0.1980	0.0303	3 prime UTR variant	12.1
PC ae C36:2/ PC ae C36:1	exm- rs174547	rs174547	FADS1	11	Т	66.5	2203	1.36E-10	-0.1973	0.0303	intron variant	3.57
PC ae C36:2/ LysoPC a C17:0	exm- rs102275	rs102275	C11orf10	11	Т	65.9	2202	2.90E-10	-0.1889	0.0297	Non coding transcript exon variant	6.59
SM C16:1/ PC aa C28:1	exm1107280	rs12881815	SYNE2	14	G	95.2	2203	3.25E-10	0.4347	0.0688	Glu4913Lys	25.2
SM(OH)C22:2/ SM C24:0	exm- rs7157785	rs7157785	SGPP1	14	G	83.6	2203	5.46E-10	-0.2221	0.0353	Regulatory region variant	1.91
SM C16:1/ SM C18:0	exm- rs364585	rs364585	SPTLC3	20	А	38.1	2202	6.78E-10	-0.1854	0.0298	intergenic	0.77
PC aa C38:3/ PC ae C36:2	exm- rs174570	rs174570	FADS2	11	С	85.7	2202	7.13E-10	0.2589	0.0415	intron variant	3.93
SM C16:1/ SM C18:0	exm- rs680379	rs680379	SPTLC3	20	А	38.1	2202	1.12E-09	-0.1829	0.0298	intergenic	0.66
PC ae C42:3/ PC ae C42:2	exm- rs102275	rs102275	C11orf10	11	Т	65.9	2202	5.12E-09	-0.1753	0.0299	Non coding transcript exon variant	6.59
PC aa C36:3/ PC aa C34:3	exm1219342	rs1136001	NTAN1	16	G	67.0	2201	5.58E-09	0.1835	0.0314	His283Asn	0.81
PC aa C36:3/ PC aa C34:3	exm1219341	rs1135999	NTAN1	16	А	67.0	2201	5.58E-09	0.1835	0.0314	Ser287Pro	13.3
PC aa C36:3/ PC aa C34:3	exm- rs7200543	rs7200543	PDXDC1	16	А	67.0	2201	5.58E-09	0.1835	0.0314	Synonymous variant	5.10
PC ae C44:6/ PC aa C42:0	exm- rs174546	rs174546	FADS1	11	С	66.6	2204	7.79E-09	0.1799	0.0305	3 prime UTR variant	12.1
PC aa C40:5/ PC aa C38:5	exm- rs499974	rs499974	MOGAT2	11	С	81.2	2203	2.25E-08	-0.2143	0.0379	Downstream gene variant	8.66
PC aa C36:1/ PC aa C34:1	exm858668	rs4751995	PNLIPRP2	10	А	47.6	2201	2.90E-08	-0.1692	0.0297	intron variant/ splice region variant	10.4
SM(OH)C22:2/ PC ae C38:2	exm- rs174546	rs174546	FADS1	11	С	66.5	2198	4.29E-08	0.1683	0.0306	3 prime UTR variant	12.1

PC aa C36:1/ PC aa C34:1	exm858674	rs10885997	PNLIPRP2	10	А	58.8	2201	5.54E-08	-0.1697	0.0304	Synonymous variant	7.74
SM(OH)C22:2/	eym1107280	rs12881815	SYNE2	14	G	95.2	2202	6 95E-08	0 3677	0.0678	Glu49131 vs	25.2
SM(OH)C14:1	0,111107200	1312001010	OTHEZ	17	0	00.2	2202	0.002 00	0.0011	0.0070	Old+010Eyo	20.2
PC aa C42:1/	0.000		01114	4	^	07.0	0400		0.0504	0.0400	A == 45 A ==	0.04
PC aa C42:0	exm83509	1841282492	CHIA	1	A	87.9	2190	1.01E-07	0.2501	0.0463	Asn45Asp	0.01
SM(OH)C22:2/	exm-			20	^	20.4	0004		0 4550	0.0000	internerie	0.77
SM C16:1	rs364585	rs364585	SPILC3	20	A	38.1	2201	1.23E-07	0.1550	0.0292	Intergenic	0.77
SM(OH)C22:2/	exm-			00	•	00.4	0004	4 005 07	0.4540	0.0000		0.00
SM C16:1	rs680379	rs680379	SPILC3	20	A	38.1	2201	1.28E-07	0.1548	0.0292	Intergenic	0.66
SM(OH)C22:2/			4005	10	0	01.4	0000		0.0077	0.0400	A == 2000 · · · ·	20.0
SM(OH)C22:1	exiii 1479300	187412	APUE	19	C	91.4	2202	1.30E-07	-0.2077	0.0498	Argzuzeys	30.0
PC aa C42:1/	0.0540		01114	4	0	07.0	0000	4 005 07	0.0405	0.0400	A == 47 A ==	00.0
PC aa C42:0	exm83510	rs41282494	CHIA	1	G	87.8	2200	1.33E-07	0.2465	0.0460	Asp47Asn	26.0
PC aa C40:5/	exm-		54004	4.4	т	00.5	0000	4 005 07	0.400.4	0.0007		0.57
PC aa C38:5	rs174550	rs1/4550	FADS1	11	I	66.5	2203	1.38E-07	-0.1634	0.0307	5 prime UTR variant	3.57
PC ae C44:6/	exm-		000040	44	^	0.70	0000		0.0004	0.0005	interne considerat	0.55
PC aa C42:1	rs10790162	1510790162	BUD13	TT	A	6.70	2203	1.5/E-0/	-0.3201	0.0605	intron variant	0.55

CAF, coded allele frequency; CADD, Combined Annotation Dependent Depletion; SE, standard error

^a gene variants are reported on the forward strand of NCBI build 37; ^b suggestive significance was defined as P < 1.64E-7 = (1E-5/ 61);

^c metabolite traits (µmol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, models are adjusted for age and sex;

* Ensembl annotation version 84 (GRCh37)

The FADS region is characterized by high linkage disequilibrium (LD); therefore, only the results for the top associated FADS variant for each metabolite trait are depicted.

Metabolite trait	Locus	N	SNPs in the model	Coded allele	Beta ^a	SE	P-value ^⁵	LD between SNPs ^c
Glycine	CPS1	2123	rs715	С	0.56937	0.03424	<.0001	
			rs4672596	А	-0.02421	0.03224	0.4529	r²=0.2; D'=0.8
PC aa C36:3/ PC aa C36:4	FADS1	2201	rs174550	G	2.14218	0.85492	0.0123	
			rs174547	G	-1.39611	0.85505	0.1027	r²=1.0; D'=1.0
SM C16:1/ PC aa C28:1	SGPP1/SYNE2	2137	rs7157785	А	-0.52937	0.06265	<.0001	
			rs12881815	А	-0.14242	0.07787	0.0675	r²=0.2; D'=0.8
			rs11158519	А	0.09414	0.06985	0.1778	r²=0.6; D'=0.9

Supplementary Table S5. Identification of independent signals for CPS1, FADS1 and SGPP1/SYNE2 loci for selected metabolite traits within EPIC-Potsdam

LD, linkage disequilibrium; SE, standard error

SNPs selected for the analysis on type 2 diabetes are depicted in bold

^a metabolites (μ mol/L) were In-transformed , outliers (>4 SD) were removed and z-transformation was applied, analyses were conducted to check for independent signals at each locus [$Y = \beta 1 \ SNP_1 + \beta 2 \ SNP_2$ (+ $\beta 3 \ SNP_3$) + $\beta 4 \ age + \beta 5 \ sex + n$]; ^b significant SNPs (in bold) were selected for type 2 diabetes analyses; ^c depicted values for LD between respective SNP in that row and selected SNP for type 2 diabetes analysis (in bold)

Supplementary Table S6. Exploratory identified exome chip variants and diabetes-associated metabolite traits with significant sex-interaction within EPIC-Potsdam

	EPIC-Potsdam											-		K	ORA	F4			_	
					Women			Men				1	Wome	n		Men				
Exome chip name (SNP)	(Chr)	Metabolite trait	Coded allele (CAF in %)	z	β (SE) ^a	P-value	z	β (SE) ^a	P-value	P-value ^b (interaction)	Coded allele (CAF in %)	z	β (SE) ^a	P-value	z	β (SE) ^a	P-value	P-value ^b (interaction)	Most severe consequence * (Scaled CADD score ¹)	replicated in KORA F4
exm151565 (rs764535)	(1) 112 112	LysoPC a C18:2/ LysoPC a C18:1	(0.66) G	1368	-0.166 (0.155)	2.84E-01	834	1.833 (0.3326)	4.79E-08	1.62E-08	(0.66) G	1409	0.222 (0.224)	0.3216	1282	0.012 (0.1672)	0.9428	na	Thr82lle (1.50)	р
exm1624797 (rs138899368)	CRLF2 (X)	LysoPC a C18:2/ LysoPC a C18:1	C (98.5)	1368	-0.240 (0.131)	6.69E-02	805	7.429 (1.038)	1.86E-12	1.26E-14	C (97.7)	1408	0.118 (0.105)	0.2621	1283	-0.0173 (0.145)	0.9051	0.4176	Val136Met (.)	ou
exm1624797 (rs138899368)	CRLF2 (X)	PC aa C36:1/ PC aa C34:2	C (98.5)	1368	-0.042 (0.138)	7.58E-01	804	-5.990 (0.950)	4.67E-10	1.31E-09	C (97.7)	1408	-0.046 (0.080)	0.5624	1283	-0.0962 (0.1036)	0.3529	0.6618	Val136Met (.)	ou
exm1624797 (rs138899368)	CRLF2 (X)	PC aa C36:1/ PC aa C36:2	C (98.5)	1367	0.030 (0.132)	8.18E-01	804	-6.279 (1.043)	2.62E-09	2.42E-10	C (97.7)	1408	-0.054 (0.101)	0.5977	1282	-0.1027 (0.1332)	0.4408	0.7799	Val136Met (.)	ou

CAF, coded allele frequency; CADD, Combined Annotation Dependent Depletion; SE, standard error

^a metabolite traits (µmol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, models are adjusted for age; ^b significance threshold for interaction of SNP with sex: 1E-05/61 Outcomes = 1.64E-07; * Ensembl annotation version 84 (GRCh37)

Chr	Locus	SNP	Entrez gene ID	Annotated gene	set flanking width around the SNP (+/- kb)	KEGG pathway					
1	CHIA	rs41282494	27159	CHIA	500	hsa00520 Amino sugar and nucleotide sugar metabolism					
						hsa00260 Glycine, serine and threonine metabolism					
						hsa01100 Metabolic pathways					
1	PHGDH *	rs541503	26227	PHGDH	500	hsa01130 Biosynthesis of antibiotics					
						hsa01200 Carbon metabolism					
						hsa01230 Biosynthesis of amino acids					
						hsa00220 Arginine biosynthesis					
		rs715				hsa00250 Alanine, aspartate and glutamate metabolism					
2	CPS1 *		rs715	1272		500	hsa00910 Nitrogen metabolism				
2	0-31			13/10	13715	13710	187 13	1373		500	hsa01100 Metabolic pathways
							hsa01200 Carbon metabolism				
						hsa01230 Biosynthesis of amino acids					
			29034	CPS1 intronic transcript 1	200000	X					
							hsa00220 Arginine biosynthesis				
					_	hsa00250 Alanine, aspartate and glutamate metabolism					
2	CPS1	rs4672596	1373	CPS1	20000	hsa00910 Nitrogen metabolism					
			1575	0/3/	200000	hsa01100 Metabolic pathways					
					_	hsa01200 Carbon metabolism					
						hsa01230 Biosynthesis of amino acids					
			100500818	MIR3945	10000	X					
			100616111	MIR4455	100000	X					
						hsa00061 Fatty acid biosynthesis					
4	ACSL1 *	rs12641551				hsa00071 Fatty acid degradation					
			2180	ACSL1	100000	hsa01100 Metabolic pathways					
						hsa01212 Fatty acid metabolism					
						hsa03320 PPAR signaling pathway					

Supplementary Table S7. Summary of biologic pathway annotations from KEGG database

						hsa04146 Peroxisome			
						hsa04920 Adipocytokine signaling pathway			
			643036	SLED1	100000	x			
F	SLC22A4,	****	553103	LOC553103	500	x			
5	OCTN1 *	18272893	6583	SLC22A4	500	hsa05231 Choline metabolism in cancer			
						hsa00062 Fatty acid elongation			
6	ELOVL2 *	rs9393903	54898	ELOVL2	500	hsa01040 Biosynthesis of unsaturated fatty acids			
						hsa01212 Fatty acid metabolism			
G		re2204052	5080		500	hsa01100 Metabolic pathways			
0	REV3L	183204953	5980	REV3L	500	hsa03460 Fanconi anemia pathway			
10	SCD *	rs603424	9033	PKD2L1	500	x			
						hsa00561 Glycerolipid metabolism			
10		ro 4754005	E 400		500	hsa01100 Metabolic pathways			
10	PNLIPRP2 rs4/51995		5406	PNLIPRP2	500	hsa04972 Pancreatic secretion			
						hsa04975 Fat digestion and absorption			
11	C11orf10	rs102275	746	TMEM258	500	x			
		rs174546,				hsa01040 Biosynthesis of unsaturated fatty acids			
11	FADS1	rs174547, rs174550, rs174570	3992	FADS1	500	hsa01212 Fatty acid metabolism			
		rs174546,				hsa00592 alpha-Linolenic acid metabolism			
11	EADSO	rs174547,	0415	EAD\$2	500	hsa01040 Biosynthesis of unsaturated fatty acids			
11	FAD32	rs174550, rs174570,	9415	FAD32	500	hsa01212 Fatty acid metabolism			
		rs174583				hsa03320 PPAR signaling pathway			
			4135	MAP6	100000	x			
			80168	MOGAT2	10000	hsa00561 Glycerolipid metabolism			
11	MOGAT2			MOGATZ	100000	hsa04975 Fat digestion and absorption			
	WOGATZ	13433314	283214	LOC283214	100000	x			
						84649		10000	hsa00561 Glycerolipid metabolism
			04043	DUAIZ	100000	hsa01100 Metabolic pathways			

						hsa04975 Fat digestion and absorption					
			7405	UVRAG	100000	x					
11	BUD13	rs10790162	84811	BUD13	500	x					
						hsa00360 Phenylalanine metabolism					
10	DA11*	ro1710206	5052	DALL	500	hsa00400 Phenylalanine, tyrosine and tryptophan biosynthesis					
12	РАП	1517 10300	5055	РАН	500	hsa01100 Metabolic pathways					
						hsa01230 Biosynthesis of amino acids					
14	PLEKHH1 *	rs7156144	161145	TMEM229B/ C14orf83	500	x					
			01527	SC001	100000	hsa00600 Sphingolipid metabolism					
14	SGPP1	rs7157785	01537	SGPPT	100000	hsa04071 Sphingolipid signaling pathway					
			23224	SYNE2	100000	x					
		rs1135999	rs1135999	rs1135999	rs1135999	rs1135999	rs1135999	23042	PDXDC1	500	x
16	NTAN1							rs1135999	rs1135999	rs1135999	102724985
			123803	NTAN1	500	x					
19	APOE	rs7412	348	APOE	500	hsa05010 Alzheimer's disease					
			100505515	LOC100505515	100000	x					
			101929486	LOC101929486	100000	x					
20	20 SPTLC3 *	rs364585				hsa00600 Sphingolipid metabolism					
			55304	SPTLC3	100000	hsa01100 Metabolic pathways					
						hsa04071 Sphingolipid signaling pathway					

 * as annotated by Illig et al 2010 2 and Shin et al. 2014 3

Metabolite trait	Gene	Nr. of common variants ^b	Nr. of rare variants ^b	p-value SKAT-C ^c	p-value burden-C ^c
PC aa C42:1/PC aa C42:0	GFRAL	6	0	1.54E-05	2.15E-06
PC ae C32:1/PC ae C32:2	PARP2	3	0	4.95E-06	4.00E-06
PC ae C34:2/PC ae C36:3	OCA2	4	0	8.06E-06	1.28E-06
PC ae C40:6	TMC5	4	0	1.80E-05	6.01E-06
PC ae C42:4/PC ae C44:4	OR10J1	3	1	4.91E-06	2.64E-06
SM (OH) C22:2/SM C24:0	GPR156	1	1	6.15E-06	6.15E-06
PC aa C36:3/PC aa C36:5	TDRD5	3	2	2.56E-04	1.36E-06
PC aa C36:3/PC aa C38:5	TDRD5	3	2	1.49E-03	6.20E-06
SM (OH) C22:2/SM C18:0	BIN1	2	0	7.98E-05	1.50E-06
PC aa C32:1/PC aa C34:1	ZBTB7C	2	0	2.78E-07	5.24E-05
PC aa C32:1	ZBTB7C	2	0	5.14E-06	1.36E-04
PC aa C32:1/ LysoPC a C18:1	ZBTB7C	2	0	2.31E-06	2.96E-04
SM (OH) C22:2/SM C16:1	TFRC	3	0	1.66E-06	7.53E-04

Supplementary Table S8. Suggestive gene-based associations with metabolite traits using SKAT and burden test in EPIC-Potsdam^a

^a only sub-cohort; analysis was adjusted for age and sex; ^b rare variants defined as MAF $\leq \frac{1}{\sqrt{2n}}$ ($\leq 0.015_{\text{EPIC-Potsdam}}$); ^c significance threshold was defined as P < 0.05/[number of genes with >1 variants (ranging from 7243 to 7332)]

						EPIC-Potsdam					KORA F4					pooled	
Metabolite trait	Gene	Chr	Exome chip name	SNP	N	Beta ^a (SE)	p- value _{GC}	CAF	Coded allele	N	Beta ^a (SE)	p-value	CAF	Coded allele	Beta ^a (SE)	p-value	
SM (OH) C22:2/ SM C18:0	BIN1	2	exm2254544	rs1060743	2202	0.0001 (0.0325)	0.9982	72.0%	A	2692	0.0021 (0.0276)	0.9385	70.0%	A	0.0013 (0.0210)	0.9522	
		2	exm2263907	rs755639	2202	-0.0263 (0.0305)	0.3897	40.9%	С	2692	-0.0227 (0.0256)	0.3757	41.2%	С	-0.0242 (0.0195)	0.2174	
SM (OH) C22:2/ SM C16:1	TFRC	3	exm376168	rs3817672	2201	0.0330 (0.0299)	0.2704	45.4%	с	2688	-0.0022 (0.0262)	0.9343	43.4%	С	0.0131 (0.0197)	0.5066	
		3	exm- rs11915082	rs11915082	2201	0.0264 (0.0302)	0.3822	61.1%	G	2688	-0.0047 (0.0262)	0.8588	59.0%	G	0.0087 (0.0198)	0.6619	
		3	exm- rs9859260	rs9859260	2201	0.0078 (0.0304)	0.7969	40.0%	С	2688	-0.0208 (0.0265)	0.4332	38.4%	С	-0.0085 (0.0200)	0.6722	
PC aa C42:1/ PC aa C42:0	GFRAL	6	exm2270477	rs1007968	2200	0.0263 (0.0300)	0.3858	54.2%	С	2691	-0.0395 (0.0266)	0.1381	54.2%	С	-0.0081 (0.0329)	0.8062	
		6	exm556728	rs12199003	2200	-0.0629 (0.0311)	0.0459	61.4%	С	2692	0.0147 (0.0275)	0.5939	60.5%	С	-0.0227 (0.0388)	0.5576	
		6	exm556737	rs147652095	2200	-0.0497 (0.1125)	0.6626	98.2%	G	2692	-0.0935 (0.0973)	0.3366	98.1%	G	-0.0748 (0.0736)	0.3097	
		6	exm556738	rs115053739	2200	-0.0497 (0.1125)	0.6626	98.2%	G	2692	-0.1046 (0.0982)	0.2866	98.1%	G	-0.0809 (0.0740)	0.2744	
		6	exm556756	rs146300118	2200	-0.0497 (0.1125)	0.6626	98.2%	A	2692	-0.1075 (0.0977)	0.2712	98.1%	А	-0.0826 (0.0738)	0.2625	
		6	exm556777	rs9370418	2200	0.0320 (0.0333)	0.3415	29.0%	т	2692	-0.0829 (0.0303)	0.0062	26.8%	Т	-0.0263 (0.0574)	0.6473	

Supplementary Table S9. Single SNP associations included within gene-based analyses in EPIC-Potsdam and KORA F4

CAF, coded allele frequency; GC, genomic control; SE, standard error ^a metabolite traits (µmol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, effect estimates are adjusted for age and sex

Supplementary Table S10. Suggestive gene-based associations including functional exome chip variants with metabolite traits using SKAT and burden test in EPIC-Potsdam^a

Metabolite trait	Gene	Nr. of common variants ^b	Nr. of rare variants ^b	p-value SKAT-C ^c	p-value burden-C ^c
[lle+ Leu]/Met	PCNXL3	1	1	3.14E-05	3.14E-05
Val/[lle+ Leu]	DNAH6	3	2	3.27E-04	1.35E-05
PC ae C36:2/PC aa C36:2	OCA2	2	0	1.64E-05	7.83E-05
PC aa C38:3/LysoPC a C20:3	COL11A2	2	0	4.75E-06	2.63E-07
PC aa C38:3/LysoPC a C18:1	COL11A2	2	0	4.45E-06	4.67E-07
PC aa C36:3/PC aa C38:5	DNAJC13	2	1	2.31E-05	9.60E-05
H1	OR51Q1	2	1	8.85E-06	9.62E-06

^a only sub-cohort; analysis was adjusted for age and sex; ^b rare variants defined as MAF $\leq \frac{1}{\sqrt{2n}}$ (≤ 0.015 _{EPIC-Potsdam});

^c significance threshold was defined as P < 0.05/[number of genes with >1 variants (ranging from 1449 to 1492)]

Functional variants were defined based on the Charge annotation list: column "sc_damaging".

Supplementary Table S11. Single SNP associations included within functional gene-based analyses in EPIC-Potsdam and KORA F4

						EPIC-Potsdam							pooled			
Metabolite trait	Gene	Chr	Exome chip name	SNP	N	Beta ^a (SE)	p- value	CAF	Coded allele	N	Beta ^a (SE)	p-value	CAF	Coded allele	Beta ^a (SE)	p-value
H1	OR51Q1	11	exm882803	rs151161477	2192	0.0819 (0.1329)	0.5389	98.79%	G	2676	0.0670 (0.1211)	0.5803	98.92%	G	0.0738 (0.0895)	0.4100
		11	exm882826	rs58283839	2192	-0.1609 (0.1214)	0.1864	98.43%	A	2676	-0.0781 (0.09381)	0.4054	98.21%	A	-0.1090 (0.0742)	0.1419
		11	exm882840	rs2647574	2192	-0.0097 (0.0308)	0.7526	61.13%	с	2676	0.0019 (0.0259)	0.9420	60.70%	G	-0.0029 (0.0198)	0.8823

CAF, coded allele frequency; GC, Genomic control; SE, standard error

^a metabolite traits (µmol/L) were In-transformed, outliers (>4 SD) were removed and metabolite traits were standardized, effect estimates are adjusted for age and sex

Supplementary Table S12. Exclusion of top variants from the gene-based analyses for genes (>2 variants) with metabolite traits using SKAT and burden test in EPIC-Potsdam^a

Metabolite trait	Gene	Chr	Top variant(s) ^b	p-value SKAT-C [°]	p-value burden-C ^c
SM (OH) C22:2/ SM C16:1	TFRC	3		1.66E-06	7.53E-04
			- rs3817672	2.29E-06	0.7711
PC aa C42:1/ PC aa C42:0	GFRAL	6		1.54E-05	2.15E-06
			- rs12199003	1.15E-05	8.89E-07
			- rs146300118	3.17E-05	2.54E-06
			- rs146300118 - rs115053739	0.0008	2.33E-05
			- rs146300118 - rs115053739 - rs147652095	0.1116	0.052
H1	OR51Q1	11		8.85E-06	9.62E-06
			- rs58283839	0.01	0.01

^a only sub-cohort; ^b excluded from setID file, selection was based on the pooled p-value from single SNP analyses (Supplementary Table S9, 11); ^c Original p-values in bold, analysis was adjusted for age and sex; Supplementary Table S13. Gene-based associations of identified genes with diabetes risk using SKAT and burden test in EPIC-Potsdam

Metabolite trait	Gene	Nr. of common variants ^a	Nr. of rare variants ^a	p-value SKAT-C ^a	p-value burden-C ^a
PC aa C42:1/PC aa C42:0	GFRAL	6	0	5.79E-01	8.38E-01
SM (OH) C22:2/SM C18:0	BIN1	2	0	7.86E-01	7.43E-01
SM (OH) C22:2/SM C16:1	TFRC	3	0	4.52E-01	1.32E-01
H1	OR51Q1	2	1	6.53E-01	9.83E-01

^a rare variants defined as MAF $\leq \frac{1}{\sqrt{2n}}$ (≤ 0.013 _{EPIC-Potsdam}); ^b significance threshold was defined as P < 0.05

Supplementar	y Table S14. Identified loci and their function in human metabolism
--------------	---

Locus	Entrez Gene ID*	Name*	Function*
PHGDH	26227	phosphoglycerate dehydrogenase	Enzyme which is involved in the early steps of L-serine synthesis in animal cells. L-serine is required for D-serine and other amino acid synthesis.
CPS1	1373	carbamoyl-phosphate synthase 1	The mitochondrial enzyme encoded by this gene catalyses synthesis of carbamoyl phosphate from ammonia and bicarbonate. This reaction is the first committed step of the urea cycle, which is important in the removal of excess urea from cells. The encoded protein may also represent a core mitochondrial nucleoid protein.
ACSL1	2180	acyl-CoA synthetase long-chain family member 1	The protein encoded by this gene is an isozyme of the long- chain fatty-acid-coenzyme A ligase family. Although differing in substrate specificity, subcellular localization, and tissue distribution, all isozymes of this family convert free long- chain fatty acids into fatty acyl-CoA esters, and thereby play a key role in lipid biosynthesis and fatty acid degradation.
SLC22A4, OCTN1	6583	solute carrier family 22 member 4	Protein is an organic cation transporter and plasma integral membrane protein containing eleven putative transmembrane domains as well as a nucleotide-binding site motif. Polyspecific organic cation transporters in the liver, kidney, intestine, and other organs are critical for elimination of many endogenous small organic cations as well as a wide array of drugs and environmental toxins.
ELOVL2	54898	ELOVL fatty acid elongase 2	ELOVL2 encodes for a transmembrane protein involved in the synthesis of long-chain polyunsaturated fatty acids (PUFA) [Leonard AE et al. Identification and expression of mammalian long-chain PUFA elongation enzymes. Lipids. 2002; 37(8): 733-40.]
REV3L	5980	REV3 like, DNA directed polymerase zeta catalytic subunit	Encodes the REV3L which is a specialized DNA polymerase essential for DNA damage-induced mutagenesis [Gibbs PE et al. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase zeta. Proc Natl Acad Sci U S A. 1998; 95(12): 6876-80.]

SCD 6319		stearoyl-CoA desaturase (delta- 9-desaturase)	This gene encodes an enzyme involved in fatty acid biosynthesis, primarily the synthesis of oleic acid. The protein belongs to the fatty acid desaturase family and is an integral membrane protein located in the endoplasmic reticulum.	
PNLIPRP2	5408	pancreatic lipase related protein 2	This gene encodes a lipase that hydrolyzes galactolipids, the main components of plant membrane lipids.	
FADS1	3992	fatty acid desaturase 1	The protein encoded by this gene is a member of the fatty	
FADS2	9415	fatty acid desaturase 2	regulate unsaturation of fatty acids through the introduction of double bonds between defined carbons of the fatty acyl chain.	
MOGAT2	80168	monoacylglycerol O- acyltransferase 2	The protein encoded by this gene is an enzyme that catalyses the synthesis of diacylglycerol from 2- monoacylglycerol and fatty acyl-CoA. The encoded protein i important in the uptake of dietary fat by the small intestine. This protein forms a complex with diacylglycerol O- acyltransferase 2 in the endoplasmic reticulum, and this complex catalyses the synthesis of triacylglycerol.	
РАН	5053	phenylalanine hydroxylase	PAH encodes the enzyme phenylalanine hydroxylase that is the rate-limiting step in phenylalanine catabolism. Deficiency of this enzyme activity results in the autosomal recessive disorder phenylketonuria.	
PLEKHH1	57475	pleckstrin homology, MyTH4 and FERM domain containing H1	NA	
SGPP1	81537 sphingosine-1-phosphate phosphatase 1		Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite that regulates diverse biologic processes. SGPP1 catalyses the degradation of S1P via salvage and recycling of sphingosine into long-chain ceramides	
NTAN1	123803 N-terminal asparagine amidase		The protein encoded by this gene functions in a step-wise process of protein degradation through the N-end rule pathway. This protein acts as a tertiary destabilizing enzyme that deamidates N-terminal L-Asn residues on proteins to produce N-terminal L-Asp. L-Asp substrates are subsequently conjugated to L-Arg, which is recognized by specific E3 ubiquitin ligases and targeted to the proteasome.	

APOE	348	apolipoprotein E	The protein encoded by this gene is a major apoprotein of the chylomicron. It binds to a specific liver and peripheral cell receptor, and is essential for the normal catabolism of triglyceride-rich lipoprotein constituents. Mutations in this gene result in familial dysbetalipoproteinemia, or type III hyperlipoproteinemia (HLP III), in which increased plasma cholesterol and triglycerides are the consequence of impaired clearance of chylomicron and VLDL remnants.
SPTLC3	55304	serine palmitoyltransferase long chain base subunit 3	The <i>SPTLC3</i> gene encodes an isoform of the third subunit of serine palmitoyltransferase (SPT; EC 2.3.1.50), which catalyses the rate-limiting step of the de novo synthesis of sphingolipids.

*According to the NCBI database if not otherwise stated ⁴

Sup	plementar	y Table	S15.	List	of selected	l candidate	SNPs
-----	-----------	---------	------	------	-------------	-------------	-------------

SNP	Locus	Chr	Position	Study	Proxy	r ²	D'
rs211718	ACADM	1	76106675	Illig et al. 2010 ²			
rs541503	PHGDH	1	120208297	Illig et al. 2010 ²			
rs2286963	ACADL	2	211060050	Illig et al. 2010 ²			
rs715	CPS1	2	211543055	Shin et al. 2014 ³			
rs8396	ETFDH	4	159630817	Illig et al. 2010 ²			
rs12641551	ACSL1	4	185767941	Illig et al. 2010 ²	*(rs2046813)	1	1
rs272893	SLC22A4, OCTN1	5	131663062	Illig et al. 2010 ²	*(rs272889)	1	1
rs329319	JADE2	5	133906609	Shin et al. 2014 ³			
rs9393903	ELOVL2	6	11042909	Illig et al. 2010 ²			
rs603424	SCD	10	102075479	Illig et al. 2010 ²			
rs174547	FADS1	11	61570783	Illig et al. 2010 ²			
rs2014355	ACADS	12	121175524	Illig et al. 2010 ²			
rs4761007	intergenic	12	127924890	Shin et al. 2014 ³			
rs1718306	PAH	12	103257308	Shin et al. 2014 ³			
rs7156144	PLEKHH1	14	67979713	Illig et al. 2010 ²			
rs11158519	SYNE2	14	64364585	Illig et al. 2010 ²			
rs10459872	C16orf46	16	81094951	Shin et al. 2014 ³	*(rs804895)	1	1
rs364585	SPTLC3	20	12962718	Illig et al. 2010 ²	*(rs168622)	1	1
rs11578	STX16	20	57253275	Shin et al. 2014 ³			

* indicates that in the present analysis a proxy SNP in LD of the originally reported GWAS hit (shown in parenthesis) was analyzed

Supplementary Table S16. List of selected metabolite traits (single metabolites, metabolite ratios and factors)

Abbreviation	Biochemical name
Single metabolites	
H1	Hexose
Gly	Glycine
Phe	Phenylalanine
SM C16:1	Sphingomyelin C 16:1
PC ae C34:3	Phosphatidylcholine acyl-alkyl C 34:3
PC ae C40:6	Phosphatidylcholine acyl-alkyl C 40:6
PC ae C42:5	Phosphatidylcholine acyl-alkyl C 42:5
PC ae C44:4	Phosphatidylcholine acyl-alkyl C 44:4
PC ae C44:5	Phosphatidylcholine acyl-alkyl C 44:5
PC aa C32:1	Phosphatidylcholine diacyl C 32:1
PC aa C36:1	Phosphatidylcholine diacyl C 36:1
PC aa C38:3	Phosphatidylcholine diacyl C 38:3
PC aa C40:5	Phosphatidylcholine diacyl C 40:5
LysoPC a C18:2	Lysophosphatidylcholine acyl C18:2
Factors	
Factor 1 = (0.80×PC ae C32:1) + (0.78×PC ae C32:2) + (0.70×PC ae C34:2) + (0.72×PC ae C34:3) + (0.71×PC ae C36:2) + (0.71×PC ae C36:3) + (0.85×PC ae C40:5) + (0.76×PC ae C40:6) + (0.82×PC ae C42:3) + (0.85×PC ae C42:4) + (0.87×PC ae C42:5) + (0.76×PC ae C44:4) + (0.78× PC ae C44:5) + (0.83×PC ae C44:6) + (0.82×PC aa C42:0) + (0.79×PC aa C42:1) + (0.54×SM C16:1) + (0.57× SM OH C22:2) + (0.41×lysoPC a C17:0)	Factors were derived based on standardized (mean=0; SD=1) single metabolites
Factor 2= (0.55×propionylcarnitine) +(0.66×phe) + (0.61× trp) + (0.66×tyr) + (0.68×val) + (0.66×[ile + leu]) + (0.59×PC aa C32:1) + (0.70×PC aa C36:1)+ (0.65×PC aa C36:3) + (0.76× PC aa C38:3) + (0.72×PC aa C40:4) + (0.71× PC aa C40:5) + (0.44×h1)	Factors were derived based on standardized (mean=0; SD=1) single metabolites
Ratios amino acids	
Val/[Ile+ Leu]	Valine/[Isoleucine + Leucine]
[lle + Leu]/Met	[Isoleucine + Leucine]/Methionine
Tyr/Met	Tyrosine/Methionine
Tyr/Trp	Tyrosine/Tryptophan

Trp/Gln	Tryptophan/Glutamine
Gly/Ser	Glycine/Serine
Ser/Phe	Serine/Phenylalanine
Phe/Arg	Phenylalanine/Arginine
Ratios Acylcarnitines	
C3/C0	Propionyl-L-carnitine/DL-Carnitine
Ratios MUFAs	
PC ae C32:1/PC ae C32:2	Phosphatidylcholine acyl-alkyl C 32:1/Phosphatidylcholine acyl-alkyl C 32:1
PC ae C34:1/PC ae C32:1	Phosphatidylcholine acyl-alkyl C 34:1/Phosphatidylcholine acyl-alkyl C 32:1
Ratios PUFAs (C34-C40)	
PC ae C34:2/PC ae C38:5	Phosphatidylcholine acyl-alkyl C 34:2/Phosphatidylcholine acyl-alkyl C 38:5
PC ae C34:2/PC ae C36:4	Phosphatidylcholine acyl-alkyl C 34:2/Phosphatidylcholine acyl-alkyl C 36:4
PC ae C34:2/PC ae C36:3	Phosphatidylcholine acyl-alkyl C 34:2/Phosphatidylcholine acyl-alkyl C 36:3
PC ae C36:3/PC ae C38:5	Phosphatidylcholine acyl-alkyl C 36:3/Phosphatidylcholine acyl-alkyl C 38:5
PC ae C36:3/PC ae C34:3	Phosphatidylcholine acyl-alkyl C 36:3/Phosphatidylcholine acyl-alkyl C 34:3
PC ae C34:3/PC ae C36:5	Phosphatidylcholine acyl-alkyl C 34:3/Phosphatidylcholine acyl-alkyl C 36:5
PC ae C40:6/PC ae C38:4	Phosphatidylcholine acyl-alkyl C 40:6/Phosphatidylcholine acyl-alkyl C 38:4
PC ae C40:6/PC aa C38:0	Phosphatidylcholine acyl-alkyl C 40:6/Phosphatidylcholine diacyl C 38:0
PC ae C40:6/PC aa C38:6	Phosphatidylcholine acyl-alkyl C 40:6/Phosphatidylcholine diacyl C 38:6
Ratios PUFAs (C40-C44)	
PC ae C42:4/PC ae C40:4	Phosphatidylcholine acyl-alkyl C 42:4/Phosphatidylcholine acyl-alkyl C 40:4
PC ae C42:4/PC ae C44:4	Phosphatidylcholine acyl-alkyl C 42:4/Phosphatidylcholine acyl-alkyl C 44:4
PC ae C44:4/PC ae C44:5	Phosphatidylcholine acyl-alkyl C 44:4/Phosphatidylcholine acyl-alkyl C 44:5
PC ae C44:5/PC ae C44:6	Phosphatidylcholine acyl-alkyl C 44:5/Phosphatidylcholine acyl-alkyl C 44:6
PC ae C44:5/PC ae C42:5	Phosphatidylcholine acyl-alkyl C 44:5/Phosphatidylcholine acyl-alkyl C 42:5
PC ae C44:6/PC aa C42:1	Phosphatidylcholine acyl-alkyl C 44:6/Phosphatidylcholine diacyl C 42:1
PC ae C44:6/PC aa C42:0	Phosphatidylcholine acyl-alkyl C 44:6/Phosphatidylcholine diacyl C 42:0
PC aa C32:1/PC aa C34:1	Phosphatidylcholine diacyl C 32:1/Phosphatidylcholine diacyl C 34:1
PC aa C42:1/PC aa C42:0	Phosphatidylcholine diacyl C 42:1/Phosphatidylcholine diacyl C 42:0
PC aa C42:0/PC ae C42:5	Phosphatidylcholine diacyl C 42:0/Phosphatidylcholine diacyl C 42:5

PC ae C42:5/PC ae C40:4	Phosphatidylcholine acyl-alkyl C 42:5/Phosphatidylcholine acyl-alkyl C 40:4
PC ae C40:5/PC ae C42:5	Phosphatidylcholine acyl-alkyl C 40:5/Phosphatidylcholine acyl-alkyl C 42:5
PC ae C40:5/PC aa C42:2	Phosphatidylcholine acyl-alkyl C 40:5/Phosphatidylcholine diacyl C 42:2
PC ae C40:5/PC ae C36:0	Phosphatidylcholine acyl-alkyl C 40:5/Phosphatidylcholine acyl-alkyl C 36:0
PC ae C42:3/PC ae C42:2	Phosphatidylcholine acyl-alkyl C 42:3/Phosphatidylcholine acyl-alkyl C 42:2
PC ae C42:3/PC ae C40:1	Phosphatidylcholine acyl-alkyl C 42:3/Phosphatidylcholine acyl-alkyl C 40:1
Ratios Sphingomyelins	
SM(OH)C22:2/SM(OH)C22:1	Hydroxysphingomyelin C 22:2/Hydroxysphingomyelin C 22:1
SM(OH)C22:2/SM C24:1	Hydroxysphingomyelin C 22:2/Sphingomyelin C 24:1
SM(OH)C22:2/SM C24:0	Hydroxysphingomyelin C 22:2/Sphingomyelin C 24:0
SM(OH)C22:2/PC ae C38:2	Hydroxysphingomyelin C 22:2/Phosphatidylcholine acyl-alkyl C 38:2
SM(OH)C22:2/SM C16:1	Hydroxysphingomyelin C 22:2/Sphingomyelin C 16:1
SM(OH)C22:2/SM C18:1	Hydroxysphingomyelin C 22:2/Sphingomyelin C 18:1
SM(OH)C22:2/SM(OH)C14:1	Hydroxysphingomyelin C 22:2/Hydroxysphingomyelin C 14:1
SM(OH)C22:2/SM C18:0	Hydroxysphingomyelin C 22:2/Sphingomyelin C 18:0
SM C16:1/SM C16:0	Sphingomyelin C 16:1/Sphingomyelin C 16:0
SM C16:1/SM C18:0	Sphingomyelin C 16:1/Sphingomyelin C 18:0
SM C16:1/SM C18:1	Sphingomyelin C 16:1/Sphingomyelin C 18:1
SM C16:1/PC aa C28:1	Sphingomyelin C 16:1/Phosphatidylcholine diacyl C 28:1
Ratios Diacyl-Phophatidylcholines/Lyso-Phosphatidylcholines	
PC aa C40:4/PC aa C42:6	Phosphatidylcholine diacyl C 40:4/Phosphatidylcholine diacyl C 42:6
PC aa C40:4/PC aa C40:5	Phosphatidylcholine diacyl C 40:4/Phosphatidylcholine diacyl C 40:5
PC aa C40:5/PC aa C42:5	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 42:5
PC aa C40:5/PC aa C38:6	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 38:6
PC aa C40:5/PC aa C40:6	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 40:6
PC aa C40:5/PC aa C36:5	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 36:5
PC aa C40:5/PC aa C36:3	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 36:3
PC aa C40:5/PC aa C38:5	Phosphatidylcholine diacyl C 40:5/Phosphatidylcholine diacyl C 38:5
PC aa C36:3/PC aa C36:5	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 36:5
PC aa C36:3/PC aa C34:3	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 34:3

PC aa C36:3/LysoPC a C18:1	Phosphatidylcholine diacyl C 36:3/Lysophosphatidylcholine acyl C18:1
PC aa C36:3/PC aa C36:4	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 36:4
PC aa C36:3/PC aa C38:4	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 38:4
PC aa C36:3/PC aa C38:3	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 38:3
PC aa C36:3/PC ae C38:3	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 38:3
PC aa C36:3/PC aa C38:5	Phosphatidylcholine diacyl C 36:3/Phosphatidylcholine diacyl C 38:5
PC aa C38:3/PC aa C36:5	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine diacyl C 36:5
PC aa C38:3/PC aa C38:4	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine diacyl C 38:4
PC aa C38:3/LysoPC a C20:3	Phosphatidylcholine diacyl C 38:3/Lysophosphatidylcholine acyl C20:3
PC aa C38:3/PC aa C36:4	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine diacyl C 36:4
PC aa C38:3/LysoPC a C18:1	Phosphatidylcholine diacyl C 38:3/Lysophosphatidylcholine acyl C18:1
PC aa C38:3/PC ae C36:2	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine acyl-alkyl C 36:2
PC aa C38:3/PC ae C38:3	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine acyl-alkyl C 38:3
PC aa C38:3/PC aa C38:5	Phosphatidylcholine diacyl C 38:3/Phosphatidylcholine diacyl C 38:5
PC ae C36:2/PC aa C32:2	Phosphatidylcholine acyl-alkyl C 36:2/Phosphatidylcholine diacyl C 32:2
PC ae C36:2/PC aa C36:2	Phosphatidylcholine acyl-alkyl C 36:2/Phosphatidylcholine diacyl C 36:2
PC ae C36:2/PC ae C36:1	Phosphatidylcholine acyl-alkyl C 36:2/Phosphatidylcholine acyl-alkyl C 36:1
PC ae C36:2/LysoPC a C17:0	Phosphatidylcholine acyl-alkyl C 36:2/Lysophosphatidylcholine acyl C17:0
PC aa C36:1/LysoPC a C18:1	Phosphatidylcholine diacyl C 36:1/Lysophosphatidylcholine acyl C18:1
PC aa C36:1/PC aa C36:2	Phosphatidylcholine diacyl C 36:1/Phosphatidylcholine diacyl C 36:2
PC aa C36:1/PC aa C34:2	Phosphatidylcholine diacyl C 36:1/Phosphatidylcholine diacyl C 34:2
PC aa C36:1/PC aa C34:1	Phosphatidylcholine diacyl C 36:1/Phosphatidylcholine diacyl C 34:1
PC aa C32:1/LysoPC a C16:1	Phosphatidylcholine diacyl C 32:1/Lysophosphatidylcholine acyl C16:1
PC aa C32:1/LysoPC a C18:1	Phosphatidylcholine diacyl C 32:1/Lysophosphatidylcholine acyl C18:1
PC aa C32:1/PC aa C32:2	Phosphatidylcholine diacyl C 32:1/Phosphatidylcholine diacyl C 32:2
LysoPC a C17:0/LysoPC a C18:0	Lysophosphatidylcholine acyl C17:0/Lysophosphatidylcholine acyl C18:0
LysoPC a C17:0/LysoPC a C16:0	Lysophosphatidylcholine acyl C17:0/Lysophosphatidylcholine acyl C16:0
LysoPC a C18:2/LysoPC a C20:4	Lysophosphatidylcholine acyl C18:2/Lysophosphatidylcholine acyl C20:4
LysoPC a C18:2/LysoPC a C18:0	Lysophosphatidylcholine acyl C18:2/Lysophosphatidylcholine acyl C18:0
LysoPC a C18:2/PC aa C36:2	Lysophosphatidylcholine acyl C18:2/Phosphatidylcholine diacyl C 36:2

LysoPC a C18:2/LysoPC a C18:1	Lysophosphatidylcholine acyl C18:2/Lysophosphatidylcholine acyl C18:1
LysoPC a C20:3/LysoPC a C18:2	Lysophosphatidylcholine acyl C20:3/Lysophosphatidylcholine acyl C18:2

References

- 1 Kircher, M. *et al.* A general framework for estimating the relative pathogenicity of human genetic variants. *Nature Genetics* **46**, 310-315, doi:10.1038/ng.2892 (2014).
- 2 Illig, T. *et al.* A genome-wide perspective of genetic variation in human metabolism. *Nature Genetics* **42**, 137-141, doi:10.1038/ng.507 (2010).
- 3 Shin, S.-Y. *et al.* An atlas of genetic influences on human blood metabolites. *Nature Genetics* **46**, 543-550, doi:10.1038/ng.2982 (2014).
- 4 Entrez Gene, National Center for Biotechnology Information, National Library of Medicine (US), Bethesda (MD), <<u>http://www.ncbi.nlm.nih.gov/gene</u>> (25.07.2016).