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SUMMARY 

Monocytes are circulating, short-lived mononuclear phagocytes, which in mice and 

man comprise two main subpopulations. Murine Ly6C+ monocytes display 

developmental plasticity and are recruited to complement tissue-resident 

macrophages and dendritic cells on demand. Murine vascular Ly6C- monocytes 

patrol the endothelium, act as scavengers and support vessel wall repair. Here we 

characterized population and single cell transcriptomes, as well as enhancer and 

promoter landscapes of the murine monocyte compartment. Single cell RNA-seq and 

transplantation experiments confirmed homeostatic default differentiation of Ly6C+ 

into Ly6C- monocytes. The main two subsets were homogenous, but linked by a 

more heterogeneous differentiation intermediate. We show that intravascular 

monocyte differentiation occurred through de novo enhancer establishment and 

activation of pre-established (poised) enhancers. Generation of Ly6C- monocytes 

involved induction of the transcription factor C/EBPβ and C/EBPβ-deficient mice 

lacked Ly6C- monocytes. Mechanistically, C/EBPβ bound the Nr4a1 promoter and 

controlled expression of this established monocyte survival factor.  
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INTRODUCTION 
Monocytes are circulating, short-lived cells that are, together with tissue resident 

macrophages and dendritic cells (DC), classified as mononuclear phagocytes 

(Ginhoux and Jung, 2014). Adult steady state monopoiesis occurs in bone marrow 

(BM), where monocytes arise in a developmental sequence from dedicated precursor 

cells. Specifically, monocyte-macrophage DC progenitors (MDP) (Fogg et al., 2006) 

give rise to common monocyte progenitors (cMoP) committed to monocyte 

generation (Hettinger et al., 2013). Two main CD14+CD16- and CD14int CD16+ 

monocyte populations have been identified in human blood (Passlick et al., 1989). 

Corresponding subsets in mice are defined as CX3CR1int CCR2+ CD62L+ CD43low 

Ly6Chi  (Ly6C+) and CX3CR1hi CCR2- CD62L- CD43hi Ly6Clo (Ly6C-) cells (Geissmann 

et al., 2003; Palframan et al., 2001; Sunderkötter et al., 2004).  

 Ly6C+ monocytes arise in the BM, where they represent the majority of 

monocytes (~90%). Once in the blood, Ly6C+ monocytes are characterized by a high 

degree of developmental plasticity. Specifically, these cells sense injury and 

extravasate into tissues, where their descendants have emerged as a highly plastic 

cellular system that complements the classical tissue-resident mononuclear 

phagocyte populations, i.e. macrophages and DC (Mildner et al., 2013). Also during 

homeostasis, Ly6C+ monocytes contribute to macrophage compartments of selected 

tissues (Varol et al., 2007; Molawi et al., 2014; Bain et al., 2016; Kim et al., 2016). 

The latter is likely related to environmental or physiological challenges of these 

organs and can vary among genders and mouse strains. Ly6C- monocytes are 

considered to remain in the vasculature. A fraction of these cells patrols the vessel 

walls, acting as scavengers and orchestrating tissue repair (Auffray et al., 2007; 

Carlin et al., 2013).  

 Circulating Ly6C+ monocytes give rise to Ly6C- monocytes, as shown for mice 

and primates by sequential BrdU incorporation of the subset (Sugimoto et al., 2015; 

Yona et al., 2013), re-population kinetics following depletion regimes (Sunderkötter et 

al., 2004), and direct adoptive transfer of Ly6C+ monocytes (Varol et al., 2007; Yona 

et al., 2013). Furthermore, following monocyte precursor engraftment, Ly6C- cells 

arise with delay compared to Ly6C+ monocytes (Varol et al., 2007; Hettinger et al., 

2013).  

Development of both blood monocyte subsets depends on the 'pioneer' or lineage 

determining transcription factor PU.1 (encoded by Spi1; Scott et al., 1994). Mutations 
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of Ccr2 (Serbina and Pamer, 2006), Irf8 (Kurotaki et al., 2013) and Klf4 (Alder et al., 

2008; Feinberg et al., 2007) preferentially affect Ly6C+ monocytes, while Nr4a1 

(Nur77) deficiency affects Ly6C- monocytes (Hanna et al., 2011). However, fate 

mapping experiments have shown that absence of Ly6C+ monocytes can trigger a 

compensatory half-life extension of Ly6C- cells, and thereby mask the impairment of 

the Ly6C- compartment in mutants (Yona et al., 2013). Thus, deficiencies, including 

Irf8, Klf4 and CCR2, generally affect both monocyte subsets (Alder et al., 2008; 

Kurotaki et al., 2013; Yona et al., 2013). Likewise, also Nr4a1-deficient Ly6C+ 

monocytes fail to compete with their wild type counterpart in mixed BM chimeric mice 

(Hanna et al., 2011).  

 Here we have systematically characterized the murine circulating monocyte 

subsets, including population-level and massively parallel single cell RNA 

sequencing (MARS-seq (Jaitin et al., 2014)), a global analysis of accessible 

chromatin regions (ATAC-Seq) and indexed chromatin immuno-precipitation (iChIP) 

to define epigenetic landscapes. We show that steady state differentiation of Ly6C+ 

monocytes into Ly6C- cells ensued rapid transcriptomic changes accompanied by 

prevalent de novo gain of enhancer activity with only minor promoter changes. 

Including data from grafted Ly6C+ monocytes, our results support and extend 

previous reports showing developmental progression from Ly6C+ monocytes to Ly6C- 

cells. Mechanistically, we identified the induction of CCAAT-enhancer-binding protein 

beta (C/EBPβ) as part of the Ly6C- differentiation program, activating the monocyte 

survival factor Nr4a1, and show that C/EBPβ-deficiency impaired the generation of 

circulating Ly6C- monocytes. 

 

RESULTS 
Molecular characterization of murine monocytes and their progenitors. To map 

molecular determinants guiding monocyte development (Fig. 1A), we isolated MDP, 

cMoP, BM Ly6C+ and Ly6C- monocytes, as well as the three phenotypically distinct 

Ly6C+, Ly6Cint and Ly6C- blood monocyte populations from adult C57BL/6 mice (Fig. 
1B) and performed a transcriptome analysis.  
 Comparative analysis of the populations revealed disparate regulation of 6064 

genes (> two-fold differences in any pairwise comparison among a total of 15733 

genes; Fig. 1C, D and Fig. S1A). A cluster defined by MDP (cluster I) was 

characterized by genes associated with a progenitor phenotype, including Hoxa7, 
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Cd34 and Flt3 (Fig. 1C, D). Cluster II comprised genes co-expressed by MDP and 

cMoP, including Kit, S1pr3, Myc and Myb (Fig. 1C, D). Genes, such as Cdk2, Cdk4 

and members of the Mcm gene family indicated overrepresentation of the cell cycle 

pathway (p = 3.5e-18, Fig. S1B). An even stronger enrichment of cell cycle genes was 

found in cluster III (p = 1.6e-57, Fig. S1B) defined by high expression in cMoP and 

BM Ly6C+ monocytes, indicating that at least a fraction of BM Ly6C+ monocytes 

retained proliferative capacity, as reported earlier (Hettinger et al., 2013). Also 

classical Ly6C+ monocyte genes like Ly6c2 and Sell (CD62L) belonged to this cluster. 

Genes shared by Ly6C+ monocytes in BM and blood were represented in cluster IV 

(694 genes), enriched for genes involved in response to viruses (p = 2.7e-5, Fig. 
S1B) and comprising Ccr2, Mmp8 and Lgals3, as well as the transcription factors 

Cebpa, Fos and Cebpd (Fig. 1D, Fig. S1B). Genes that showed a gradual increase 

of expression from Ly6C+ to Ly6C- monocytes (including BM Ly6C- cells), formed 

cluster V, comprising Cebpb, Klf2 and Itgal and genes involved in inflammatory 

pathways (Fig. S1B). Cluster VI included genes strongly up-regulated from Ly6C+ to 

Ly6C- monocytes, such as Pparg, Itgax (CD11c) and Nr4a1. Therefore, Cebpb 

transcripts were already detectable in Ly6C+ BM monocytes, whereas Nr4a1 

expression was induced in Ly6C+ blood monocytes and increased in Ly6C- cells (Fig. 
1D). Notably and supporting the notion that Ly6C- monocytes represent intra-

vascular macrophages (Ginhoux and Jung, 2014), cluster VI also comprised genes 

characteristic of tissue resident macrophages, such as Apoe and Cd36.  
 Murine blood harbours, in addition to Ly6C+ and Ly6C- populations, monocytes 

that display intermediate Ly6C and were interpreted as monocyte differentiation 

intermediates. The population-based analysis did not reveal a specific gene module 

unique to Ly6Cint monocytes; rather, these cells displayed an intermediate profile, 

sharing signatures with both Ly6C+ and Ly6C- monocytes (Fig. 1D). Similar results 

were obtained with an independent data set, even though some differences between 

the experiments were evident, indicating the sensitivity of monocytes towards small 

environmental differences (Fig. S2).  

 
Transferred BM Ly6C+ monocytes adopt a transcriptional profile comparable to 
Ly6C- monocytes. The substantial expression changes between Ly6C+ and Ly6C- 

monocytes suggested that linear progression of these cells (Sunderkötter et al., 

2004; Varol et al., 2007; Yona et al., 2013) was driven by transcriptomic changes. 
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Transferred Ly6C+ monocytes isolated from BM or spleen lose Ly6C expression and 

gain CX3CR1, rendering them phenotypically indistinguishable from Ly6C- monocytes 

(Varol et al., 2007; Yona et al., 2013); however the molecular relationship of grafted 

monocytes and their derivatives to host monocyte populations had not been 

investigated. 
To probe whether converted monocytes reflected the molecular changes seen 

in endogenous Ly6C- monocytes, we isolated CD117- CD11b+ CD115+ Ly6C+ BM 

monocytes from CD45.1 congenic mice and transferred them into the bloodstream of 

CD45.2 WT animals (Fig. 2A). Cells were retrieved from recipient blood 24h, 36h 

and 48h after transfer, sorted based on their CD45.1, CD11b and CD115 expression 

and subjected to comprehensive transcriptional analysis (n=2 per time point, Fig. 2B). 

During this time, transferred monocytes gradually lost the Ly6C surface marker (Fig. 
2B). Host Ly6C+, Ly6Cint and Ly6C- blood monocyte populations were isolated 

alongside to control for potential injection-related side effects. In parallel, graft-

derived cells were also retrieved from recipient spleens (Fig. S3). 

 Transcriptional profiling of monocyte samples revealed many genes to be 

differentially regulated in any pairwise comparison (1677 genes, Fig. 2C, Fig. S4A). 

We identified a cluster of genes specific for the Ly6C+ BM monocyte graft (cluster I) 

(Fig. 2C, D). Importantly, genes of the 'Ly6C+ monocyte gene signature' (including 

Ccr2, Lyz2, Sell and Irf4) were all down-regulated upon transfer, independently of the 

time point of retrieval (cluster II, III). Of note, Ly6C protein abundance persisted 

despite Ly6c2 mRNA reduction in transferred cells 24h after transfer (Fig. 2B,D). 

Cluster V and VI on the other hand, comprised genes gradually up-regulated in 

transferred cells and shared with host Ly6C- monocytes. This included members of 

the 'Ly6C- gene signature', such as Cx3cr1, Itgax, Bcl2, Pparg, Cd36, as well as 

Cebpb and Nr4a1. Also genes associated with MHCII expression, such as Cd74, H2-
ab1 and H2-eb1 were part of this cluster and higher expressed in cells re-isolated 

24h after transfer compared to other time points. Cd209a was however absent from 

transferred cells (Fig. 2D). Genes highly expressed in Ly6C- host monocytes, but 

less prominent in grafted cells retrieved at 48h, grouped in cluster VII. Clusters IV 

and VIII comprised genes up-regulated shortly after monocyte transfer, which may be 

related to the ex vivo manipulation of the monocytes and transfer-associated stress.  

 To evaluate the relationship between grafted monocytes and their host 

counterparts, we compared expression of the 48h time point (without BM-specific 



Mildner et al  

 7 

genes; cluster II-VIII) to the transcriptomes of host Ly6C+, Ly6Cint and Ly6C- cells, 

respectively (Fig. 2E). Global correlation of gene expression of the transferred cells 

versus Ly6C+ host cells was only moderate (r =0.51), while the correlation to Ly6Cint 

(r = 0.81) and Ly6C- (r = 0.85) host monocytes was higher (Fig. 2E), demonstrating 

their conversion. In contrast, the earlier 24h time point showed a higher correlation 

towards the Ly6Cint than Ly6C- monocyte phenotype (r = 0.79 vs. r = 0.69; Fig. S4B) 

 Collectively, our data demonstrate that as a population, 24h after transfer 

grafted Ly6C+ monocytes in blood and spleen adopt a molecular signature that 

overlaps with Ly6Cint host cells and shifts 48h after transfer towards a Ly6C- 

monocyte profile. 

 

Single cell RNA-Seq analysis reveals homogeneity of Ly6C+ and Ly6C-, but 
heterogeneity of Ly6Cint blood monocytes. 
The transcriptional profiles described above were obtained from populations of sorted 

cells according to a limited number of canonical markers and bulk gene expression 

signatures may represent heterogeneous subsets with various dynamics (Paul et al., 

2015). Although engrafted Ly6C+ monocytes can acquire a phenotype and 

expression signature similar to Ly6C- host monocytes, remaining differences could 

indicate that Ly6C- monocytes represent a heterogeneous population of potentially 

distinct origins. To test this possibility, we performed MARS-seq (Jaitin et al., 2014; 

Paul et al., 2015) of Lin- CD11b+ CD115+ monocytes (1,098 cells) isolated from blood 

of adult C57BL/6 mice. For better resolution of intermediate monocytes we 

complemented this analysis with additional 365 Lin- CD11b+ CD115+ Ly6Cint 

monocytes (Fig. S5A-C). 
 Using indexed flow cytometry sorting followed by MARS-seq, we could relate 

expression profiles of individual cells to respective mean fluorescence intensities 

(MFI) of Ly6C and CD62L. De novo clustering analysis separated cells into 4 

transcriptionally distinct subgroups, corresponding to Ly6C+ and Ly6C- groups and 

two intermediate states (Fig. 3A, Suppl. Tab. 1). Expression analysis identified 477 

differentially expressed genes (q < 1e-3, chi-square test), revealing heterogeneity 

within Ly6Cint monocytes. Cluster I corresponded to 224 cells with high Ly6C and 

CD62L MFI (Fig. 3B). Cluster II (148 cells) and cluster III (271 cells) comprised 

monocytes with intermediate surface Ly6C and CD62L expression. Cluster IV (820 

cells) included cells with low Ly6C and low CD62L MFI. In line, the Lin- CD11b+ 
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CD115+ Ly6Cint monocyte subset was enriched for cells from clusters II and III (Fig 
S5C). 

Focussing on gene expression, we could relate the gene program of Ly6C+ 

monocytes (including Lyz1-2, Ccr2, Ly6c2, Mpeg1, Sell and Irf8) to cluster I cells (Fig. 
3C, Fig. S5D). Monocytes within cluster II, characterized by intermediate surface 

display of Ly6C and CD62L, showed specific expression of MHCII-related genes 

(Cd74, H2-aa, Ciita) and expressed Ccr2, as well as Cd209a (Fig. S5E). While our 

data closely link these cells to the Ly6Cint subset, they might be related to a recently 

reported monocyte subset biased to generate DC-like cells (Menezes et al., 2016). 

Surface MHCII expression by 50% of the Ly6Cint monocytes was further validated by 

flow cytometry analysis (Fig. S5F). Cluster III monocytes did not display a specific 

expression signature, but showed intermediate expression of Cebpb, Nr4a1, Ccr2, as 

well as MHCII-related genes. The 'Ly6C- gene program', which included Nr4a1, 

Cebpb, Cd36, Pparg, Itgax and Itgal, was most evident in cluster IV monocytes (Fig. 
3C).  

 To illustrate developmental relationship between the monocytes, we next used 

diffusion maps to project each single cell to a location in two-dimensional space 

(Haghverdi et al., 2015). All four clusters were separated territorially in the projected 

map (Fig. 3D-E). To further visualize expression patterns across the single cell data, 

we overlaid gene expression on the dimensionality reduction space. Sell and Ly6c2 

were found restricted to Ly6C+ monocytes in cluster I, while Lyz2 and Ccr2 

expression was also shared by cluster II cells (Fig. 3F). Cluster II also specifically 

expressed Cd209a, MHCII-related genes, such as H2-aa, while Cd36 was absent. 

Cluster III represented an intermediate subset that linked cluster I with cluster IV, i.e. 

Ly6C+ and Ly6C- monocytes, characterized by induction of Itgal, Cebpb and Cd36 
expression. Expression of these genes peaked in cluster IV, and was accompanied 

by Nr4a1 expression (Fig. 3F). 

 To investigate whether cluster II and III monocytes represent ontogenetically 

separate populations or related developmental stages, we analysed MARS-seq data 

of Lin- CD11b+ CD115+ blood monocytes derived from Cx3cr1cre:R26-YFP animals. 

Due to the time-dependent probability of Cre-mediated genome editing of the R26-

YFP locus of each individual cell, only few Ly6C+ monocytes express YFP in these 

mice, while all Ly6C- monocytes are YFP+ (Yona et al., 2013). YFP expression can 

hence serve as a temporal indication of monocyte lifespan. Projecting these newly 
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sorted cells on our clusters (Fig. 3A, Figs. S5G-H), we identified the four clusters in 

Cx3cr1cre:R26-YFP monocytes and related them to their YFP expression. In line, only 

5,7% of the Ly6C+ monocytes expressed YFP, whereas almost all (93,7%) of the 

Ly6C- were YFP positive (Fig. 3G). In contrast, half of the cells in clusters II and III 

expressed YFP (44,4% and 42,9% respectively), indicating that both stages are 

intermediate to the short-lived Ly6C+ cells and the longer-lived Ly6C- monocytes. 

 Collectively, single cell RNA-Seq analysis established that Ly6C+ and Ly6C- 

monocytes represent in steady state homogeneous populations, but reveal a certain 

degree of heterogeneity in the Ly6Cint monocyte compartment.  

 
Chromatin analysis reveals gain of enhancer activity in Ly6C- monocytes with 
only minor promoter changes. Steady state conversion of short-lived Ly6C+ into 

Ly6C- blood monocytes provides a unique model to study contributions of epigenetic 

changes in a rapid, physiologically relevant differentiation process. To investigate the 

epigenetic landscapes of murine Ly6C+, Ly6Cint and Ly6C- blood monocytes, we 

profiled four histone modifications by indexing-first chromatin IP (iChiP) (H3K4me1, 

H3K4me2, H3K4me3, and H3K27ac; (Lara-Astiaso et al., 2014)) and performed an 

chromatin accessibility assay (transposase-accessible chromatin; ATAC-seq) 

(Buenrostro et al., 2013). 
 Histone modifications inform on the activity state of cis-acting genomic 

regulatory elements. Specifically, promoters are identified according to proximity to 

transcription start sites (TSS) and tri-methylation of lysine 4 on the histone H3 N-

terminal tail (H3K4me3), while enhancers are defined by their distance from the TSS 

(>1kb) and enrichment of H3K4me1 and H3K4me2 marks (Heintzman et al., 2007). 

Enhancers can be further classified into 'poised' (H3K4me1+) and active (H3K4me1+, 

H3K27ac+) (Creyghton et al., 2010).  

 Analysis of total H3K4me3 peaks (peak center <1kb from TSS) in the main 

monocyte subsets identified 9,635 promoters, 35 of which were differently used 

between Ly6C+ and Ly6C- monocytes (Fig. 4A). This represents 0.36% differentially 

regulated H3K4me3 marks, whereas transcriptonal changes among the monocytes 

reached 8.4% (Fig. 4B). Of the altered H3K4me3-characterized promoters, seven 

showed loss during Ly6C+ to Ly6C- differentiation, including Sell, Clec5 and Ly6c2 

(Fig. 4A,C). 19 promoters were established de novo in Ly6C- monocytes, including 

Bcl2a1b, Pparg, Cd36 and Il1b, while 8 promoters displayed an increased H3K4me3 
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signal in Ly6C- monocytes (Fig. 4A,C; Suppl. Tab. 2). 

Analysis of distal H3K4me2 marks in the monocyte populations identified a 

total of 19,975 enhancers, 654 (3.3%) of which presented dynamic behavior. During 

the Ly6C+ to Ly6C- differentiation, 35 enhancers lost marks (28 genes, 

e.g. Ly6c2, Ccr1) and 120 enhancers decreased their H3K4me2 signal (94 genes, 

e.g. Ccr2, Sell) this included one of the Nr4a1 enhancers (Fig. 4C). Differentiation of 

Ly6C+ to Ly6C- monocytes involved de novo mark acquisition of 181 enhancers, 

located in the vicinity of 129 genes, such as Bcl2a1b, Klf4, Cd300e and Pparg; 
additionally, 318 enhancers (211 genes, e.g. Mir146, Sell, Nr4a1, Cd36) increased 

their H3K4me2 signal during the Ly6C+ to Ly6C- monocyte conversion (Fig. 4A,C; 
Suppl. Tab. 2). To confirm these results we characterized the distal 

H3K4me1+ signal during the Ly6C+ to Ly6C- conversion. H3K4me1 signal dynamics 

in enhancers followed a pattern similar to H3K4me2 (Fig. 4A and Fig. S6B), 

corroborating that Ly6C+ to Ly6C- monocyte conversion involves de novo enhancer 

generation, rather than enhancer decommission, i.e. me1 and me2 de-methylation.  

Finally, prominent changes were evident in histone acetylation, with 77 regions 

(60 genes) displaying reduced H3K27ac modification and 563 regions (313 genes) 

gaining acetylation during monocyte differentiation. This was consistent with the high 

number of de novo enhancers generated during the conversion.  

Importantly, Ly6Cint monocytes were characterized by an overlapping 

phenotype and shared histone modification patterns with Ly6C+ as well as Ly6C- 

monocytes, but lacked unique regulatory elements (Fig. 4D). Collectively, this 

revealed a specific and prevalent gain of enhancer activity in Ly6C- monocytes with 

only minor H3K4me3-marked promoter changes. 

To define open chromatin regions and identify transcription factor binding 

motifs enriched for the specific monocyte populations, we applied ATAC-seq 

(Buenrostro et al., 2013) to circulating Ly6C+, Ly6Cint and Ly6C- cells. Correlated 

replicates (Fig. S6A) allowed detection of 40,572 total accessible regions in all 

monocytes populations. Classical monocyte genes, such as Cx3cr1, Nr4a1 and Itgax, 

showed an highly overlapping open chromatin pattern in all 3 populations, even 

though small subset-specific peak changes were evident - for instance in the Nr4a1 

and Itgax loci (Fig. S6C). Global quantification of differential ATAC peaks between 

Ly6C+ and Ly6C- monocytes revealed 423 peaks (corresponding to 350 genes) that 

displayed a >2 fold enrichment in Ly6C+ monocytes and 866 peaks (corresponding to 
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692 genes) that were increased in Ly6C- monocytes (Fig. 4E).  

 To identify potential transcription factors responsible for transcriptome and 

epigenome regulation during monocyte conversion, we examined the ATAC data for 

enrichment for transcription factor binding motifs within the differential accessible 

regions (Lara-Astiaso et al., 2014; Lavin et al., 2014). We identified both known and 

previously unknown candidate regulators, including Spi1 (Pu.1), Fosl2, Cebp and 

SpiC motifs enriched in Ly6C+ monocytes and Nr4a1, Spi1, Cebp, Runx2 and Klf 

motifs enriched in Ly6C- monocytes (Fig. 4F). 

 We next compared the predicted motif enrichment in monocyte subsets with 

the transcription factor expression in these cells (Fig. 4G, Fig. S6D). Spi1, Klf2, Klf4 

and Nr4a1 were prominently expressed in monocytes and increased with acquisition 

of the Ly6C- phenotype, confirming the requirement of these transcription factors for 

monocyte differentiation (Feinberg et al., 2007; Hanna et al., 2011; Scott et al., 1994). 

Notably, RNA-Seq analysis further revealed distinction within certain transcription 

factor families, such as the one comprising various members of the C/EBP family, 

which bind similar motifs and are therefore not resolved by chromatin footprint 

analysis. Within the C/EBP family, Cebpb �was the most prominently expressed gene, 

correlating well with the predicted transcription factor motif analysis. Generally, 

monocyte conversion was associated with a shift from C/EBPα and δ to 

C/EBPβ�prevalence (Fig. 4G).   

 

Ly6C- monocytes are dependent on the transcription factor C/EBPE.  
Monocyte conversion was associated with prominent alterations within the C/EBP 

transcription factor family (Fig. 4G). Specifically, up-regulation of Cebpb in Ly6C- 

monocytes compared to Ly6C+ cells, as well as after monocyte transfer suggested a 

role of C/EBPβ in late monocyte development (Fig. 1C and Fig. 2D). Indeed, 

monocytes were reported to be affected in C/EBPβ-deficient animals (Tamura et al., 

2015), although it had not been addressed whether the effect was cell-intrinsic or 

restricted to a specific subset. 
 Analysis of peripheral blood of C/EBPβ-deficient mice and littermate controls 

revealed that Ly6C+ monocytes were present in comparable frequency in both mouse 

strains, Ly6Cint monocytes showed a 50% reduction but Ly6C- blood monocytes were 

absent (Fig. 5A). Also BM Ly6C- monocytes were strongly reduced, while monocytic 

precursors, such as MDP, cMOP or BM Ly6C+ monocytes were present at similar 
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frequencies in mutants and controls (Fig. 5B). To investigate, if the monocyte 

impairment of Cebpb-/- mice resulted from a cell-intrinsic defect, we performed a 

competitive repopulation assay, in which Cebpb-/- BM was mixed 1:1 with WT 

littermate BM and transplanted into lethally irradiated WT recipients. Analysis of the 

resulting chimeras 8 weeks after engraftment revealed that both genotypes 

contributed equally to MDP and cMoP (Fig. 5C). C/EBPβ-deficient BM cells had a 

disadvantage in generating Ly6C+ and Ly6Cint monocytes in BM and blood. Moreover, 

Ly6C- monocytes were almost entirely derived from WT BM cells with hardly any 

C/EBPβ-deficient Ly6C- monocytes detectable (ratio 95 +/- 33; Fig. 5C). These data 

establish the direct cell-intrinsic requirement of C/EBPβ for the generation or survival 

of Ly6C- monocytes.  

 Encoded by an intron-less gene, C/EBPβ is expressed in distinct isoforms with 

different biological functions (Smink et al., 2009). A short, N-terminally truncated 

protein, the liver-enriched transcriptional inhibitory protein (LIP), lacks the 

transactivation domain and acts mainly as a dominant-negative C/EBPβ isoform 

(Descombes and Schibler, 1991). As compared to a C/EBPβ WT control (CoKi; 

C/EBPβ cDNA inserted into the cebpb locus) (Wethmar et al., 2010), expression of 

the C/EBPβ LIP isoform (Bégay et al., 2015) failed to rescue the developmental 

defect of Ly6C- monocytes observed in Cebpb-/- mice (Fig. 5D). Moreover, LIP 

animals displayed a strong reduction in all monocyte subsets (Fig. 5D). The 

dominant effect of this physiological C/EBP inhibitor corroborates the importance of 

C/EBP transcription factor for monocyte differentiation and the requirement for proper 

C/EBP isoform balance.  

 To further dissect the impairment of the Ly6C- monocyte compartment by the 

C/EBPβ deficiency, we isolated monocytes of Cebpb-/- mice and control littermates 

and performed RNA-Seq on these samples (Fig. 5E). Clustering of differentially 

expressed genes revealed that the 'Ly6C- monocyte gene signature' was down-

regulated in C/EBPβ-deficient Ly6Cint cells indicating a developmental block of the 

'Ly6C- gene program' (Fig. 5E). Respective gene clusters (I, II) included Cebpb, 

Nr4a1, Bcl2 and Itgal (Fig. 5F). The 'monocytic Ly6C+ gene signature' including 

Ly6c2, Lyz2, Sell and Fos, was present in C/EBPβ-deficient Ly6C+ monocytes 

(cluster III, IV) (Fig. 5F). We also identified genes specifically up-regulated in Ly6C+ 

and Ly6Cint Cebpb-/- monocytes compared to controls (cluster V, VI). These clusters 

comprised other members of the C/EBP family, such as Cebpa and Cebpe, 
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suggesting compensation for or loss of repression by C/EBPβ��Also genes belonging 

to the 'MHC gene family', such as H2-aa, H2-eb1 and Cd74, were higher expressed 

in C/EBPβ-deficient Ly6Cint monocytes (cluster VI, Fig. 5F). Similarly, Cd209a was 

strongly enriched in these cells, while Cd36 was absent, indicating that the 

alternative differentiation pathway of Ly6C+ monocytes towards Cd209a-expressing 

Ly6Cint cells is probably C/EBPβ-independent.  

 
C/EBPβ�interacts with the Nr4a1 promoter and induces its expression.  
Impaired development of Ly6C- monocytes in Cebpb-/- mice and the profound 

competitive disadvantage of mutant cells over C/EBPβ-proficient monocytes (Fig. 5A, 
C) phenocopied Nr4a1-deficient animals (Hanna et al., 2011). Nr4a1 gene 

expression was strongly decreased in Ly6Cint Cebpb-/- monocytes (to 30 %; Fig. 5F), 

suggesting that C/EBPβ is involved in Nr4a1 regulation.  
 To identify C/EBPβ binding sites at the Nr4a1 locus, we examined the 

C/EBPβ�binding pattern of cultured monocyte-derived cells (Bornstein et al., 2014). 

Two open chromatin regions upstream of the first exon of the Nr4a1 gene were found 

in all monocyte subsets (-50bp (blue symbol) and -850bp (purple symbol) from the 

TSS). Sequence analysis revealed that all regions harboured C/EBPβ binding motifs 

(Fig. 6A). In these cells, the -850bp site was occupied by C/EBPβ, whereas the -

50bp site displayed only a weak signal (Fig. 6A). Notably, this imperfect site had 

been reported earlier to be involved in C/EBPβ-dependent Nr4a1 expression in rat 

cells (El-Asmar et al., 2009). In addition, a -4kb distal enhancer element was 

occupied by C/EBPβ�(white symbol; Fig. 6A). To probe for differential contributions of 

the elements, we cloned combinations of regulatory regions upstream to a firefly 

luciferase gene reporter and transfected Cebpb-/- MEF cells with the constructs (Fig. 
6B). Following introduction of ectopic C/EBPβ, we measured relative luciferase 

expression normalized to renilla luciferase activity. C/EBPβ addition did not induce 

luciferase expression in Cebpb-/- MEF cells transfected with control, the -50bp region 

or the -4kb enhancer plasmids (Fig. 6B). In contrast, constructs that contained the -

850kb site showed a C/EBPβ-dependent increase in luciferase activity. Of note, the -

4kb enhancer element in combination with the -850bp site further increased 

expression, but also affected the background signal in the absence of exogenous 

C/EBPβ, indicating C/EBPβ-dependent and independent interaction of these two 

regulatory elements. Collectively, our data suggest a critical role of C/EBPβ in the 
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regulation of Nr4a1 expression during monocyte conversion.  

 
DISCUSSION 
Monocytes and their descendants have emerged as a highly plastic and dynamic 

cellular system ensuring injury detection, robust inflammatory responses and 

resolution. Monocytes entail two main subpopulations currently defined as 

CD14+CD16- and CD14dim CD16+ cells in humans, and Ly6C+ and Ly6C- cells in mice 

(Geissmann et al., 2003; Passlick et al., 1989). Ly6C+ monocytes are inflammatory 

cells with tissue infiltrating capacity, while Ly6C- cells seem to remain in the 

circulation and control vessel wall integrity (Auffray et al., 2007; Geissmann et al., 

2003).  

 Ly6C+ monocytes give rise to Ly6C- monocytes. ‘Converted’ Ly6C+ monocytes 

could represent a minor fraction of Ly6C- monocytes, but single cell RNA-Seq 

profiling did not reveal heterogeneity within Ly6C+ and especially Ly6C- monocyte 

populations under steady state conditions. We can however not absolutely exclude 

that heterogeneity exists, or might arise following challenges, such as reported after 

IFN-J injection (Askenase et al., 2015), as we sequenced only a small fraction 

(~0.5%) of all circulating monocytes.  

Single cell analysis highlighted heterogeneity in the Ly6Cint compartment by revealing 

a transient up-regulation of MHCII genes especially in these cells, which was also 

evident in the ATAC and iChIP analysis. Recently, a MHCII+ cell population within the 

Ly6C+ monocyte compartment was identified and proposed to give preferential rise to 

monocyte-derived DC (Menezes et al., 2016). Like our MHCII-expressing Ly6Cint 

monocytes, these cells expressed the C-type lectin receptor CD209 (DC-SIGN). 

Transferred monocytes did not show any expression of Cd209a or MHCII-related 

genes after 48h, which could imply a direct conversion from Ly6C+ towards Ly6C- 

monocytes without a Cd209a+ intermediate stage. Notably, Cd209a+ monocytes were 

also present in C/EBPE-deficient mice and these cells could hence arise in the BM 

(Menezes et al., 2016). Our fate mapping approach suggests that Ly6Cint Cd209a-

expressing cells are short-lived and likely descendants of BM Ly6C+ monocytes. Also 

human CD14+CD16+ double positive monocytes are characterized by higher MHCII 

expression (Gren et al., 2015; Schmidl et al., 2014; Zawada et al., 2011) and some 

human CD14+CD16+ monocytes may possibly represent equivalents of murine 

MHCII+ Ly6Cint monocytes. 
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  Mechanistically, our findings suggest that C/EBPβ binds to promoter 

and enhancer regions of Nr4a1 in monocyte-derived cells and activates Nr4a1 
expression. Nr4a1 has been previously shown to be obligatory for Ly6C- monocyte 

development (Hanna et al., 2011) Moreover, the same group showed recently that 

the second Nr4a1 enhancer (E2) was crucial for Ly6C- monocyte development in a 

Klf2-dependent manner (Thomas et al., 2017). The authors subsequently focused on 

the control of Nr4a1 expression by the E2 fragment and reported that it was 

independent of C/EBPβ, but under Klf2 control. We confirm these results, but show in 

addition that C/EBPβ binds to both enhancers (E1, E2) and thereby regulates 

expression of Nr4a1. The exact hierarchy of C/EBPβ and Nr4a1 induction remains 

unclear. We noted Cebpb�expression in BM Ly6C+ monocytes prior to Nr4a1 

induction, which appeared in blood Ly6C+ and increased in Ly6C- monocytes. 

Furthermore, Nr4a1 expression was reduced in Ly6C+ and Ly6Cint monocytes 

isolated from C/EBPβ-deficient mice, indicating an upstream role of C/EBPβ. 

Likewise, Hanna et al. revealed a strong reduction of C/EBPβ�expression in the 

remaining Ly6C- monocyte population isolated from Nr4a1-deficient mice (Hanna et 

al., 2011). Therefore it seems possible that both transcription factors are connected 

by a regulatory circuit. This is also supported by the fact that a small fraction of BM 

Ly6C- monocytes is still present in C/EBPβ-deficient mice – a observation similar to 

Nr4a1-/- animals (Carlin et al., 2013). 

 The phenotype of Nr4a1-deficient mice was attributed to a decreased survival 

of monocytes, accompanied by increased apoptosis in this cell lineage (Hanna et al., 

2011). Similarly, Cebpb-/- monocytes show increased apoptosis (Tamura et al., 2015). 

However, C/EBPβ-deficient Ly6Cint monocytes lacked the Ly6C- monocyte gene 

signature, which was observed in C/EBPβ-proficient Ly6Cint cells, indicating a 

C/EBPβ function beyond a mere survival phenotype.  

 Collectively, our data indicate that Ly6C+ monocytes represent an unstable cell 

population with a molecular and epigenetic default differentiation potential towards 

Ly6C- monocytes. However, even though Ly6C+ cells seem to represent an a priori 
developmental stage, they are equipped with unique functional properties such as 

tissue infiltration and pro-inflammatory activity (Mildner et al., 2013), which cannot be 

acquired by Ly6C- monocytes (Varol et al., 2009). This raises the questions, whether 

the epigenetic landscape can change under inflammatory conditions to prevent the 

default differentiation into Ly6C- cells. It is possible that the observed shift in human 
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monocyte composition under pathological conditions towards increased abundance 

of CD14+CD16+ cells (reviewed in (Wong et al., 2012)) represents such a case. It will 

be critical to identify how plasticity is preserved in Ly6C+ cells and how Ly6C+ 

monocytes balance their developmental fate to either become circulating Ly6C- 

monocytes or to differentiate into monocyte-derived tissue macrophages.   
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CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources and reagents should be directed to 

and will be fulfilled by the Lead Contact, Steffen Jung (s.jung@weizmann.ac.il). 

 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 
The following mouse strains have been used within this study: B6.Cg.129P2-C/EBPb 

tm1Pfj (C/EBPβ-/- (Sterneck et al., 1997)), B6.Cg.129P2-C/EBPtm3.2Acle (coki; 

(Wethmar et al., 2010)), B6.Cg.129P2-C/EBPtm1.2Acle (LIP; (Bégay et al., 2015)) 

and B6.Cg.129P2 (wt, littermate controls). These mice were kept on a mixed 

background. Female animals in an age between 6-12 weeks were used for analysis 

(related to Fig. 5 and Fig. S2). Female C57BL/6J (8 weeks) and CX3CR1Cre mice 

(Yona et al., 2012) crossed to Rosa-YFP mice (Srinivas et al., 2001; 16 weeks) were 

used for single cell sorting (related to Fig. 3 and Fig. S5). Female C57BL/6J (6-8 

weeks) were used for bulk RNA-Seq (related to Fig. 1) and ChIP-Seq as well as 

ATAC-Seq (related to Fig. 4). For cell transfer experiments, BM monocytes from 8 

weeks old female congenic B6.SJL-PtprcaPep3b/BoyJ (CD45.1) were injected into 8 

weeks old female C57BL/6J mice (Harlan). For mixed BM chimeras, 8 weeks old 

female recipient animals (CD45.1/1) were lethally irradiated (950 rad) and 

reconstituted with female donor BM by i.v. injection of 106 BM cells isolated from 

C/EBPβ-/- (CD45.2/2), LIP (CD45.2/2) mice and mixed in a 1:1 ratio with littermate 

(CD45.1/2) BM cells. Mice were kept under Ciproxin (Bayer) antibiotics for 10 

consecutive days and BM chimeras were analyzed 8 weeks after transfer. All mice 

were bred and maintained in specific pathogen-free (SPF) animal facilities at the 

MDC or the Weizmann Institute of Science. Animals were healthy and they were 

healthy and they were not involved in previous procedures. Experiments were 

approved by an Institutional Animal Care Committee (IACUC) in accordance to 

international guidelines. 

 

METHOD DETAILS 
Flow cytometry and cell sorting 
Antibodies against CD11b (M1/70), CD11c (HL3), CD115 (AFS98), CD117 (2B8), Ly-

6C (HK1.4), CD135 (A2F10), Ly6G (1A8), CD19 (6D5), CD3e (145-2c11), CD45.1 

(A20), CD45.2 (1D4), B220 (RA3-6B2), CD62L (MEL-14), MHCII (IAb; AF6-102.1), 

TCRγδ (GL-3), Ter119, NK1.1 (PK136) from Biolegend or eBioscience were used. 
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For sequencing, monocytes were isolated by CD115 biotin antibodies followed by 

anti-biotin MACS without RBC lysis. Monocytes were identified as lineage negative 

(Ter119, B220, CD19, CD3, NK1.1, Ly6G, TCRγδ), CD11b+ and CD115+. Samples 

were flow sorted either using AriaII, AriaIII or Aria-Fusion (BD Biosciences, BD Diva 

Software) cell sorter. Analysis was performed on Fortessa or LSRII (BD Biosciences, 

BD Diva Software) and analyzed with FlowJo software (Treestar). 

 
Bulk RNA sequencing 
RNA-Seq of populations was performed as described previously (Lavin et al., 2014). 

In brief, 103–105 cells from each population were sorted into 50μl of lysis/binding 

buffer (Life Technologies) and stored at -80°C. mRNA was captured with Dynabeads 

oligo(dT) (Life Technologies) according to manufacturer’s guidelines. We used a 

derivation of MARS-seq (Jaitin et al., 2014). Briefly, RNA was reversed transcripted 

with MARS-Seq barcoded RT primer in a 10μl volume with the Affinity Script kit 

(Agilent). Reverse transcription was analyzed by qRT-PCR and samples with a 

similar CT were pooled (up to 8 samples per pool). Each pool was treated with 

Exonuclease I (NEB) for 30min 37°C and subsequently cleaned by 1.2X SPRI beads. 

Afterwards, the cDNA was converted to double-stranded DNA with a second strand 

synthesis kit (NEB) in a 20μl reaction, incubating for 2.5 h at 16 ̊C. The product was 

purified with 1.4x volumes of SPRI beads, eluted in 8μl and in-vitro transcribed (with 

the beads) at 37°C overnight for linear amplification using the T7 High Yield RNA 

polymerase IVT kit (NEB). Following IVT, the DNA template was removed with Turbo 

DNase I (Ambion) 15 min at 37°C and the amplified RNA (aRNA) purified with 1.2x 

volumes of SPRI beads. The aRNA was fragmented by incubating 2.5min at 70°C in 

Zn2+ RNA fragmentation solution (Ambion) and purified with 2X SPRI beads. The 

aRNA (5μl) was preincubated 3 min at 70°C with 1μl of 100μM MARS seq ligation 

adapter; then, 14μl of a mix containing 9.5% DMSO, 1mM ATP, 20% PEG8000 and 1 

U/μl T4 ligase (NEB) in 50 mM Tris HCl pH7.5, 10 mM MgCl2 and 1mM DTT was 

added. The reaction was incubated at 22°C for 2 h. After 1.5X SPRI cleanup, the 

ligated product was reverse transcribed using Affinity Script RT enzyme (Agilent; 

reaction mix contains Affinity Script RT buffer, 10 mM DTT, 4 mM dNTP, 2.5 U/μl RT 

enzyme) and a primer complementary to the ligated adapter. The reaction was 

incubated for 2min at 42°C, 45 min at 50°C and 5 min at 85°C. The cDNA was 

purified with 1.5X volumes of SPRI beads. The library was completed and amplified 
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through a nested PCR reaction with 0.5 μM of P5_Rd1 and P7_Rd2 primers and 

PCR ready mix (Kapa Biosystems). The amplified pooled library was purified with 

0.7X volumes of SPRI beads to remove primer leftovers. Library concentration was 

measured with a Qubit fluorometer (Life Technologies) and mean molecule size was 

determined with a 2200 TapeStation instrument. RNA-Seq libraries were sequenced 

using Illumina NextSeq-500. Raw reads were mapped to the genome (NCBI37/mm9) 

using hisat (version 0.1.6). Only reads with unique mapping were considered for 

further analysis. Gene expression levels were calculated using the HOMER software 

package (analyzeRepeats.pl rna mm9 -d <tagDir> -count exons -condenseGenes -

strand + -raw) (Heinz et al., 2010). Normalization and differential expression analysis 

was done using the DESeq2 R-package. Differential expressed genes were selected 

using a 2-fold change cutoff between at least two populations and adjusted pValue 

for multiple gene testing > 0.05. Gene expression matrix was clustered using k-

means algorithm (matlab function kmeans) with correlation as the distance metric. 

The value of k was chosen by assessing the average silhouette (matlab function 

silhouette) (3) for a range of possible values (4-15). 

 

Indexing-first chromatin IP (iChIP) sequencing 
105 crosslinked cells were used for iChIP-seq, as described (Lara-Astiaso et al., 

2014). Briefly, following crosslinking for 8 min in 1% formaldehyde and quenched for 

5min in 0.125 M glycine, cells were FACS sorted, diluted in harvesting buffer (12mM 

Tris-HCl, 0.1X PBS, 6mM EDTA, 1.2X Protease Inhibitor (Roche)), pelleted by two 

rounds of centrifugation (15min, 3000g, low acceleration and brake) and frozen at -

80°C. Cell aliquots (around 10μl) are thawed on ice and 2μl of 3% SDS is added to 

achieve a concentration of 0.5% SDS. Chromatin was fragmented by sonication at 

high intensity and cycles of 30” ON/30” OFF with the NGS Bioruptor Sonicator 

(Diagenode) for 40min. Cells were diluted 1:5 with sonication equilibration buffer 

(10mM Tris-HCl, 140mM NaCl, 0.1% sodium deoxycholate, 1% Tx-100, 1mM EDTA, 

1X Protease Inhibitor) and sheared chromatin was immobilized on 15μl Dynabeads 

Protein G (ThermoFisher) with 1.3μg of anti-H3 antibody (ab1791, Abcam) for 20h on 

4°C. The H3-bound beads were magnetized and washed 3 times with 150μl 10mM 

Tris-HCl, 1X Protease Inhibitors and resuspended in 20μl of the same buffer. 

Chromatin End Repair was performed by adding 30μl of a master mix: 25μl 2X ER 

mix (50mM Tris-HCl ph 7.5, 20mM MgCl2, 20mM DTT, 2mM ATP, 1mM dNTPs), 2μl 
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T4 PNK enzyme (10 U/μl NEB), and 2μl T4 polymerase (3 U/μl NEB) to each sample 

and incubated at 12°C for 25min, 25°C for 25min, and finally cooled to 4°C. After end 

repair, bead bound chromatin was washed once with 150μl of 10mM Tris-HCl + 

Protease Inhibitors and re-suspended in 40μl of the same buffer. Chromatin was A-

tailed by adding 20μl master mix (17μl A-base add mix, 3μl Klenow (3’->5’ 

exonuclease, 3 U/μl, NEB) to each well and incubated at 37°C for 30 min. Afterwards, 

bead bound chromatin was washed once with 150μl of 10mM Tris-HCl + Protease 

Inhibitors and resuspended in 19μl of the same buffer. Chromatin was indexed by 

adding 5μl of 0.75μM Y- shapped Indexed Adaptors (containing P5 and P7 

sequences) to each well which were ligated to the chromatin's DNA ends by adding 

34μl of AL master mix (29μl 2x Quick Ligation Buffer and 5 μl Quick DNA ligase 

(NEB)) to each well. Samples were mixed and incubated at 25°C for 40min in a 

thermal cycler. Bead bound indexed chromatin was washed once as described 

above in order to remove non-ligated adaptors. After wash, samples were removed 

from the magnet, beads were re-suspended in 12.5μl of 100mM DTT and incubated 

for 5min at room temperature. Then, 12.5μl of 2X Chromatin Release Buffer (500mM 

NaCl, 2% SDS, 2% Sodium Deoxycholate, 2X protease Inhibitors) was added, 

samples were mixed and incubated at 37°C for 30min. After the release incubation, 

magnetic beads were again thoroughly re-suspended and pooled together in groups 

of <10 samples resulting in a pool volume of 200-250μl. The pooled indexed 

chromatin samples were concentrated using a 50Kda cutoff Centricon (Amicon).  

Target antibody was added and incubated at 4°C for 3h, then 50μl with Protein G 

Magentic beads were added and IP was incubated for 1 more hour. For each ChIP, 

we used 1.5μg of anti-H3K4me1 (ab8895; Abcam) and 2.5μg of anti-H3K4me2 

(ab32356; Abcam), anti-H3K4me3 (07-473; Millipore) and anti-H3K27ac (ab4729; 

Abcam). After incubation, ChIP Buffer was removed and samples were washed 5 

times with cold RIPA (200ul per wash), twice with RIPA buffer supplemented with 

500mM NaCl (200ul per wash), twice with LiCl buffer (10mM TE, 250mM LiCl, 0.5% 

NP-40, 0.5% DOC), once with TE (10Mm Tris-HCl pH 8.0, 1mM EDTA), and then 

eluted in 50μl of 0.5% SDS, 300mM NaCl, 5mM EDTA, 10mM Tris-HCl pH 8.0. The 

eluate was treated sequentially with 2μl of RNaseA (Roche, 11119915001) for 30 min 

at 37°C, 2.5μl of Proteinase K (NEB, P8102) for additional two hours at 37°C and 8 

hours at 65°C to revert formaldehyde crosslinking. DNA was purified with SPRI 

beads (90μl, Agencourt AMPure XP beads, Beckman Coulter) according to 
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manufacture’s protocol. The DNA was eluted in 23μl EB buffer (10mM Tris-HCl, pH 

8.0) by pipette mixing 25 times. The library was completed and amplified through a 

PCR reaction with 0.5μM of PCR forward and PCR reverse primers and PCR ready 

mix (Kapa Biosystems). Following the amplification step, DNA concentration was 

measured, and equivalent amounts of barcoded ChIPed DNA from each sample 

were pooled together. After barcoding, pooled DNA was sequenced (HiSeq 1500, 

Illumina) to achieve a minimum of 107 aligned reads per sample. 

 
ATAC sequencing 
20,000 cells were used for ATACseq (Buenrostro et al., 2013) applying described 

changes (Lara-Astiaso et al., 2014). Briefly, nuclei were obtained by lysing the cells 

with cold lysis buffer (10mM Tris-HCl pH 7.4, 10mM MgCl2, 0.1% Igepal CA-630) and 

nuclei were pelleted by centrifugation for 30min at 500g, 4°C using a swing rotor with 

low acceleration and brake settings. Supernatant was discarded and nuclei were re-

suspended in 25μl reaction buffer containing 2μl of Tn5 transposase and 12.5μl of 

TD buffer (Nextera Sample preparation kit from Illumina). The reaction was incubated 

at 37°C for one hour. DNA was released from chromatin by adding 5μl of clean up 

buffer (900mM NaCl, 300mM EDTA), 2μl of 5% SDS and 2μl of Proteinase K (NEB) 

followed by a incubation for 30min at 40ºC. Tagmentated DNA was isolated using 2x 

SPRI beads and eluted in 21μl. For library amplification, two sequential 9-cycle PCR 

were performed in order to enrich small tagmentated DNA fragments. We used 2μl of 

indexing primers included in the Nextera Index kit and KAPA HiFi HotStart ready mix. 

After the first PCR, the libraries were selected for small fragments (less than 600 bp; 

0.65X) using SPRI cleanup. Then a second PCR was performed with the same 

conditions in order to obtain the final library. DNA concentration was measured with a 

Qubit fluorometer (Life Technologies) and library sizes were determined using 

TapeStation (Agilent Technologies). Libraries where sequenced on a Hiseq 1500 for 

an average of 20 million reads per sample 

 

Processing of ChIP-Seq and ATAC-Seq 
Reads were aligned to the mouse reference genome (mm9, NCBI 37) using Bowtie2 

aligner version 2.2.5 (Langmead et al., 2009) with default parameters. The Picard 

tool MarkDuplicates from the Broad Institute (http://broadinstitute.github.io/picard/) 

was used to remove PCR duplicates. To identify regions of enrichment (peaks) from 
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ChIP-seq (H3K4me1, H3K4me2, H3K4me3 and H3K27ac), we used the HOMER 

package makeTagDirectory followed by findPeaks command “-style histone”. For 

ATACseq we used makeTagDirectory followed by findPeaks command “-style factor -

size 300”, respectively (Heinz et al., 2010). Union peaks file were generated for each 

of H3K4me1, H3K4me2, H3K4me3 and H3K27ac by combining and merging 

overlapping peaks in all samples. 

 
Chromatin and Motif Analysis 
All ChIP-seq peaks were binned to 1kb size. To create the table of samples, we used 

annotatePeaks.pl from HOMER package passing the binned peak file and option “-

raw” and normalized to an equal number of reads in merged peaks. We consider 

promoters to be peak center < 1kb from TSS of nearest gene. H3K4me3 regions 

used are only near promotor areas, while binned the peaks of H3K4me1, H3K4me2 

and H3K27ac used are all non-promotor areas. Noise was set at ~80% of all 

normalized value. The region intensity was given in log-base2 of the normalized 

density (log2(x+1)). Fold change bins were considered changing when delta between 

samples (log2(x+noise)) was > 1 (red line in Fig. 4A). Kmeans clustering was 

performed using MATLAB function kmeans with the distance metric set to 

‘‘correlation”. Motif Analysis was performed inside ATAC peaks and differential 

regions were used as input for the HOMER package motif finder algorithm 

findMotifGenome.pl (Heinz et al., 2010). 

 

Single cell sequencing 
MARS-seq reads were processed as previously described (Paul et al., 2015). Briefly, 

mRNA from cells sorted into MARS-seq capture plates was barcoded and converted 

into cDNA and pooled using an automated pipeline. The pooled sample was then 

linearly amplified by T7 in-vitro transcription and the resulting RNA was fragmented 

and converted into a sequencing-ready library by tagging the samples with pool 

barcodes and Illumina adapter sequences during ligation, followed by reverse 

transcription and PCR. Each pool of cells was tested for library quality and 

concentration as described earlier (Jaitin et al., 2014). All RNA-Seq libraries (pooled 

at equimolar concentration) were sequenced using an Illumina NextSeq 500. 

Mapping of reads was done using hisat (version 0.1.6) to mm9 genome. Reads with 

multiple mapping positions were excluded. Reads were associated with genes, if they 



Mildner et al  

 23 

were mapped to an exon defined by a reference set obtained from Gencode. Exons 

of different genes that share genomic position on the same strand were considered 

as a single gene with concatenated gene symbol. Cells with less than 200 UMIs were 

discarded from the analysis. Genes with mean expression smaller than 0.005 UMIs/ 

cell or with above average expression and low coefficient of variance (< 1.2) were 

also discarded. In order to assess the heterogeneity of blood monocyte subtypes, we 

used a recently published multinomial mixture-model algorithm (Paul et al., 2015) 

(http://compgenomics.weizmann.ac.il/tanay/?page_id=649). A brief summary of the 

algorithm is described below and its detailed description can be found in our earlier 

publication (Paul et al., 2015). Low-level processing of MARS-Seq reads results in a 

matrix U with n rows and m columns, where rows represent genes and columns 

represent cells. Entry Uij contains the number of unique molecular identifiers (UMIs) 

from gene i that were found in cell j. The model assumes that each cell belongs to 

one of K cell types, and that each cell type defines a different distribution of 

transcripts within cells. 

Our model assumes that cells are sampled uniformly from the population, and that 

each cell type dictates a multinomial distribution over the sample of sequenced RNA 

molecules. The model consists of three types of parameters: 

𝑚𝑚𝑚𝑚   - The assignment of cell j to one of K cell types. 

𝑚𝑚,𝑚𝑚𝑚𝑚   -  the probability of observing gene i in cell j, assuming that j belongs to cell    

             type 𝑚𝑚𝑚𝑚. 

𝑚𝑚𝑚𝑚     -  a positive inflation factor accounting for batch effect on the expression of  

             gene i (bj is the batch of cell j).  

A pseudo EM algorithm was used to infer the assignment of cells to types, gene 

probability within cell type, and magnitude of batch effect. The algorithm outline is as 

follows: 

1. Initialize the model: 

a. Estimate β (batch effect vector) from the gene expression in each batch. 

b. Sample a first seed for the cell types at random by drawing uniformly from the list 

of cells. 

2. Repeat a-d to generate the desired number of clusters: 

a. Initialize a pre-seed model using the regularized transcripts of the seed cell. 

b. Find the set of D cells with the highest likelihood to the pre-seed model. Using 

these cells, initialize a new set of parameters α and optimize the likelihood of the 
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selected cells given these parameters and given constant batch parameters. 

Optimization is done using non-linear optimization procedure (L-BFGS-B). Add the 

optimized parameters as a new component to the model. 

c. Compute the log-likelihood of each cell to each of the current initialized types. 

Assign each cell to its corresponding maximum-likelihood cell type. 

d. Sample a new seed cell at random by drawing from quantiles 0-0.05 of the 

maximum likelihoods obtained in c.  

3. Given the current set of multinomial models, calculate the assignment for each cell 

(𝑚𝑚𝑚𝑚) by calculating the maximum assignment probability.  

4. Given the current β and map parameters, use L-BFGS-B to find α (for each cell 

type) that maximizes the likelihood of the U matrix.  

5. Given the current α and the map parameters, use L-BFGS-B to find β that 

maximizes the likelihood of the U matrix. 

6. Return to step 2 and repeat until the likelihood function converges, or the 

maximum number of iterations is reached.  

Since samples derive from different sorting schemes, clustering was performed with 

fixed E values. Dimensionality reduction was performed on log2-transformed 

normalized UMI matrix containing the 477 variable genes by using the diffusion map 

method  (destiny package (Haghverdi et al., 2015)). Projection of genes on the 2D 

map shows normalized values, smoothed by proximity in 2D Euclidean space. 

 
Luciferase reporter assay 
2x105 C/EBPβ-/- MEF cells were seeded in triplicates in 12-well plates 12h prior 

transfection, 500ng Nr4a1 Firefly-luciferase reporter construct (in pGL4.10; Promega), 

100ng C/EBPβ in a pcDNA3.1 background or empty pcDNA3.1 (Addgene) were co-

transfected together with 10ng of a Renilla-luciferase pGL4.70 vector (Promega) 

using PEI. Luciferase expression was assed after 48h using a Berthold Luminometer 

(Centro LB 960). Firefly-luciferase expression was normalized to Renilla-luciferase 

activity to control for transfection efficiency. The data are representative of four 

independent experiments, results from one experiment are plotted as the mean ± 

SEM.  

 
QUANTIFICATION AND STATISTICAL ANALYSIS 
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In all experiments, data are presented as mean ± STD if not stated otherwise. 

Statistical tests were selected based on appropriate assumptions with respect to data 

distribution and variance characteristics. Student’s t test (two-tailed) was used for the 

statistical analysis of differences between two groups. Statistical analyses were done 

applying Students t-test for the calculation of the P-value. Statistical significance was 

defined as P<0.05. Sample sizes were chosen according to standard guidelines. 

Number of animals is indicate as 'n'. Of note, sizes of the tested animal groups were 

also dictated by availability of the transgenic strains and litter sizes, allowing 

littermate controls. Pre-established exclusion criteria are based on IACUC guidelines. 

As for in vitro experiments, samples were excluded from analysis only in case of 

clear technical problems. Animals of the same age, sex and genetic background 

were randomly assigned to treatment groups. The investigator was not blinded to the 

mouse group allocation. Tested samples were blindly assayed. 
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FIGURE LEGENDS  
 

Figure 1. Monocyte development is accompanied by transcriptome changes. 
(A) Schematic of monocyte differentiation.  

(B) Exemplary flow cytometry analysis of murine monocyte identification. 

(C) Expression analysis of murine MDP, cMoP, BM Ly6C+ as well as BM Ly6C- 

monocytes and the three circulating blood monocyte subsets Ly6C+, Ly6Cint and 

Ly6C- by RNA-Seq. Analysis was restricted to genes, which showed a 2-fold 

difference in at least one cell population and sample. K-means clustering was set 

to n = 6. See also related Fig. S1 for GO-enrichment and TF expression in 

monocyte subsets. 3-4 mice were used for this experiment. Similar results of an 

independent experiment can be found in Fig. S2. 

(D) Examples of gene expression from the six identified clusters depicted in C. 

Shown are the mean sequence reads ± STD. 

 
Figure 2. Transferred BM Ly6C+ monocytes develop on the molecular level into 

Ly6C- monocytes. 
(A) Schematic view of monocyte transfer experiment. CD45.1+ Ly6C+ BM monocytes 

were purified by flow cytometry sorting and 2x105 cells were injected into CD45.2 

congenic mice. 24h, 36h and 48h hours after injection, the transferred CD45.1+ 

CD11b+ CD115+ monocytes were re-isolated from the blood by flow cytometry 

sorting and analyzed by RNA-Seq. Ly6C+, Ly6Cint and Ly6C- monocytes from the 

host mice were analyzed by RNA-Seq in parallel and served as control. Similar 

results were obtained for the spleen (Fig. S3). 

(B) Histogram (left panel) and mean fluorescence intensity (MFI; right panel) of Ly6C 

expression on transferred monocytes 24h (red), 36h (grey) and 48h (blue) hours 

after injection. Note that Ly6C protein abundance dropped rapidly between 24h 

and 48h. Two recipients per time point were analyzed and the mean MFI ± STD 

are shown.  

(C) Expression analysis of transferred monocytes before, 24h, 36h and 48h after 

injection as well as host Ly6C+, Ly6Cint and Ly6C- monocyte subsets by RNA-

Seq. Samples were analyzed in duplicates and analysis was restricted to genes, 

which showed a 2-fold difference in at least one cell population and sample. K-
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means clustering was set to n = 8. Respective GO-enrichment can be found in 

Fig. S4A. 

(D) Examples of expression levels from individual genes identified by the cluster 

analysis depicted in C. Shown are the mean sequence reads ± STD.  

(E) Correlation analysis of the expression signature of monocytes isolated 48h after 

transfer against host Ly6C+, Ly6Cint and Ly6C- monocyte subsets. The 1472 

differential expressed genes without the BM-specific cluster I shown in C were 

included (cluster II-VIII) and the average of the duplicates were used for 

calculation. Sequence reads are presented as log2 values. See also related Fig. 
S4B. 

 

Figure 3. Single cells sequencing of murine blood monocytes 
(A) Top: Clustering of 1463 monocytes according to their gene expression profile. 

Four main clusters could be identified. Shown are on the X-axis cells and on the 

Y-axis genes. Shown are 359 differential expressed genes with >100 UMI count. 

See Fig. S5A-F for more details. 

(B) MFI of Ly6C and CD62L expression based on indexed FACS analysis for the 

1098 sequenced monocytes excluding the specifically sorted Ly6Cint cells (365 

cells). 

(C) Marker gene expression in each cluster.  

(D) Diffusion map 2D projection of all sequenced single cells, coloured by their 

assignment to the four monocyte clusters identified in Fig. 3A.  

(E) Black and white depiction of the localisation of the four clusters in the 

dimensionality reduction map. 

(F) Overlay of individual gene expression on the reduction map. 

(G) An additional set of 666 single cell monocytes were sequenced from 

Cx3cr1Cre:R26-YFP mice and assigned to the four clusters by their maximum 

likelihood. Through indexed flow cytometry sorting, each single cell could be 

related to their YFP expression, thereby identifying cluster II and cluster III cells 

as short-lived (BM) Ly6C+ monocyte-descendants. See also Fig. S5G-H for 

detailed analysis. 

 

Figure 4. The epigenetic landscape of murine monocytes. 
(A) Summary of histone modifications (H3K4me1, H3K4me2, H3K4me3 and 
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H3K27ac) in blood Ly6C+ and Ly6C- monocytes. Data were acquired as 

duplicates for all monocyte populations (Fig. S6A) and the signal for each 

population was merged for comparative analysis. Data are represented as log2. 

(B) Summary of expression (RNA), methylation (H3K4me1, H3K4me2, H3K4me3 

and H3K27ac) and open chromatin (ATAC) changes in Ly6C+ and Ly6C- 

monocytes. Shown are the percentages of 2-fold changing gene peaks 

compared to all detected gene peaks. 

(C) Examples of H3K4me2 (the first three rows), H3K4me3 (middle rows) and 

H3K27ac (lower three rows) in Ly6C+ (dark red), Ly6Cint (red) and Ly6C- 

monocytes (orange). Corresponding H3K4me1 signal can be found in Fig. S6B. 

Blue areas indicate changing promoters and green areas changing enhancers. 

(D) Heatmap of differential modified gene loci with at least 2-fold change in Ly6C+, 

Ly6Cint or Ly6C- monocytes, respectively. Note the intermediate phenotype of 

Ly6Cint monocytes in sharing histone marks with either Ly6C+ or Ly6C- 

monocytes. 

(E) Analysis of all 40,572 detected ATAC peaks, from which 423 peaks showed an at 

least 50% higher read count in Ly6C+ monocytes (dark red) and 886 peaks were 

enriched in Ly6C- monocytes (orange). Examples of IGV tracks can be found in 

Fig. S6C. 
(F) Homer motif enrichment for TF binding sites in genes that are either more open in 

Ly6C+ monocytes (423 genes; upper graph) or in Ly6C- monocytes (886 genes; 

lower graph). Shown are the p-values (in log10) and the corresponding motifs. 
(G) Gene expression of TF in Ly6C+, Ly6Cint and Ly6C- monocytes that were 

identified by the motif enrichment in F. Shown are the mean sequence reads ± 

STD. More related genes can be found in Fig. S6D.  
 

Figure 5. Ly6C- monocyte development depends on the expression of C/EBPE� 

(A) Flow cytometry analysis of blood monocytes isolated from C/EBPE-deficient mice 

and littermate controls. Monocytes were identified as CD11b+ and CD115+ and 

separated according to Ly6C and CD11c expression. Two independent 

experiments were pooled. N = 6-8 mice. Each symbol represents one animal. 

Asterisk indicates statistical difference with p < 0.05 according to student’s t-test.  

(B) Frequency of BM monocyte populations and their precursors out of Linneg CD115+ 

cells isolated from C/EBPE-deficient mice and littermate controls. 4 animals per 
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group were used and each symbol represents one animal. Asterisk indicates 

statistical difference with p < 0.05 according to student’s t-test.  

(C) Mixed bone marrow chimera experiment in which C/EBPE-deficient CD45.2 BM 

cells were mixed with CD45.1-2 littermate BM cells and injected into lethally 

irradiated CD45.1 recipients. Analysis of the indicated cell populations was 

performed 8 weeks after transfer and shown is the log10 ratio of CD45.1-2+ cells 

to CD45.2+ cells. 4 animals were used in this experiment and each symbol 

represents one recipient. The experiment was performed twice with similar 

results.  

(D) Analysis of transgenic mice, which express in the wt C/EBPE locus either the 

short, N-terminally truncated C/EBPE version LIP or the wt full-length C/EBPE 

construct (coki). Monocytes were identified as CD11b+ CD115+ and separated 

according to Ly6C and CD11c expression. 4-6 animals were analyzed and each 

symbol represents one animal. Asterisk indicates statistical difference with p < 

0.05 according to Student’s t-test. 

(E) Gene expression analysis by RNA-Seq of C/EBPE-deficient and littermate 

monocytes. Since Ly6C- monocyte were strongly reduced in C/EBPE-/- mice, only 

Ly6C+ and Ly6Cint monocytes were analyzed from this genotype. Samples were 

analyzed in duplicates and analysis was restricted to genes, which showed a >2-

fold difference in at least one cell population and sample. K-means clustering 

was set to n = 6.  

(F) Examples of gene expression in wt and C/EBPE-deficient monocytes. Shown are 

the mean sequence reads ± STD. Note the strong up-regulation of MHCII-related 

genes in C/EBPE-deficient Ly6Cint monocytes. 

 

Figure 6. C/EBPE�binds to Nr4a1 enhancer elements and induces Nr4a1 
expression 

(A) Open chromatin structure of the first Nr4a1 enhancer elements in Ly6C+, Ly6Cint 

and Ly6C- blood monocytes (black IGV tracks) as well as in vitro monocyte-

derived cells (grey IGV track; data was taken from (Bornstein et al., 2014)). ChIP 

analysis of C/EBPE-bound chromatin regions in in vitro monocyte-derived cells 

(red IGV track; data was taken from (Bornstein et al., 2014)) shows the binding of 

C/EBPE to three enhancer elements with different C/EBPE motives. 
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(B) Activity reporter assay of different Nr4a1 enhancer elements cloned in front of a 

luciferase gene. The constructs were transfected into MEF Cebpb-/- cells, which 

further received by transfection either 100ng control or C/EBPE-containing 

plasmids. Shown is one experiment out of four with similar results. 
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KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-Ly6C FITC (clone HK1.4) Biolegend Cat# 128006 

RRID:AB_1186135 
Anti-Ly6C PerCP-Cy5.5 (clone HK1.4) eBioscience Cat# 45-5932 

RRID:AB_1518763 
Anti-Ly6C APC (clone HK1.4) Biolegend Cat# 128016 

RRID:AB_1732076 
Anti-Ly6C APC-Cy7 (clone HK1.4) Biolegend Cat# 128025 

RRID:AB_10643867 
Anti-CD11c APC (clone N418) Biolegend Cat# 117310 

RRID:AB_313779 
Anti-CD11c PE (clone N418) Biolegend Cat# 117307 

RRID:AB_313776 
Anti-CD115 Biotin (clone AFS98) Biolegend Cat# 135507 

RRID:AB_2028401  
Anti-CD115 PE (clone AFS98) Biolegend Cat# 135507 

RRID:AB_1937253 
Anti-CD115 PE-Cy7 (clone AFS98) Biolegend Cat# 135524 

RRID:AB_2566460 
Anti-CD45.2 Pacific Blue (clone 104) Biolegend Cat# 109820 

RRID:AB_492872 
Anti-CD45.2 FITC (clone 104) Biolegend Cat# 109806 

RRID:AB_313443 
Anti-CD45.1 PE (clone A20) Biolegend Cat# 110707 

RRID:AB_313496 
Anti-CD45.1 APC (clone A20) Biolegend Cat# 110714 

RRID:AB_313503 
Anti-CD3e BV421 (clone 145-2C11) Biolegend Cat# 100335 

RRID:AB_10898314 
Anti-TCRgd BV421 (clone GL3) Biolegend Cat# 118119 

RRID:AB_10896753 
Anti-Ly6G BV421 (clone 1A8) Biolegend Cat# 127627 

RRID:AB_10897944 
Anti-Nk1.1 BV421 (clone PK136) Biolegend Cat# 108732 

RRID:AB_2562218 
Anti-B220 BV421 (clone RA3-6B2) Biolegend Cat# 103240 

RRID:AB_11203896 
Anti-CD19 BV421 (clone 6D5) Biolegend Cat# 115538 

RRID:AB_11203527 
Anti-Ter119 BV421 (clone TER119) Biolegend Cat# 116234 

RRID:AB_2562917 
Anti-CD11b APC (clone M1/70) Biolegend Cat# 101211 

RRID:AB_312794 
Anti-CD11b PerCP-Cy5.5 (clone M1/70) Biolegend Cat# 101228 

RRID:AB_893232 
Anti-CD11b PE-Cy7 (clone M1/70) Biolegend Cat# 101215 

RRID:AB_312798 
Anti-CD135 Biotin (clone A2F10) eBioscience Cat# 13-1351-81 

RRID:AB_466598 
Anti-CD62L PE (clone MEL-14) eBioscience Cat# 12-0621-81 

RRID:AB_465720 
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Anti-CD117 PE/Cy7 (clone 2B8) Biolegend Cat# 105813 
RRID:AB_313222 

Anti-I-Ab PE/Cy7 (clone AF6-120.1) Biolegend Cat# 116420 
RRID:AB_10575296 

Anti-I-Ab PerCP-Cy5.5 (clone AF6-120.1) Biolegend Cat# 116416 
RRID:AB_1953309 

Anti-Ly6G APC-Cy7 (clone 1A8) Biolegend Cat# 127623 
RRID:AB_10645331 

Anti-B220 FITC (clone RA3-6B2) Biolegend Cat# 103206 
RRID:AB_312991 

Anti-B220 APC (clone RA3-6B2) Biolegend Cat# 103211 
RRID:AB_312996 

Anti-CD4 APC (clone GK1.5) Biolegend Cat# 100411 
RRID:AB_312696 

Anti-CD8a APC (clone 53-6.7) eBioscience Cat# 17-0081-82 
RRID:AB_469335 

Anti-Ly6G APC (clone 1A8) eBioscience Cat# 17-9668-80 
RRID:AB_2573306 

Anti-Nk1.1 APC (clone PK136) eBioscience Cat# 17-5941-63 
RRID:AB_469477 

Anti-TCRgd APC (clone GL3) Biolegend Cat# 118116 
RRID:AB_1731813 

Anti-biotin MicroBeads Miltenyi Cat# 130-090-485 
RRID:AB_244365 

Anti-H3K27ac antibody Abcam Cat# ab4729 
RRID:AB_2118291 

Anti-Histone H3 (tri methyl K4) antibody Millipore Cat# 07-473 
RRID:AB_1977252 

Anti-Histone H3 (di methyl K4) antibody Abcam Cat# ab32356 
RRID:AB_732924 

Anti-Histone H3 (mono methyl K4) antibody Abcam Cat# ab8895 
RRID:AB_306847 

Anti-Histone H3 Abcam Cat# ab1791 
RRID:AB_302613 

   
Chemicals, Peptides, and Recombinant 
Proteins 

  

Dynabeads® Oligo(dT)25 ThermoFischer Cat# 61005 
Agencourt AMPure XP Beckman Coulter Cat# A63881 
Exonuclease I New England Biolabs Cat# M0293L 
NEBNext® mRNA Second Strand Synthesis 
Module 

New England Biolabs Cat# e6111L 

RNA Fragmentation Reagents ThermoFischer Cat# AM8740 
Turbo DNase I ThermoFischer Cat# AM2239 
T4 RNA Ligase 1 New England Biolabs Cat# M0204L 
HiScribe™ T7 High Yield RNA Synthesis Kit New England Biolabs Cat# E2040 
Kapa hifi PCR Kits Kapabiosystems Cat# KK2602 
AffinityScript Multiple Temperature Reverse 
Transcriptase 

Agilent Cat# 600109 

PowerUp™ SYBR® Green Master Mix ThermoFischer Cat# A25777 
T4 Polynucleotide Kinase New England Biolabs Cat# M0201 
cOmpleteTM Protease Inhibitor Cocktail Sigma-Aldrich Cat# 11697498001 
Dynabeads® Protein G ThermoFisher Cat# 1004D 



 

Klenow Fragment (3’Æ 5’ exo-) New England Biolabs Cat# M0212 
Proteinase K New England Biolabs Cat# P8102 
RNaseA Roche Cat# 11119915001 
PE/Cy7 Streptavidin BioLegend Cat# 405206 
BV605 Streptavidin Biolegend Cat# 405229 
Critical Commercial Assays   
Quick LigationTM Kit New England Biolabs Cat# M2200 
Amicon Ultra-15 Merck Cat# UFC905024 
Nextera Sample Preparation Kit Illumina Cat# FC-121-1030 
   
Deposited Data 
RAW and analysed data GEO GSE95702 
   
Experimental Models: Organisms/Strains 
Mouse: Cx3cr1-Cre Laboratory of S. Jung Yona et al., 2013 
Mouse: Cebpb-/- Laboratory of R.C. Smart Sterneck et al., 2006 
Mouse: LIP Laboratory of A. Leutz Bégay et al., 2015 
Mouse: CoKi Laboratory of A. Leutz Wethmar et al., 2010 
Mouse: RosaYFP Laboratory of F. Costantini Srinivas et al., 2001 
Mouse: CD45.2 (WT) Harlan Stock: B6.Cg.129P2 
Mouse: CD45.1 Harlan Stock: B6.SJL-PtprcaPep3b/BoyJ 
   
Oligonucleotides   
ChIP Universal Adaptor 5’ACACTCTTTCCCTACACGAC

GCTCTTCCGATC*T-3′, where 
* indicates phosphothionate 
modification. 

 

ChIP Indexed Adaptor 5'GATCGGAAGAGCACACGTC
TGAACTCCAGTCACXXXXXXA
TCTCGTATGCCGTCTTCTGTT
- 3', where XXXXXX is the 
barcode for sample multiplexing 

 

Y- Shaped Indexed adaptors Anneal ssUniversal Adaptor and 
ssIndexed Adaptors to obtain Y-
shaped Indexed Adaptors. 

 

ChIP PCR for 5'-
AATGATACGGCGACCACCGA
GATCTACACTCTTTCCCTACA
CGAC-3′ 

 

ChIP PCR rec 5’-
CAAGCAGAAGACGGCATACG
AGAT-3′ 

 

MARS-Seq barcoded RT 
primer 

CGATTGAGGCCGGTAATACG
ACTCACTATAGGGGCGACGT
GTGCTCTTCCGATCTXXXXXX
NNNNTTTTTTTTTTTTTTTTTTT
TN, where XXXXXX is the  

 

MARS-Seq ligation primer AGATCGGAAGAGCGTCGTGTAG, modified with a phosphate group at 5' 
and a C3 spacer (blocker) at the 3' 

MARS-Seq 2nd RT primer TCTAGCCTTCTCGCAGCACATC 



 

MARS-Seq P5_Rd1  
PCR forward 

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGC
TCTTCCGATCT  

MARS-Seq P7_Rd2  
PCR reverse 

CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTG
CTCTTCCGATCT 

  
Recombinant DNA 
pcDNA3.1 Addgene  
pGL4.10 Promega Cat# E665A 
pGL4.70 Promega Cat# E6881 
   
Software and Algorithms   
GraphPad Prism 6 GraphPad 

Software, Inc., 
Carlifornia 

 

FlowJo 8.7 TreeStar; 
FlowJo LLC; 
Ashland, 
Oregon 

 

MarkDuplicates http://broadinstit
ute.github.io/pic
ard/ 

 

Bowtie2 aligner version 2.2.5 http://bowtie-
bio.sourceforge.
net/bowtie2/inde
x.shtml 

 

HOMER http://homer.ucs
d.edu/homer/intr
oduction/install.
html 

 

DAVID https://david.ncifcrf.gov/ 
HISAT https://ccb.jhu.edu/software/hisat/index.shtml 
Picard http://broadinstitute.github.io/picard/ 
Other  
multinomial mixture-model 
algorithm 

this study http://compgenomics.weizmann.ac.il/ta
nay/?page_id=649 
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SUPPLEMENTARY Table legends  
 
 
 
Supplementary Table 1. Core gene expression in the identified four clusters by 

single cell RNA-Seq. Supporting text figure 3. 
 

 

 

Supplementary Table 2. Promoter and enhancer changes in Ly6C+, Ly6Cint and 
Ly6C- monocytes. Supporting text figure 4. 
Full list of H3K4me1, H3K4me2, H3K4me3 and H3K27ac changes in the three 

monocyte populations as identified and depicted in the X/Y graphs of Fig. 4A.  
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Supplementary Figure 1. GO-enrichment and TF expression in monocytes and 

their precursors. Supporting main text figure 1. 
(A) P-values of selected GO-enrichment in the six clusters depicted in Fig. 1C. 

Significant changes in GO terms (biological processes) and in KEGG pathways 
are shown. Redundant or overlapping enrichments were not depicted. 

(B) Transcription factor expression in the six clusters depicted in Fig. 1C. TF were 
taken from the riken website (http://genome.gsc.riken.jp/TFdb/tf_list.html) and 
from http://www.tfcat.ca/index.php. 
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Supplementary Figure 2. Independent monocyte profiling by RNA-Seq 
Supporting main text figure 1. 
(A) Expression analysis of an additional set of murine MDP, cMoP, BM Ly6C+ 

monocytes and the three circulating blood monocyte subsets Ly6C+, Ly6Cint and 
Ly6C- by RNA-Seq. Samples were analyzed in duplicates and analysis was 
restricted to genes, which showed a 2-fold difference in at least one cell 
population and sample. K-means clustering was set to n = 8.  

(B) Examples of gene expression from the eight identified clusters depicted in C. 
Shown are the mean sequence reads ± STD. Note that cd209a and MHCII-
related gene expression was in this experiment restricted to Ly6Cint monocytes 
and not expressed by Ly6C- monocytes. 

 Supporting main text figure 1. 



 

	

 
 
 
 



 

	

 
Supplementary Figure 3. Transferred BM Ly6C+ monocytes develop on the 

molecular level into splenic Ly6C- monocytes. Supporting main text figure 2. 
(A) Schematic view of monocyte transfer experiment. CD45.1+ Ly6C+ BM monocytes 

were purified by FACS sorting and 2x105 cells were injected into CD45.2 
congenic mice. 24h, 36h and 48h hours after injection, the transferred CD45.1+ 
CD11b+ CD115+ monocytes were re-isolated from the spleen by FACS sorting 
and analyzed by RNA-Seq. Splenic Ly6C+, Ly6Cint and Ly6C- monocytes from 
the host mice were analyzed by RNA-Seq in parallel and served as control. 

(B) Histogram (left panel) and mean fluorescence intensity (MFI; right panel) of Ly6C 
expression on transferred splenic monocytes 24h (red), 36h (grey) and 48h 
(blue) hours after injection. Two recipients per time point were analyzed and the 
mean MFI ± STD are shown.  

(C) Expression analysis of transferred monocytes from the spleen before, 24h, 36h 
and 48h after injection as well as host splenic Ly6C+, Ly6Cint and Ly6C- 
monocyte subsets by RNA-Seq. We used the same clustering as shown in Fig. 
2C to indicate overlapping transcriptional regulation in both organs.  

(D) Examples of expression levels from individual genes identified by the cluster 
analysis depicted in C. Shown are the mean sequence reads ± STD. 

(E) Correlation analysis of the expression signature of splenic monocytes isolated 
48h after transfer against host splenic Ly6C+, Ly6Cint and Ly6C- monocyte 
subsets. The 1472 differential expressed genes without the BM-specific genes 
from C (cluster II-VIII) and the average of the duplicates were used for calculation. 
Sequence reads are presented as log2 values. 

 
  



 

	

 
 
 
 
Supplementary Figure 4. GO-enrichment in host and transferred blood 

monocytes and conversion pattern of the 24h monocyte graft. 
Supporting main text figure 2. 
(A) P-values of selected GO-enrichment in the eight clusters depicted in Fig. 2C. The 

main GO terms belong to biological processes and cellular component. 
Redundant or overlapping enrichments were not depicted. 

(B) Correlation analysis of the expression signature of monocytes isolated 24h after 
transfer against host Ly6C+, Ly6Cint and Ly6C- monocyte subsets. The 1472 
differential expressed genes without the BM-specific cluster I from Fig. 2C were 
used (cluster II-VIII) and the average of the duplicates were used for calculation. 
Sequence reads are presented as log2 values. 

 
  



 

	

 

 
 
  



 

	

Supplementary Figure 5. FACS gating strategy of monocytes for single cell 
RNA sequencing. Supporting main text figure 3. 

(A) Monocytes were isolated from the blood of wt mice by CD115-biotin followed by 
anti-biotin MACS enrichment without red blood cell lysis. Cells were defined and 
sorted as lineage negative (B220, CD19, CD3, NK1.1, Ly6G, TCRγδ), CD11b+ 
and CD115+.  

(B) Read and UMI count of the 1463 analyzed single cells.  
(C) Distribution of the four clusters in the 1098 total monocytes (upper panel) and in 

the 365 Ly6Cint cells. 
(D) Detailed gene expression analysis of selected genes in the four clusters. 
(E) Bar diagram of average gene expression in the four clusters. Note that cd209a 

was specifically expressed in cluster II cells. A full list of the detected genes as 
average in each cluster can be found in Suppl. Tabl. 1. 

(F) FACS analysis of blood monocytes for MHCII (IAb) expression. A small subset of 
Ly6Cint monocytes express MHCII on their surface. 

(G) Clustering of 666 monocytes isolated from cx3cr1Cre:r26-YFP mice according to 
their gene expression profile. Three main clusters could be identified in these 
mice with cluster I comprising of 212 cells, cluster II 50 cells and cluster III with 
404 cells. Shown are on the X-axis cells and on the Y-axis genes.  

(H) Marker gene expression in each cell identifies cluster I as Ly6C+ monocytes, 
cluster II as Ly6Cint monocytes and cluster III as the Ly6C- subset. Cluster II 
monocytes were characterized by MHCII gene expression. 

 
  



 

	

 
 
  



 

	

Supplementary Figure 6. Correlation of sequencing samples. 
Supporting main text figure 4. 
(A) Correlation analysis of the duplicates performed for Ly6C+ and Ly6C- monocytes. 

Shown are the correlations for RNA-Seq, ATAC, H3K4me1, H3k4me3 and 
H3k27ac. Data are presented in log2 values. 

(B) Examples of H3K4me1 signal in Ly6C+ (dark red), Ly6Cint (red) and Ly6C- 
monocytes (orange).  

(C) Examples of open chromatin structures in Ly6C+ (dark red), Ly6Cint (red) and 
Ly6C- monocytes (orange). Shown are IGV tracks spanning 100kb. The location 
of the indicated gene is depicted as a black arrow. Grey boxes indicate changes 
in open chromatin areas.  

(D) TF expression in Ly6C+, Ly6Cint and Ly6C- monocytes, which were further 
predicted by Homer motif enrichment as shown in Fig. 4F. 
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