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Abstract 

Human lysine demethylase (KDM) enzymes (KDM1–7) constitute an emerging class of 

therapeutic targets, with activities that support growth and development of metastatic disease. By 

interacting with and co-activating the androgen receptor, the KDM4 subfamily (KDM4A–E) 

promotes aggressive phenotypes of prostate cancer (PCa); Knockdown of KDM4 expression or 

inhibition of KDM4 enzyme activity reduces the proliferation of PCa cell lines and highlights 

inhibition of lysine demethylation as a possible therapeutic method for PCa treatment. To 

address this possibility, we screened the ChemBioNet small molecule library for inhibitors of the 

human KDM4E isoform and identified several compounds with IC50 values in the low 

micromolar range. Two hits, validated as active by an orthogonal ELISA-based assay, displayed 

moderate selectivity towards the KDM4 subfamily and exhibited anti-proliferative effects in 

cellular models of PCa. These compounds were further characterized for their ability to maintain 

the transcriptionally silent histone H3 tri-methyl K9 epigenetic mark at sub-cytotoxic 
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concentrations. Taken together, these efforts identify and validate a hydroxyquinoline scaffold 

and a novel benzimidazole pyrazolone scaffold as tractable for entry into hit-to-lead chemical 

optimization campaigns. 

Keywords epigenetics, lysine demethylase (KDM), cancer, high-throughput screening (HTS) 

Introduction 

Histone modifying enzymes facilitate the regulation of gene expression by mediating DNA 

accessibility. Methylation of specific lysine residues within histone tails by methyl transferase 

activity is known to down-regulate gene expression via formation of transcriptionally silent 

heterochromatin. Conversely, demethylation by lysine demethylase (KDM) enzymes activates 

gene transcription by initiating a process of chromatin decondensation which yields 

transcriptionally active euchromatin. To date, approximately twenty human KDM enzymes have 

been identified, each possessing the ability to demethylate mono-, di- or tri-methylated lysine 

residues within unstructured regions of histone tails. Together, these enzymes help regulate 

several disparate and coordinated cellular processes which function normally to maintain 

homeostasis and abnormally during the development of disease. 

The Jumonji domain (Jmjd)-containing KDM4 subfamily comprises five functional 

members, KDM4A–E. Each isoform contains N-terminal catalytic Jumonji N- and C-domains 

that can demethylate di- and tri-methylated lysine 9 (KDM4A–E) and lysine 36 (KDM4A–C) of 

histone H3 (denoted H3K9/K36me2/3). Demethylation requires as co-substrates Fe2+ and α-

ketoglutarate (α-KG). Substrate turnover generates succinate, CO2, formaldehyde and 

demethylated H3K9/36 as products. 
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Since their discovery, KDM4 enzymes have been investigated for their ability to regulate 

pathways that culminate in metastatic disease. KDM4A–C isoforms are implicated1–5 in 

aggressive phenotypes associated with metastatic prostate cancer (PCa). By associating with and 

co-activating2,3 the androgen receptor (AR), these isoforms initiate a process of chromatin 

decondensation that renders AR-regulated gene promoters accessible for transactivation. 

Ultimately, this process enables PCa cells to grow and divide by expressing factors that give 

tumor cells selective growth advantage3. Initial experiments have demonstrated that knockdown 

of KDM4C gene expression reduced growth3 of various PCa cell lines and suggested a novel 

therapeutic approach for treatment of this often lethal disease. 

The extended Jmjd-containing KDM (Jmjd-KDM) superfamily is now recognized to play 

much wider roles in cancer biology and is implicated in supporting growth phenotypes of several 

disparate cancer lineages (reviewed in reference6). Given these broad and overlapping 

associations in cancer biology, KDM enzymes are increasingly found in chemical biology 

campaigns aimed at designing molecular probes which modulate their activity. 

Several small molecules are described as inhibitors of Jmjd-KDMs (reviewed recently by 

McAllister et al.7). Most are analogs or structural mimics of α-KG, and they inhibit the enzyme 

by interfering with co-substrate turnover. These inhibitors share structural determinants of 

binding with α-KG, including Fe2+ chelation and formation of distal active-site hydrogen bonds.8 

Of these, the most characterized include N-oxalylglycine, as well as compounds bearing 8-

hydroxyquinoline, 2,4-pyridine dicarboxylic acid and bipyridyl motifs. 1,9–13 In addition, a unique 

compound (JIB-04) was discovered14 that non-competitively inhibits Jmjd-KDMs with respect to 

α-KG. 
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These initial reports have fueled considerable interest in designing selective inhibitors of 

the Jmjd-KDM superfamily. Here, we report our efforts of screening for inhibitors of the human 

KDM4 family of lysine demethylase enzymes. By means of a formaldehyde dehydrogenase 

coupled-enzyme assay, we screened the ChemBioNet library (CBN)15 for inhibitors of 

recombinant human KDM4E. As expected, some scaffolds were identified with motifs known to 

inhibit KDM4 enzymes. In addition, we identified several compound classes with unique 

chemistries that are as-of-yet undescribed. Inhibitory properties of the active compounds were 

confirmed by a novel enzyme-linked immunosorbent assay (ELISA) of KDM4E activity. 

Selectivity was examined by testing for inhibition against two representative enzymes from the 

extended superfamily of Jmjd-KDM enzymes. All members of the KDM4 subfamily were 

inhibited with similar potencies, highlighting the challenge of designing isoform-specific 

inhibitors should such a need arise. However, some selectivity was observed across the two 

distally related KDM enzymes of the Jmjd-KDM superfamily. Furthermore, select compounds 

elicited cytostatic responses in KDM4-expressing PCa cell lines including one compound that 

enriched levels of the H3K9me3 epigenetic mark relative to untreated cells. Collectively, these 

compounds represent scaffolds with tractable features that are unexplored in published hit-to-

lead campaigns. 

Materials and Methods 

Chemicals and Reagents 

Selected compounds of the ChemBioNet library (CBN IDs: 101848, 102735, 207192, 211191, 

300553, 303229, 400447 and 402050) were purchased from Molport SIA (Riga, LV). The 

KDM4E inhibitor ML324 was purchased from ActiveMotif (Carlsbad, USA). Enzymology 

reagents (α-ketoglutarate (α-KG), sodium ascorbate, Fe(NH4)2(SO4)2, NAD+ and TMB ELISA 
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substrate) were purchased from Sigma-Aldrich (St. Louis, USA). Antibodies were purchased 

from Thermo Fisher Scientific (Waltham, USA) (rabbit pAb H3K9me3, Invitrogen #49-1008), 

Abcam (Cambridge, UK) (mouse mAb H3K9me3, #ab6001and rabbit pAb histone H3, #ab1791), 

BioVision (Milpitas, USA) (rabbit pAb histone H4, #3624-100) or Cell Signaling Technology 

(Danvers, USA) (HRP-mouse anti-rabbit IgG, #7074 or HRP-rabbit anti-mouse IgG, #7076). 

Plasmids, cDNA Clones and Enzymes 

cDNA clones encoding the catalytic domains of human KDM enzymes were purchased from 

Source Bioscience (Nottingham, UK). The catalytic domain of KDM4A (KDM4Acat) comprising 

residues 1-359 was cloned into the pQTEV expression vector containing an N-terminal 

hexahistidine tag. KDM4Bcat (1-347) was cloned into the pET-28a expression vector and 

expressed as an N-terminal hexahistidine variant as previously described.4 KDM4Dcat (1-378) 

was cloned into the pNH-TrxT expression vector and expressed as a fusion protein bearing an N-

terminal hexahistidine plus thioredoxin tag. KDM4Ccat (1-347), KDM4Ecat (1-337) and PHF8cat 

(Plant Homeodomain Finger protein 8, residues 115-483) were gifts from the Structural 

Genomics Consortium Oxford (Oxford, UK) and were expressed in E. coli, either as N-terminal 

hexahistidine variants from the vector pNic28-Bsa4 (KDM4C/Ecat), or from pNH-TrxT 

(PHF8cat). The catalytic domain of KDM2A (1-517) was cloned into pQTEV and expressed as a 

hexahistidine variant. Formaldehyde dehydrogenase (FDH) from Pseudomonas putida was 

purchased from Sigma-Aldrich (St. Louis, USA). 

Enzyme Purification 

All KDM enzymes were purified by affinity and size exclusion chromatography as previously 

described (KDM2A,16 KDM4A–E,4,9,17,18 and PHF819). With the exception of KDM4B, all 

constructs were processed by removal of N-terminal affinity tags prior to experimentation. 
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KDM Coupled-Enzyme Assay 

KDM activities were measured by a fluorescence-based coupled enzyme assay which measures 

reduction of NAD+ to NADH by the coupling enzyme, formaldehyde dehydrogenase (FDH).20,21 

The assay used as KDM4A–E substrate a synthetic octapeptide (Biosyntan GmbH, Berlin, DE) 

corresponding to residues 8-15, AR-Kme3-STGGK, of histone H3 where (Kme3) represents tri-

methylated lysine 9. A second peptide used as KDM2A/PHF8 substrate corresponded to residues 

32-42, ATGGV-Kme2-KPHRY of histone H3, where (Kme2) represents di-methylated lysine 36. 

KDM4A–E were present at 1.5 µM, all other KDM enzymes were present at 2.0 µM. Details of 

the assay are described below in the High-Throughput Screen section. For validation studies, 

inhibition data were analyzed using a log[inhibitor] vs. normalized response model with variable 

slope as implemented in GraphPad Prism version 5.01 (Graphpad Software, La Jolla, USA). 

High-Throughput Screen 

Screening was performed at the Screening Unit of the Leibniz-Institut für Molekulare 

Pharmakologie (FMP), Berlin. The ChemBioNet library was screened to identify inhibitors of 

KDM4E. The library comprised 32,032 small molecules that were curated based upon diverse 

chemical features represented in bioactive compounds of the World Drug Index.15 During the 

primary screen, compounds were tested singly in 384-well microtiter plate (MTP) format 

analogous to previously reported screens against KDM4E.10,21 The final assay was performed by 

first pipetting 10 µl of a 2-fold concentrated enzyme solution containing purified KDM4E and 

HEPES buffer into 368 wells of a 384-well MTP. Buffer alone was pipetted into the remaining 

16 wells to serve as background controls. Compounds were then transferred (10 µM final 

concentration, 1% v/v final DMSO concentration) to each well, and the plate was incubated for 

10 min at room temperature. Enzymatic reactions were initiated by adding 10 µl of 2-fold 
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substrate solution containing HEPES buffer, H3K9me3 peptide, Fe(NH4)2(SO4)2, α-KG, sodium 

ascorbate, NAD+ and FDH. Final assay conditions were: KDM4E (1.5 µM), H3K9me3 (50 µM), 

Fe(NH4)2(SO4)2 (40 µM), α-KG (1 mM), sodium ascorbate (2 mM), NAD+ (1 mM), FDH (0.2 

U/ml) and HEPES (20 mM, pH 7.5). Controls for DMSO-treated (1% v/v) enzyme and no-

enzyme background (n=16, each) were included on each plate for calculation of Z’-factors22 and 

to measure the robustness of screening. Initial velocities were measured over a period of 10 min 

from the increase in fluorescence due to FDH-coupled reduction of NAD+ to NADH. 

Fluorescence measurements (λex = 355 nm, λem = 460 nm) were performed on a Safire 2 plate 

reader (Tecan Group Ltd., Männedorf, CH). Resulting initial velocities were used to calculate Z-

scores for each reaction and to identify hits as statistical outliers from the distribution across all 

plates.22 Finally, compounds were titrated to calculate IC50 values as described in the Results 

section. As an initial validation of selected HTS hits, the FDH assay was employed in 96-well 

format using a FLUOstar Optima plate reader (BMG Labtech GmbH, Ortenberg, DE). 

KDM4 ELISA (CTH-ELISA) 

An orthogonal immunoassay was used as a secondary test to validate KDM4 inhibitors. The 

assay used as substrate core histones purified from calf thymus (CTH type II-A, Sigma-Aldrich, 

St. Louis, USA) and quantified directly the status of H3K9 tri-methylation. First, CTH were 

diluted into coating buffer (100 mM sodium carbonate, pH 8.0) to a final concentration of 0.02 

µg/ml. Wells of a 96-well MTP were then coated with 1 µg CTH and incubated overnight at 4 ˚C 

with shaking. Wells designated as blanks were coated with buffer alone. The following day, 

plates were blocked for 2 h at 25 ˚C with blocking buffer (5% w/v) bovine serum albumin (BSA, 

AppliChem GmbH, Darmstadt, DE) in PBS (phosphate buffered saline) and washed 4 times for 5 

min at 25 ˚C with ELISA wash buffer PBST (PBS plus 0.1% v/v Tween® 20). Wells were then 
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conditioned by washing twice for 5 min with KDM reaction buffer (20 mM HEPES pH 7.5 plus 

0.01% v/v Tween® 20). Meanwhile, KDM reaction components were prepared as 2-fold 

concentrated solutions containing a KDM4 isoform plus additives (HEPES, Fe(NH4)2(SO4)2, 

sodium ascorbate, Tween® 20). Concentrated enzyme mixtures were pre-diluted into water (100 

µl 2-fold enzyme solution plus 46 µl H2O for each concentration of inhibitor tested). Inhibitor 

solutions dissolved in 100% DMSO were then added to enzyme mixtures (4 µl to each dilution 

of enzyme described above) and incubated on ice for 10 min prior to enzyme activation. Pure 

DMSO was added to enzyme mixtures in parallel as vehicle control. Enzymes were finally 

activated by a 1:4 dilution of a 4-fold solution containing concentrated α-KG. Final enzyme 

mixtures (200 µl) comprised: 100 nM KDM4 isoform in 20 mM HEPES pH 7.5, 10 µM 

Fe(NH4)2(SO4)2, 1 mM sodium ascorbate, 1 mM α-KG and 0.01% (v/v) Tween® 20. When 

applicable, DMSO was present at 2% (v/v). 

Demethylation reactions were initiated by pipetting in triplicate, 50 µl of activated KDM4 

solutions into appropriate wells of the CTH-coated MTP. Demethylation proceeded for 2 h at 37 

˚C. Plates were then washed 4 times for 5 min with PBST containing 1% (w/v) BSA (PBST-

BSA). Levels of H3K9me3 were detected by addition of primary antibody (rabbit, anti-human 

pAb to H3K9me3, Invitrogen, #49-1008) diluted 1:500 into blocking buffer and incubation of the 

plate for 60 min at 25 ˚C. Plates were then washed 4 times for 5 min with PBST-BSA before 

adding horseradish peroxidase (HRP)-coupled secondary antibody (mouse, anti-rabbit IgG, CST, 

#7074). Plates were incubated for 60 min at 25 ˚C, washed 4 times for 5 min with PBST-BSA 

and developed for 20 min at 25 ˚C by adding ELISA TMB substrate. Finally, reactions were 

quenched with 0.2 M H2SO4 before reading the absorbance at 450 nm with a FLUOstar Optima 

plate reader. Raw values were corrected for background absorbance from blank wells, and the 
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percentage of H3K9me3 remaining was expressed relative to wells containing 1 µg CTH. Data 

were analyzed with GraphPad Prism 5.01 as described above for the FDH-coupled enzyme 

assay. 

Cell Viability Assay 

Human prostate cancer cell lines (LnCaP, DU145 and PC-3) originated from ATCC and were 

maintained and propagated according to accompanied protocols. Cell viability was evaluated by 

the alamarBlue assay (Thermo Fisher Scientific, Waltham, MA) according to the manufacturer’s 

protocol. The assay measures reduction of resazurin to resorufin in healthy cells. For all cell lines 

tested, 10,000 healthy cells were seeded into wells of an MTP (n = 6, for each test condition) and 

allowed to attach overnight at 37 ˚C, 5% CO2. Compounds were added the following day (0.5% 

final DMSO (v/v)) and incubated for 48 h prior to addition of the alamarBlue reagent. Presence 

of resorufin was detected by its fluorescence in a Tecan Infinite F200 Pro plate reader (λex = 570 

nm, λem = 590 nm). Percent viability was calculated as the ratio of fluorescence from wells 

containing cells ± inhibitor relative to the fluorescence from wells containing cells grown in 

medium alone (healthy cell control) and was normalized relative to cell-free medium (dead cell 

control). 

Nucleosomal ELISA (Nu-ELISA) 

Global levels of methylated chromatin from cells grown in the presence of selected inhibitors or 

DMSO alone were measured by a Nu-ELISA, which quantifies a given epigenetic histone 

modification relative to a static control.23 In our implementation, PCa cells (LnCaP, DU145 and 

PC-3 cell lines; 5 × 105 cells each) were seeded into wells of a 6-well plate containing 2 ml of 

each respective growth medium. Cells were allowed to attach overnight at 37 ˚C, 5% CO2. The 

following day, culture medium was aspirated and replaced with test media: basal (growth 
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medium alone) or growth medium supplemented with KDM4 inhibitors (25 µM ML324, 30 µM 

CBN 207192, 100 µM CBN 209350 or DMSO alone). The KDM4 inhibitor ML324 was used as 

a cell-permeable control.24 Cells were then grown an additional 48 h under test conditions at 

which point medium was aspirated, cells washed twice with PBS, plates flash-frozen in liquid N2 

and stored overnight at -80 ˚C. The following day, plates were thawed at room temperature, and 

wells containing freshly lysed cells were resuspended in micrococcal nuclease (MNase) buffer as 

previously described.23 Crude histone extracts were processed23 by MNase digestion (Sigma-

Aldrich, St. Louis, USA) and used to coat wells of a 96-well MTP. Plates containing the 

immobilized nucleosomal preparations were then blocked with BSA and probed for levels of the 

H3K9me3 modification by addition of primary antibody (mouse, anti-human H3K9me3: Abcam 

#ab6001) diluted 1:100 in blocking buffer (5% (w/v) BSA in PBST). Second, identically-coated 

plates were probed for static levels of histone H4 (rabbit, anti-human histone H4: BioVision 

#3624) to serve as a loading control for normalization of H3K9me3 levels detected in the first 

plate. Separate, identically-coated plates were also probed to evaluate levels of histone H3 

(rabbit, anti-human histone H3: Abcam #ab1791) in order to assess whether growth conditions 

affected global levels of this histone. After a 60 min incubation at 25 ˚C, plates were washed, 

probed with HRP-conjugated secondary antibody and developed as described above for the 

KDM activity ELISA. The resulting colorimetric profiles from both plates were corrected by 

subtracting absorbance values from blank wells. Finally, signals arising from H3K9me3 detection 

were expressed as a ratio relative to signals from identical wells of the paired plate that was 

probed with anti-H4 IgG. The resulting H3K9me3/H4 ratios were evaluated for statistical 

significance relative to DMSO-treated samples using a paired Student’s t-test as implemented in 

Graphpad Prism 5.01. 
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Results 

Identification of Small Molecule Hits 

To initiate the HTS, we utilized a fluorescence-based and formaldehyde dehydrogenase-

mediated coupled enzyme assay to measure inhibition of recombinant human KDM4E. The 

ChemBioNet small molecule library was then screened to search for novel KDM4E inhibitors. 

Global analysis25 of the primary screen revealed it to be robust, with a mean Z’ factor of 0.7 ± 

0.2 across all plates tested (Fig. 1A). The complete dataset therefore possessed statistical rigor 

needed to proceed with hit identification. For this, we employed a strategy that combined 

statistical scoring methods with a filtering scheme to exclude false positives (Fig. 1B). Of all 

compounds tested, 22 generated non-numeric initial velocities that likely arose from auto-

fluorescent compounds which saturated the fluorescence detector during data acquisition. After 

omitting these compounds, 32,010 remained for further analysis. From these data, Z-scores were 

calculated22 and plotted as a frequency distribution across the range of plates tested. A compound 

was designated as initial hit if its Z-score value was less than -3.5. Some compounds manifested 

as artifacts with apparent activities less than negative controls (samples without enzyme). To 

account for such potential false positives, samples with relative activity more than 20% below 

negative controls were omitted. Initially, 828 hits met the criteria for selection when present at a 

single concentration of 10 µM. Of these, the 704 most active compounds were selected to 

validate KDM4E inhibition in duplicate (10 µM compound concentration) and to screen for 

activity against the coupling enzyme, FDH. Cross-correlation analysis revealed compounds that 

favored inhibition of KDM4E over FDH (Fig. 1C); 550 compounds were found to inhibit FDH 

by more than 50% relative to controls and were omitted from further consideration. In total, 154 

compounds were identified as KDM4E-specific inhibitors. These 154 compounds were selected 
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to calculate dose-dependent inhibition profiles against KDM4E and against FDH. Compounds 

were titrated in duplicate from 200 nM to 50 µM, and the resulting inhibition profiles were fit to 

a four-parameter sigmoidal function to identify values of IC50 with IRLS robust regression 

methods using the software package Pipeline Pilot (Biovia, San Diego, USA). Compounds were 

then ranked by IC50 and examined for potential artifacts that could lead to their classification as 

false positive. Several compounds exhibited responses at high concentration indicative of assay 

interference due to their auto-fluorescence. We suspected that fluorescence from these 

compounds might contribute to the presumptive NADH fluorescence measured during data 

collection. To confirm this, we compared the fluorescence of each compound at 100 µM in PBS 

(1% (v/v) DMSO) to an equimolar solution of NADH in PBS and to 100 nM solutions of 

fluorescein or rhodamine B in PBS. Of the 154 hits, nearly 75% were considered to be false 

positives based on comparisons between fluorescence profiles (Suppl. Fig. S1). By omitting 

these auto-fluorescent compounds, we focused on 47 final compounds (Suppl. Tables S1, S2) as 

primary hits for further validation and characterization. In addition to our identification of false 

positives, we recognize the possibility that the FDH enzyme used in the coupled enzyme assay 

has the potential to contribute as a source of false negatives. Commercial sources of this material 

are stabilized by bovine serum albumin at concentrations that can bind and sequester otherwise 

active molecules. With this caveat in mind, we did not explore whether albumin censors the 

available concentrations of molecules in the CBN library. 

Characterization of Selected Hit Scaffolds 

Compounds designated as KDM4E inhibitors were further characterized by similarity and by 

known properties existing in curated databases. By clustering these hits into classes, we 

evaluated the chemical space selected during screening and rationalized whether the compounds 
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merit further investigation into a hit-to-lead campaign. Since optimization campaigns require 

significant resources, we defined essential properties of an ideal hit. At this stage of the 

screening process, we sought hits that could inhibit KDM4 enzymes in a competitive manner. 

We avoided compounds that could irreversibly inhibit enzymes as they might not possess the 

selectivity required to target KDM4 in living cells. Furthermore, we focused on compounds that 

were neither over-represented as hits from in-house databases nor from curated online databases. 

Such frequent hitters may arise due to assay interference (PAINS compounds) and could 

complicate downstream analyses. Finally, we focused on compounds with scaffolds that are 

suitable for derivatization in order to gain insight into the structure-activity relationship (SAR) at 

an early stage. 

Classification of the chemical space selected during the HTS resulted primarily in the 

clusters outlined in Supplemental Table S1. Most clustered either as quinones (Class A) or 

catechols/chelators of iron (Class B). Quinones are known for reactive proclivity towards protein 

thiols and were not considered for further analysis. Hits classified either as catechols or as those 

bearing motifs known to scavenge metals were also omitted from further consideration due to the 

possibility that simple Fe2+ scavenging accounted for their inhibitory effect. Compounds in 

several other classes were also eliminated from further consideration given that they were either 

prone to oxidation (Class C), too large for optimization (Class D), designated as frequent hitters 

(Classes E and F) or decorated with more than one nitro group (Class G). 

Eight compounds were identified as singletons and could not be assigned to any group. 

These hits were therefore grouped together into an orphan class (Suppl. Table S2). Of these, we 

excluded compound CBN 102502, from further consideration due to the possibility of acting as 
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Fe2+ scavenger and compounds CBN 203240 and CBN 401835 due to the detection of additional 

masses in samples taken from the HTS library. 

Validation of Selected Hits 

After the initial assessment of HTS hit properties, we identified eight classes of 

compounds considered tractable for follow-up analysis (Suppl. Table S3). Compounds from 

each of these eight classes were either purchased from commercial vendors, or synthesized and 

validated as active: first by the FDH-coupled fluorescence assay and second by a novel CTH-

ELISA. Most of the compounds were eventually classified as false positives for several reasons. 

For example, the purchased compounds CBN 211191, 400447 and 402050 were all found to be 

highly autofluorescent in the confirmatory FDH assay. Compounds CBN 101848 and CBN 

102735 were both found to be inactive after re-synthesis or after re-purification of purchased 

material (102735). Finally, the piperidinyl methanamine class of compounds was either inactive 

in orthogonal enzyme assays (CBN 300553) or was unstable in aqueous solution (CBN 303229). 

Given these outcomes, false positive compounds were omitted from further consideration. 

Listed in Table 1 are the remaining two HTS hits assessed for validation. Prior to this, we 

assessed each compound for purity. Analytical LC-MS experiments revealed compound CBN 

207192 to be approximately 75% pure, while CBN 209350 was found to be nearly 100% pure 

(Suppl. QC data). Both inhibit KDM4E in the low micromolar range and also meet relevant 

descriptors such as the Lipinski rules (Suppl. Table S4), and they were therefore considered 

tractable for validation. Importantly, we identified CBN 207192 which bears a hydroxyquinoline 

motif known to inhibit Jmjd-KDM enzymes.10,11  Identification of this hit therefore validated our 

screening strategy and strengthened our interpretation that hits of interest were not false 

positives. The second compound, CBN 209350, represents a novel scaffold with chemistry that is 
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as-of-yet undescribed in literature describing KDM inhibition. In confirmatory fluorescence 

assays (Fig. 2A), values of IC50 for both compounds generally agreed with those measured 

during the primary screen (Table 1). In contrast, the coupling enzyme formaldehyde 

dehydrogenase, was inhibited to a lesser extent (Fig. 2B).  

We further employed an ELISA-based method as a second and independent measure of 

inhibition which directly measures the methylation status of a core histone substrate. Similar to 

the confirmatory fluorescence-based assay, both HTS hits were generally found to be active by 

ELISA (Fig. 2C; Table 1). Excellent agreement between IC50 values from the fluorescence 

assay and ELISA were obtained for compound CBN 207192, whereas 209350 exhibited an 

approximately 100-fold weaker IC50 value by the ELISA. However, 209350 repeatedly yielded 

unique bi-phasic inhibition curves in both the fluorescence assay and the ELISA (Suppl. Fig. 

S2). When the CTH-ELISA data were fit to a bi-phasic inhibition model, a lower IC50 value of 

12.5 µM was evident (in agreement with the FDH assay), followed by a weaker inhibitory phase 

(apparent IC50 = 800 µM) (Suppl. Fig. S2). The reason for this discrepancy remains a topic for 

further investigation. 

KDM Selectivity 

Employing the FDH-coupled fluorescence assay and the CTH-ELISA, validated compounds 

were tested for selectivity within members of the KDM4 family and across two distal members 

of the Jmjd-KDM superfamily. Values of IC50 indicate that these compounds were not selective 

within the KDM4 isoform subfamily (Suppl. Table S5). Similar results were obtained by the 

CTH-ELISA; All KDM4 isoforms were inhibited to similar degrees when tested at identical 

single inhibitor concentrations (Fig. 2D). These results are not surprising given the high degree 

of sequence similarity between catalytic domains of this family. However, moderate selectivity 
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was observed against two distal members of the extended Jmjd KDM superfamily. This appeared 

highest for compound CBN 209350 (IC50 [KDM4] = 4-8 µM), which inhibited KDM2A with an 

IC50 of 120 µM and PHF-8 with an IC50 of 30 µM (Fig. 2E,F; Suppl. Table S5). Whether these 

compounds exhibit selectivity across the entire superfamily of Jmjd-KDMs remains to be 

determined. 

Cell-Based Activities of Validated Hit Scaffolds 

We next tested whether validated compounds were active against human PCa model cell lines, 

including those that overexpress KDM4A/C (LnCaP, DU145 and PC-3 cell lines).2,26,27 All cell 

lines exhibited cytostatic responses at high inhibitor concentrations (Fig. 3A–C; Table 1). 

Compound CBN 207192 was consistently the most potent compound tested, whereas 209350 

generally displayed cytostatic effects at higher concentrations (> 500 µM). Of the PCa cell lines 

tested, PC-3 cells exhibited the weakest inhibitory response. The complete ChemBioNet library 

has also been profiled using standard assay settings for cell viability testing to assess the 

cytotoxicity of each compound against two standard non-cancer cell lines: HEK293 and HepG2 

(unpublished data). From these data, compound CBN 207192 exhibited some toxicity against the 

non-cancer HEK293 cell line, but not against the HepG2 cell line (data not shown). Conversely, 

CBN 209350 was not found to be toxic to either cell line. This might reflect a generally greater 

cytostatic potential for CBN 207192.  However, since we aim to inhibit KDM4 enzymes, we 

consider that differences in cytostatic properties could be due to differences in KDM4-dependent 

growth phenotypes, as well as the amount of KDM4 isoform expressed relative to each cell line. 

Methylation Status of Chromatin from Inhibitor-Treated Cells 

Finally, we tested whether cytostatic effects observed in the cell-based assays correlated with an 

increase in global levels of methylated chromatin. The recently described Nu-ELISA technique 
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enables direct quantification of dynamic epigenetic modifications relative to a static normalizing 

chromatin motif.23 For this study, we compared dynamic levels of the H3K9me3 mark relative to 

levels of a static sequence derived from the N-terminus of histone H4. Crude preparations of 

chromatin from cells grown in basal medium, medium plus DMSO (vehicle control), or medium 

plus KDM4 inhibitors were processed into nucleosomal units by addition of the enzyme 

micrococcal nuclease. KDM4 inhibitor concentrations were chosen based on results from cell 

proliferation assays. We selected concentrations (30 µM CBN 207192 and 100 µM CBN 

209350) that did not compromise cell viability, but which approached or exceeded the values of 

IC50 measured by the in vitro FDH assay (24 µM and 4 µM, respectively). 

As a cell-permeable control, we used the published KDM4 inhibitor, ML324 (IC50 against 

KDM4E = 29 µM, data not shown), which has been suggested to modulate global levels of 

chromatin methylation by inhibiting KDM4 enzymes.24 Methylation of H3K9 was quantified by 

an ELISA with a primary antibody that specifically detects the H3K9me3 modification. These 

values were normalized to an identical plate which was probed for static levels of histone H4. 

Normalized levels of H3K9me3 from cells grown in test conditions were compared relative to 

cells grown in basal medium plus DMSO. 

Chromatin methylation levels profiled by this approach are depicted in Figure 3. Global 

levels of the H3K9me3 epigenetic mark remained unchanged in LnCaP and DU145 cell lines 

grown in the presence of 0.5% (v/v) DMSO relative to cells grown in basal medium alone (Fig. 

3D, E). Treatment with 25 µM ML324 caused a significant increase in H3K9 methylation 

relative to treatment with DMSO in both LnCaP and DU145 cell lines. Similar results were 

observed when these cells were grown in the presence of 30 µM CBN 207192, whereas 

treatment with 100 µM 209350 did not alter chromatin methylation. By contrast, these same 
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treatments yielded markedly different results in the PC-3 cell line (Fig. 3F). This cell line 

exhibited a highly significant decrease in H3K9 methylation when treated with DMSO alone. 

Interestingly, both ML324 and 209350 appeared to cause a further decrease in methylation in the 

PC-3 cell lines compared to DMSO. However, similar to LnCaP and DU145 cell lines, treatment 

of PC-3 cells with 207192 caused a highly significant increase in H3K9 methylation compared to 

DMSO. This increase was also significant relative to H3K9me3 levels of PC-3 cells grown in 

basal medium (p=0.0195). In parallel, we tested whether fluctuations in global levels of histone 

H3 accounted for the changes observed in epigenetic levels of H3K9me3 (Suppl. Fig. S3). We 

considered that Histone H3 is not an ideal candidate for use as a normalizing motif since it is 

known to exist as an ensemble of three differentially expressed isoforms and is highly 

homologous to centromere protein A (CENPA), all of which are detectable by histone H3-

specific antibodies. Whereas H3 levels were mostly unaffected, they were significantly different 

from basal conditions for DU145 cells grown in the presence of both ML324 and 207192 

(apparent decreases) and for PC-3 cells grown in the presence of 209350 (apparent increase). 

However, these differences are small and are not expected to influence the H3K9me3/H4 ratios 

described above, especially given the opposing effects such differences would be expected to 

exert on the magnitude of the ratio. Taken together, these results indicate that treatment of PCa 

cell lines with membrane-permeable compounds ML324 (LnCaP and DU145 cell lines) and 

207192 (LnCaP, DU145 and PC-3 cell lines) resulted in increased levels of H3K9 methylation 

compared to cells grown in culture medium alone. This outcome is expected if KDM enzymes 

are inhibited. Reduced levels of H3K9 methylation from PC-3 cells grown in the presence of 

DMSO, ML324 or 209350 possibly indicate a unique response to cytotoxic challenge compared 

to the other cell lines tested. In addition, given the relatively high concentration of inhibitors 
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used in our cell-based assays, we recognize that off-target effects may also contribute to the 

observations discussed above. 

Discussion 

The discovery that KDM enzymes promote cancer cell growth has prompted several campaigns 

focusing on inhibitor development and the therapeutic potential that lies therein. Here we 

describe the identification of two scaffolds that inhibit members of the Jmjd-KDM enzyme 

superfamily. We validated our HTS campaign as successful by identifying CBN 207192 which 

bears a scaffold known to inhibit KDM4 isoforms. We also provide initial evidence for 

selectivity of the benzimidazole pyrazolone scaffold for the KDM4 family of isoforms and 

demonstrate that both HTS hits exhibit anti-cancer effects by reducing the proliferation of PCa 

cell lines. These results highlight the promise of compounds 207192 and 209350 as interesting 

candidates for further investigation by structural and biochemical methods and possibly for 

immediate entry into hit-to-lead campaigns. 

Compound CBN 207192 contains the well-characterized 8-hydroxyquinoline (8-HQ) 

motif known to chelate iron in the KDM4A active site. Crystal structures of this fragment bound 

to KDM4A (PDB ID 3NJY, 4BIS) revealed how the motif chelates active site iron.10,11 The 

substituted ring position observed in 207192 opposes that reported from other 8-HQ inhibitors, 

revealing a relatively unexplored region for further modification. It most closely resembles a 

piperazine-substituted 8-HQ inhibitor developed by Schofield and colleagues (PDB ID 3RVH). 

These similarities suggest that 207192 might chelate the metal center within the KDM4 active 

site if the hydroxyquinoline ring flips its orientation relative to that observed in the crystal 

structures noted above (Fig. 4A, B). Furthermore, if 207192 chelates iron in this orientation, its 

piperazine ring might still contact the enzyme as observed in PDB 3RVH. 
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We conclude that the novel KDM4 inhibitor CBN 209350 exhibits features most 

intriguing for further investigation. First, the compound represents a scaffold with properties that 

are as-of-yet undescribed in KDM inhibitors. Second, the compound is active in orthogonal 

enzyme assays and exhibits some specificity towards KDM4 enzymes. Third, it displays 

cytostatic activity in PCa cell lines at higher concentration. Fourth, it bears key structural 

similarities (Fig. 4C) to other privileged scaffolds which inhibit Fe2+/α-KG-dependent hypoxia 

inducible factor prolyl hydroxylase (PHD) enzymes such as the drugs Molidustat28 and a 

benzimidazole-2-pyrazole carboxylate described by Rosen and colleagues29. Finally, we suggest 

that its mode of binding (Fig. 4D) reflects those observed in crystal structures of a KDM2A-

specific inhibitor (triazolopyridine) bound to KDM4A (PDB ID 4URA), of a pyrazolopyridine 

inhibitor bound to KDM4A (PDB ID 4GD4), or of a diazole inhibitor bound to KDM5B (PDB 

ID 5FPL).30 A secondary binding mode observed in a crystal structure containing a 

benzimidazole fragment bound to the surface of KDM4D (PDB ID 4D6S) may also apply to 

209350. 

These most tractable scaffolds are active across orthogonal assays of KDM activity. Our 

use of the CTH-ELISA is advantageous in its simplicity and requires no specialized equipment. 

Materials used in the assay are familiar to most laboratories, and several measurements of IC50 

values are easily performed in a single day. A possible limitation of the assay is the need to work 

with well-characterized antibodies. We found that results varied with the commercial source of 

antibody used, indicating an essential need to characterize the antibody prior to use in such 

experiments. Despite this drawback, we obtained excellent agreement between IC50 values for 

compound CBN 207192. 
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Compound CBN 209350 was unique in that the IC50 calculated from the CTH-ELISA 

was a hundred times larger than that observed from the fluorescence assay. We are still 

investigating the source of this discrepancy, but it may result from what we identified as a bi-

modal response in the inhibition profiles. When these data from both assays are fit to a bi-modal 

inhibition model, we observe two values for IC50: a high-affinity value of around 12 µM, and a 

low-affinity value of around 800 µM. It is possible that fluorescence-based assays are more 

sensitive to measurements of the higher-affinity binding site where artifacts due to ligand 

fluorescence are less substantial. 

Anti-proliferative properties of the compounds in the KDM4-expressing PCa cell lines 

generally agreed with the KDM4E inhibition profiles generated by CTH-ELISA. Compound 

CBN 207192 was most cytostatic towards PCa cells, followed by 209350. We expected that 

compounds exerting a cytostatic response in PCa cells mediate their effects at least in part 

through inhibition of intracellular KDM4 enzymes. The resulting Nu-ELISA profiles from cell 

lines treated with the cell-permeable KDM4 inhibitor ML324 and our HTS hit CBN 207192 

provide some evidence to support this hypothesis. Chromatin methylation profiles from LnCaP 

and DU145 cells were similar; both exhibited significant increases in the H3K9me3 mark when 

treated with either compound. Conversely, we were unable to detect significant changes in 

methylation when these cells were treated with 209350 possibly reflecting hindered passage 

across the cell membrane. Calculation of physicochemical properties by the SwissADME server 

(www.swissadme.ch) reveals (Suppl. Table S4) that compound 209350 has a larger polar 

surface area (PSA) (87.7 Å2) and smaller clogP value (1.20) relative to 207192 (PSA 59.8 Å2 and 

clogP 2.71, respectively). These properties may render 209350 less permeable to cell membranes 

which could account for the observation that all cell lines tolerated higher concentrations of the 
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compound. Alternatively, hydrolysis of the methylester moiety by intracellular esterases might 

render the compound less active in living cells. The contrasting results obtained for the PC-3 cell 

line are more difficult to reconcile. Our results suggest that this cell line may respond to 

cytotoxic challenges in a different manner than LnCaP and DU145 cells. Whereas all cell lines 

used in this study derive from prostate carcinomas, they represent metastatic states of disease 

which arise from unique trajectories of biological selection and transformation. 

We now aim to evaluate the potential of these selected scaffolds in optimization 

campaigns. In particular, we will evaluate structure-activity-relationships around the 

benzimidazole pyrazolone scaffold of CBN 209350, to characterize it more thoroughly by 

enzyme kinetics, to assess its selectivity across a larger panel of Jmjd-KDM enzymes and to 

elucidate its mode of binding by determining crystal structures of KDM4-inhibitor complexes. 

We anticipate that such structural details will help clarify our observation of bi-phasic inhibition 

curves. Additionally, whether this and derivatives of the same chemotype inhibit cell growth by 

targeting KDM4 enzymes within the cellular milieu will be further investigated. Use of 

quantitative real-time PCR, reporter gene assays, and chromatin methylation profiling 

technologies will be of considerable value with such investigations. Ultimately, we believe that 

these efforts will generate useful tool compounds for probing epigenetic modifications in cell 

biology, and that they will contribute towards new therapeutic approaches to treat malignancies 

such as prostate cancer. 
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Table 1. Inhibition profiles of validated KDM4 inhibitors. 

 
KDM4 Inhibitor - ChemBioNet ID 
207192 209350 

 

 

 

HT
S 

FDH Assay IC50, µM 5 11 

Va
lid

at
io

n 

FDH Assay 

IC50, µM 24 4 
95% C.I.a 23 – 26 4 – 5 

Topa 94% 103% 
Bottoma 2% 2% 

Hill Slopea -1.8 -0.8 
Residualb 11% 6% 

CTH ELISA 

IC50, µM 28 581c 
95% C.I.a 23 – 33 486 – 696 

Topa 82% 100% 
Bottoma 9% 0% 

Hill Slopea 3.3 0.8 
Residualb 18% 10% 

Ce
ll 

Vi
ab

ili
ty

 

LnCaP 

IC50, µM 130 410 
95% C.I.a 116 – 137 375 – 449 

Topa 96% 101% 
Bottoma 0% 0% 
Hill Slopea -3.2 -1.5 
Residualb 2% 15% 

DU145 

IC50, µM 290 >1000 
95% C.I.a 198 – 416 NAd 

Topa 97% NAd 
Bottoma 0% NAd 

Hill Slopea -1.3 NAd 
Residualb 3% 69% 

PC-3 

IC50, µM 350 >1000 
95% C.I.a 208 – 600 NAd 

Topa 106% NAd 
Bottoma 0% NAd 

Hill Slopea -1.1 NAd 
Residualb 1% 79% 

a95% confidence interval (in units of µM) from best fits of data to inhibition model (n = 3); Top and 
Bottom refer to upper and lower limits of enzyme activity/cell viability from the mono-phasic inhibition 
model; Hill Slope refers to the slope of the best fit line to the inhibition model. 
bPercent residual enzyme activity or cell viability at highest inhibitor concentration tested 
cValues of IC50 = 12.5 µM and 800 µM when fit to a bi-phasic inhibition model. 
dNot applicable due to curve fitting results 
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Figure Legends 

Figure I. High-throughput screening workflow. (A) Distribution of initial screen Z’-factors 

across all plates tested. The mean Z’-factor is represented by the dotted horizontal line. (B) 

Schematic depicting HTS workflow and data processing strategies. See the Results sections for a 

detailed description. (C) Cross-correlation plot of KDM4E vs. FDH Inhibition. Cross-correlation 

analysis was used to identify HTS hits as defined by compounds that inhibit KDM4E with 

between -10% to 60% activity (“relative activity” between -0.1 and 0.6) and which inhibit the 

coupling enzyme (FDH) no more than 50% (“relative activity” > 0.5). Data points fitting these 

criteria lie within the boundaries of the depicted rectangle and constitute the 154 hits described in 

the main text. 

Figure 2. Validation of selected KDM4E inhibitors. Selected HTS primary hits were either 

purchased or synthesized and re-tested for inhibition by orthogonal assays of KDM4E activity. 

(A) KDM4E inhibition profiles determined by the FDH-coupled fluorescence assay. (B) 

Counter-screen depicting inhibition profiles of the coupling enzyme, formaldehyde 

dehydrogenase (FDH). (C) KDM4E inhibition profiles determined by the CTH-ELISA. (D) 

CTH-ELISA inhibition profiles of 50 µM CBN 207192 (blue bars) and 500 µM CBN 209350 

(red bars) tested against members of the KDM4 family. (E) KDM2A inhibition profiles 

determined by the FDH-coupled fluorescence assay. (F) PHF8 inhibition profiles determined by 

the FDH-coupled fluorescence assay. Inhibition data from compounds are depicted in all panels 

as follows: 207192 (blue squares), 209350 (red circles). Error bars in all plots represent mean ± 

SEM from three independent replicates. 

Figure 3. Activities of KDM4 inhibitors in cellular models of prostate cancer. (A–C) Cell 

viability profiles of validated HTS hits. Cell lines [LnCaP (A); DU145 (B); or PC-3 (C)] were 
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grown to near confluence and challenged with increasing concentrations of KDM4 inhibitors. 

Treated cells were then incubated for an additional 48 h and analyzed for viability by the 

alamarBlue assay. Inhibitor treatments in panels A-C are represented as follows: CBN 207192 

(blue squares), CBN 209350 (red circles). Error bars represent mean ± SEM from six 

independent replicates. (D–F) Comparison of global H3K9me3 levels from treated cell cultures. 

Cell lines [LnCaP, panel (D); DU145, panel (E); PC-3, panel (F)] were grown in untreated 

culture medium (basal) or medium supplemented with either 0.5% DMSO or inhibitory 

compounds (25 µM ML324, 30 µM 207192 or 100 µM 209350). After a 48 h growth period 

under test conditions, cells were washed, lysed and treated with micrococcal nuclease to obtain 

crude nucleosomal preparations. Boxes represent ratios of H3K9me3 signals relative to histone 

H4 signals from cells grown under paired test conditions. Error bars represent mean ± SEM from 

nine independent replicates. Statistical significance of test conditions relative to DMSO were 

evaluated by a paired Student’s t-test: (D) LnCaP cells (ML324 **p=0.0091; 207192 

**p=0.0028); (E) DU145 cells (ML324 ***p<0.001; 207192 **p=0.0013); (F) PC-3 cells 

(DMSO ***p<0.001; ML324 *p=0.0171; 207192 ***p=0.0002, 209350 **p=0.0018). Data 

which were not significantly different in t-test comparisons with respect to DMSO are denoted in 

the figure as “ns”. 

Figure 4. Molecular models of KDM4 inhibitors. (A,B) Models of hydroxyquinoline compounds 

bound to KDM4A. Cross-sections of KDM4A’s active site are examined from the crystal 

structure of PDB 3RVH. Depicted in (A) is a bound hydroxyquinoline piperazine-based inhibitor 

as determined by Schofield and colleagues. Compound CBN 207192 is manually docked to 

3RVH in panel (B). KDM4A residues that make canonical H-bonds with α-KG and/or inhibitors 

are depicted in yellow stick representation. Active site Fe2+ is depicted as orange spheres. The 
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fluorobenzyl ring of 207192 is obscured by a protrusion of KDM4A’s active site. (C) Drugs that 

target Fe2+/α-KG-dependent enzymes with molecular scaffolds similar to CBN 209350. (D) 

Proposed binding mode of CBN 209350. KDM4A’s α-KG-bound active site is represented as 

observed in the crystal structure PDB 2GP5. Outlined in red is the region occupied by bound α-

KG. Compound CBN 209350 (cyan stick representation) was manually positioned into the 

KDM4A active site by constraining metal-inhibitor interactions that occur in known KDM4-

inhibitor structures. Canonical H-bond-forming residues Lys206 and Tyr132 are depicted in 

yellow stick representation and labeled accordingly. The region of space within KDM4A’s active 

site which becomes occupied by the histone H3 methyl-Lys sidechain is depicted as a red 

triangle. Protein modeling and figure generation were performed with the PyMOL Molecular 

Graphics System, Version 1.6 Schrödinger, LLC. 
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Figure 1. High-throughput screening workflow. 
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Figure 2. Validation of KDM4E inhibitors. 
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Figure 3. Activities of KDM4 inhibitors in cellular models of prostate cancer. 
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Figure 4. Molecular modeling of KDM4–inhibitor interactions. 
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Table SI. Chemical Classification of Primary HTS Hits 

Compound 
Class CBN IDs Scaffold Example Structure IC50 Range, 

µM 

A 

 
101238 
200400  
203105 
211346 

 

 
200006 
200420 
210577 
211347 

 

quinones 

 

7 – 42 

B 

102620  
200477 
209295 
209668 

200475 
206533 
209465 
216379 

catechols / 
iron chelators 

 
8 – 33 

C 
101500 
101508 
103171 

linear bipyridyl 
ring-conjugates 

 

11 – 14 

D 
207155 
210538 
400759 

pyrimidine trione 
substitutions 

 

7 – 11 

E 
202953 
202959 
207539 

indole 
substitutions 

 
6 – 16 

F 200150 
404127 

benzodioxole 
substitutions 

 
2 – 36 

G 201631 
304018 nitro-compounds 

 

26 – 30 

H 

101848 
101859 
101870 
101907 

spiropiperazines 

 

3 – 5 

I 
206849 
207192 
300683 

hydroxyquinoline 
derivatives 

 

5 – 26 

J 300553 
303229 

piperidinyl 
methanamines 

 
10 – 25 
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         Table S2. Orphan Class of Primary HTS Hits 
 

CBN ID Scaffold Structure IC50, µM %Residual Activity at 
Highest Concentration 

102502 linked 
benzamide 

 
10 25 

102735 quinoline 
substitution 

 
7 0 

203240 thieno- 
thiazole  

3 0 

209350 benzimidazole 
pyrazolone 

 
10 50 

211191 pyrimidine 
dione 

 

10 0 

400447 benzotriazole 
substitution 

 
20 0 

401835 benzofurazan 

 

10 10 

402050 pyrazole 
carboxamide 

 

6 25 
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Table S3. HTS Hit Classes Selected for Validation Studies 

aStructures are depicted for compounds whose CBN ID numbers are highlighted in bold  

bRanges calculated from fitting of HTS data to inhibition model 

CBN ID Scaffold Structure(s)a IC50, µMb Validation 
Results 

Final 
Assessment 

101848 
101859 
101870 
101907 

spiropiperazines 

 

3 – 5 Inactive after 
re-synthesis 

False 
Positive 

102735 pyridylquinoline 
 

3 Inactive after 
re-synthesis 

False 
Positive 

206849 
207192 
300683 

hydroxyquinoline 
derivatives 

 

5 – 26 Active Valid KDM4 
Inhibitor 

209350 benzimidazole 
pyrazolone 

 
11 Active Valid KDM4 

Inhibitor 

211191 pyrimidinedione 

 

10 Highly 
Fluorescent 

False 
Positive 

300553 
303229 

piperidinyl 
methanamines 

  300553            303229

 

19 – 23 

Inactive in 
orthogonal 

assay 
(300553) 

Unstable in 
aqueous 
solution 
(303229) 

False 
Positives 

400447 substituted 
benzotriazole 

 

20 False Positive False 
Positive 

402050 pyrazole 
carboxamide 

 

6 False Positive False 
Positive 

NH

NH2

HCl

NH

N
H

F

F
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Table S4. Physicochemical Propertiesa of Validated HTS Scaffolds 

Scaffold CBN ID Mr 
(g/mol) 

#H-bond 
donors 

#H-bond 
acceptors 

partition 
coefficient 

(clogP) 

polar 
surface area 

(Å2) 

hydroxyquinoline 207192 381.44 2 6 2.71 59.83 

benzimidazole 
pyrazole  209350 272.26 1 5 1.20 87.65 

aProperties calculated by the SwissADME server (www.swissadme.ch) 

 

 

 

Table S5. KDM Isoform Inhibition Data 

HTS Validation 

CBN ID IC50, 
µM Enzyme IC50, µM 95% C.I.a  %Residual 

Activityb ELISA 

207192 5.2 

KDM2A 43.0 36.7 – 50.4 31% Not Determined 
KDM4A 34.8 32.8 – 36.9 11% Active 
KDM4B 25.3 23.9 – 26.7 12% Active 
KDM4C 26.2 24.4 – 28.1 13% Active 
KDM4D 27.6 25.1 – 30.4 18% Active 
KDM4E 24.4 22.7 – 26.2 11% Active 
PHF8 56.5 47.0 – 67.9 36% Not Determined 
FDH >500 695 - 2488 84% Not Determined 

209350 10.7 

KDM2A 120.2 75.1 – 192.3 54% Not Determined 
KDM4A 8.2 6.8 – 9.8 12% Active 
KDM4B 7.0 6.0 – 8.2 9% Active 
KDM4C 6.6 5.5 – 7.8 9% Active 
KDM4D 8.0 6.4 – 10.0 9% Active 
KDM4E 4.1 3.5 – 4.9  6% Active 
PHF8 30.4 13.3 – 69.6 33% Not Determined 
FDH >500 Very Wide 91% Not Determined 

a95% Confidence interval (in µM) from curve fitting analysis 

bPercent residual activity remaining at 100 µM inhibitor concentration 
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Supplemental Figure S1. Example of a false-positive HTS hit with spectral properties that 

interfere with assay signal. In this example, the compound exhibits 21.7% greater fluorescence 

than an equimolar concentration of NADH in PBS (depicted in radar plot (top right) and 

properties box (bottom left)). 
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Supplemental Figure S2. Data from HTS hit CBN 209350 re-fit to a bi-phasic inhibition model 

in Graphpad Prism. (A) Data from the FDH assay. (B) Data from the CTH-ELISA. Best fit lines 

are illustrated in black. Error bars represent mean ± SEM from three independent replicates.  
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Supplemental Figure S3. Nu-ELISA data for histone H3. Chromatin from cells grown under the 

conditions depicted was analyzed for total histone H3 content using an antibody specific for H3 

(Abcam ab1791). Differences in H3 signals between cells grown under basal (medium alone) 

versus test conditions (n=9 each) were assessed for statistical significance by Student’s t-tests as 

implemented in Graphpad Prism 5.01: (A) Nu-ELISA histone H3 profiles for LnCaP cells. (ns: 

not significant) (B) Nu-ELISA histone H3 profiles for DU145 cells. (ns: not significant; ***: 

p<0.0001 ; **: p=0.0044) (C) Nu-ELISA histone H3 profiles for PC-3 cells (ns: not significant; 

***: p=0.0001).   
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Supplemental Methods 

Chemical Synthesis 

Procurement of selected HTS primary hits for validation studies proceeded either by purchase of 

commercially available materials or by synthesis (spiropiperazine, hydroxyquinoline, 

benzimidazole pyrazolone and pyridylquinoline scaffolds). Synthesis of precursors provided 

insight about stability of the final hit scaffold and allowed general access to a variety of 

synthesizable derivatives.  

LCMS (method 2): Instrument: Agilent Technologies 6120 Quadrupole LC/MS linked to Agilent 

Technologies HPLC 1290 Infinity; Column: Thermo Accuore RP-MS; Particle Size: 2.6 µM 

Dimension: 30 x 2.1 mm; Eluent A:  H2O with 0.1% TFA Eluent B: MeCN with 0.1% TFA; 

Gradient: 0.00 min 95% A, 0.2 min 95% A, 1.1 min 1% A, 2.5 min Stoptime, 1.3 min Posttime; 

Flow rate: 0.8 ml/min; UV-detection: 220 nm, 254 nm, 300 nm. Purification of the compounds by 

chromatography was achieved using a CombiFlash Rf 200 UV-VIS System from Axel Semrau®. 

Preparative HPLC-method: Instrument: Waters Prep 150 LC System ChromScope v. 1.4; Column: 

Machery-Nagel VP 250 x 21 mm Nucleodur® 100-7 C18 ec; Eluent A:  H2O with 0.1% TFA 

Eluent B: MeCN with 0.1% TFA; Gradient: 0.00 min 85% A, 2 min 85% A, 22 min 15% A, 24 

min 15% A, 26 min 0% A, 29 min 0% A, 32 min 85% A; Flow rate: 30 ml/min; UV-detection: 

254 nm 

Hydroxyquinolines were synthesized in a one-pot Betti reaction using 8-hydroxyquinoline, 

benzaldehyde and substituted piperazines with catalytic amounts of formic acid.2 First, an imine 

was formed via condensation of an aldehyde and a piperazine, followed by addition of formic 

acid and hydroxyquinoline. 

1,3-Dimethyl-5-(5-nitro-2-(piperazin-1-yl)benzylidene)pyrimidine-2,4,6(1H,3H,5H)-trione 

Spiropiperazines were synthesized in two steps starting from tert-butyl 4-(2-formyl-4-

nitrophenyl)piperazine-1-carboxylate and N,N-dimethyl barbituric acid to yield α,β-unsaturated 

5-arylmethylidenebarbituric acids via an aldol-condensation.1 In the second step, a Michael 

acceptor functionality was exploited to cyclize the scaffold to the spiropiperazine in boiling 

acetic acid. 
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335.4 mg (1 mmol) of tert-butyl 4-(2-((1,3-dimethyl-2,4,6-trioxotetrahydropyrimidin-5(2H)-

ylidene)methyl)-4-nitrophenyl)piperazine-1-carboxylate was solubilized in 10 ml EtOH and 

stirred at 50 °C. 1,3-Dimethylbarbituric acid (156.14 mg, 1 mmol) solubilized in 4 ml EtOH/H2O 

(60/40) was added to the mixture and stirred for 5 min. The mixture was cooled to RT and stirred 

for 1 h. The product precipitated as yellow powder and was filtered off as raw material. It was 

washed twice with EtOH and H2O and dried under reduced vacuum. Raw product was suspended 

in 4 M HCl in dioxane and stirred at RT for 2 h. Solvent was removed under reduced pressure 

and the product was isolated as HCl salt. Yield (335 mg, 90%). 

1H NMR (300 MHz, DMSO-d6) δ 8.65 (d, J = 2.7 Hz, 1H), 8.27 (dd, J = 9.1, 2.8 Hz, 1H), 8.13 

(s, 1H), 7.32 (d, J = 9.1 Hz, 1H), 3.34 (s, 6H), 3.27 (s, 4H), 3.19 (s, 4H). LCMS: Rt = 3.10 min; 

MS (ESIpos) m/z = 274.00 [M+H]+ 

 

3-Acetyl-1',3'-dimethyl-8-nitro-2,3,4,4a-tetrahydro-1H,2'H,6H-spiro[pyrazino[1,2-a]quinoline-

5,5'-pyrimidine]-2',4',6'(1'H,3'H)-trione 

55 mg (0.15 mmol) of 1,3-dimethyl-5-(5-nitro-2-(piperazin-1-yl)benzylidene)pyrimidine-

2,4,6(1H,3H,5H)-trione was suspended in 20 ml acetic acid and stirred at 100 °C under reflux for 

16 h. Solvent was removed under reduced pressure and the raw product precipitated in 4 ml of 

ether,  filtered off and washed a few times with ether (Yield: 59 mg, 96%). 

1H NMR (300 MHz, DMSO-d6) δ 7.96 (dd, J = 9.2, 2.8 Hz, 1H), 7.89 (s, 1H), 7.03 (d, J = 9.4 

Hz, 1H), 4.21 - 4.03 (m, 2H), 4.03 - 3.92 (m, 1H), 3.84 - 3.62 (m, 1H), 3.58 - 3.41 (m, 2H), 3.37 

- 3.25 (m, 3H), 3.18 (s, 3H), 3.12 - 3.05 (s, 3H), 1.95 (s, 3H). LCMS: Rt = 6.74 min; MS 

(ESIpos) m/z = 416.11 [M+H]+ 

 

 

 

(E)-2-(2-(Pyridin-3-yl)vinyl)quinoline 
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The pyridylquinoline scaffold was prepared by condensation between 2-methylquinoline and 3-

pyridinecarboxaldehyde in acetic anhydride. The resulting pyridylvinlyquinoline was reduced 

with H2 and Pd/C to the 2-(2-(pyridin-2-yl)ethyl)quinolone.5,6 

215 mg (1.5 mmol) 2-methylquinoline was solubilized in 1.5 ml acetic anhydride followed by 

addition of 3-pyridinecarboxyaldehyde. The mixture was stirred at 100 °C under reflux for 16 h. 

Solvent was removed under reduced pressure, and the crude product was purified by 

chromatography on silica gel eluting with a gradient of hexane/EtOAc (Yield: 266 mg, 76%).   

1H NMR (300 MHz, chloroform-d) δ 8.84 (d, J = 2.4 Hz, 1H), 8.57 (dd, J = 4.8, 1.7 Hz, 1H), 

8.26 (d, J = 8.5 Hz, 2H), 8.06 – 8.00 (m, 1H), 7.84 (dd, J = 8.1, 1.4 Hz, 1H), 7.81 – 7.72 (m, 3H), 

7.66 (s, 1H), 7.61 – 7.55 (m, 1H), 7.36 (dd, J = 8.0, 4.7 Hz, 1H). LCMS: Rt = 2.95 min; MS 

(ESIpos) m/z = 233.15 [M+H]+. 

2-(2-(pyridin-3-yl)ethyl)quinoline 

50 mg (0.22 mmol) of (E)-2-(2-(pyridin-3-yl)vinyl)quinoline was solubilized in 2 ml THF in a 

microwave vial. 2.29 mg of Pd/C was added followed by purging of the vial with H2. The 

mixture was heated to 100 °C using microwave irradiation for 1 h. The THF was removed, and 

the Pd/C was filtered off over Celite®. The crude product was purified by chromatography on 

silica gel eluting with a gradient of hexane/EtOAc (Yield: 33 mg, 65%).   

1H NMR (300 MHz, chloroform-d) δ 8.50 (d, J = 2.5 Hz, 1H), 8.44 (dd, J = 4.9, 1.8 Hz, 1H), 

8.09 (s, 2H), 7.82 - 7.77 (m, 1H), 7.75 - 7.68 (m, 1H), 7.60 - 7.55 (m, 1H), 7.55 - 7.48 (m, 1H), 

7.25 - 7.19 (m, 2H), 3.36 - 3.27 (m, 2H), 3.24 - 3.16 (m, 2H). LCMS: Rt = 1.05 min; MS 

(ESIpos) m/z = 235.09 [M+H]+ 

Methyl 2-(1-(1H-benzo[d]imidazol-2-yl)-5-hydroxy-1H-pyrazol-3-yl)acetate. 

Synthesis of the benzimidazole pyrazolone scaffold began with condensation of dimethyl-1,3-

acetonedicarboxlates and 1H-1,3-benzimidazole-2-yl-hydrazines. After formation of an imine 

intermediate, cyclisation was initiated by heating in boiling ethanol to yield the benzimidazole 

pyrazolone product.3,4 
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50 mg (0.34 mmol) of (1H-1,3-benzimidazol-2-yl)-hydrazine was solubilized in 4 ml EtOH. 

After addition of 50 µl (0.34 mmol) of dimethyl-3-oxopentanedioate the mixture was heated to 

80 °C for 1 h. The solvent was removed, and raw product was purified by HPLC eluting with a 

gradient of ACN/water (Yield: 16 mg, 17%). 

1H NMR (300 MHz, DMSO-d6) δ 7.51 (dd, J = 6.0, 3.2 Hz, 2H), 7.16 (dd, J = 6.0, 3.2 Hz, 2H), 

5.24 (s, 1H), 3.64 (s, 3H), 3.59 (s, 2H). LCMS: Rt = 0.854 min; MS (ESIpos) m/z = 273.2 

[M+H]+ 
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QC Data: CBN 101848 
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QC Data: CBN 102735
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QC Data: CBN 207192
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QC Data: CBN 209350 
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