Supplemental Information

Engineering of PEDF-Expressing Primary

Pigment Epithelial Cells by the SB Transposon

System Delivered by pFAR4 Plasmids

Gabriele Thumann, Nina Harmening, Cécile Prat-Souteyrand, Corinne Marie, Marie Pastor, Attila Sebe, Csaba Miskey, Laurence D. Hurst, Sabine Diarra, Martina Kropp, Peter Walter, Daniel Scherman, Zoltán Ivics, Zsuzsanna Izsvák, and Sandra Johnen

Supplemental Figures and Legends

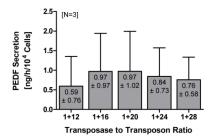


Figure S1. ELISA quantification of total PEDF secreted by primary human RPE cells transfected with varying ratios of SB100X transposase plasmid to PEDF transposon plasmid. For each donor sample, 2 transfections of 1×10^5 cells with 0.038 µg to 0.017 µg pFAR4-CMV SB100X SV40 transposase and 0.462 µg to 0.483 µg pFAR4-ITRs CMV PEDF BGH plasmid DNA were carried out. PEDF secretion was analyzed in 3 human donor eyes (age: 61.7 ± 13.3 years; gender: 2 males and 1 female; time postmortem: 20.1 ± 1.4 hours; cultivation time before transfection: 45.7 ± 17.0 days). Data are presented as mean \pm SD. Statistical analysis by one-way ANOVA with Bonferroni's Multiple Comparison Test showed no significant differences.

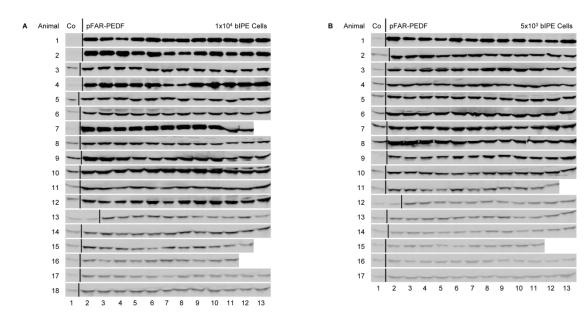


Figure S2. Western blot analysis of PEDF secretion by primary bovine IPE cells transfected with the pFAR4-ITRs CMV PEDF BGH transposon miniplasmid. Each analysis included 1 or 2 control transfections without the addition of miniplasmid DNA (column 1-2) and 10-12 transfections using 0.03 µg pFAR4-CMV SB100X SV40 transposase and 0.47 µg pFAR4-ITRs CMV PEDF BGH transposon miniplasmid DNA (columns 2/(3)-13). Culture supernatants were analyzed for total PEDF secretion using anti-PEDF antibodies 21 days after transfection. (A) Western blots of PEDF secreted by $1x10^4$ transfected IPE cells isolated from 18 bovine eyes (cultivation time before transfection: 26.9 ± 9.76 days). (B) Western blots of PEDF secreted by $5x10^3$ transfected IPE cells isolated from 17 bovine eyes (cultivation time before transfection: 27.9 ± 13.6 days). Note that the same exposure time was used for all chemiluminescence reactions.

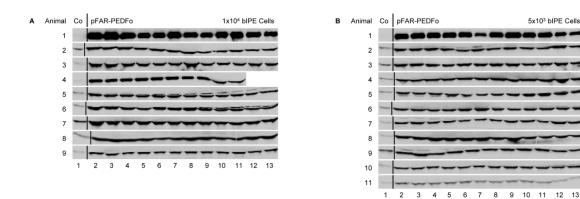


Figure S3. Western blot analysis of PEDF secretion by primary bovine IPE cells transfected with the pFAR4-ITRs CMV PEDFoptimized BGH transposon miniplasmid. Each analysis included 1 control transfection without the addition of miniplasmid DNA (column 1) and 10-12 transfections using 0.03 μ g pFAR4-CMV SB100X SV40 transposase and 0.47 μ g pFAR4-ITRs CMV PEDFoptimized BGH transposon miniplasmid DNA (columns 2-13). Culture supernatants were analyzed for total PEDF secretion using anti-PEDF antibodies 21 days after transfection. (A) Western blots of PEDF secreted by 1×10^4 transfected IPE cells isolated from 9 bovine eyes (cultivation time before transfection: 22.6 ± 7.15 days). (B) Western blots of PEDF secreted by 5×10^3 transfected IPE cells isolated from 11 bovine eyes (cultivation time before transfection: 29.2 ± 15.2 days). Note that the same exposure time was used for all chemiluminescence reactions.

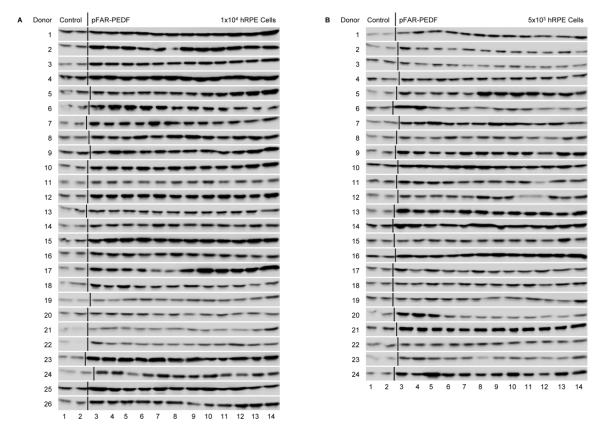


Figure S4. Western blot analysis of PEDF secretion by primary human RPE cells transfected with the pFAR4-ITRs CMV PEDF BGH transposon miniplasmid. Each analysis included 2 control transfections without the addition of miniplasmid DNA (columns 1-2) and 12 transfections using 0.03 µg pFAR4-CMV SB100X SV40 transposase and 0.47 µg pFAR4-ITRs CMV PEDF BGH transposon miniplasmid DNA (columns 3-14). Culture supernatants were analyzed for total PEDF secretion using anti-PEDF antibodies 21 days after transfection. (A) Western blots of PEDF secreted by 1×10^4 transfected RPE cells isolated from 26 human donor eyes (age: 67.5 ± 12.0 years; gender: 13 males and 13 females; time postmortem: 31.7 ± 14.4 hours; cultivation time before transfection: 42.0 ± 14.4 days). (B) Western blots of PEDF secreted by 5×10^3 transfected RPE cells isolated from 24 human donor eyes (age: 66.2 ± 14.6 years; gender: 14 males and 10 females; time postmortem:

 32.9 ± 14.5 hours; cultivation time before transfection: 45.2 ± 15.8 days). Note that the same exposure time was used for all chemiluminescence reactions.

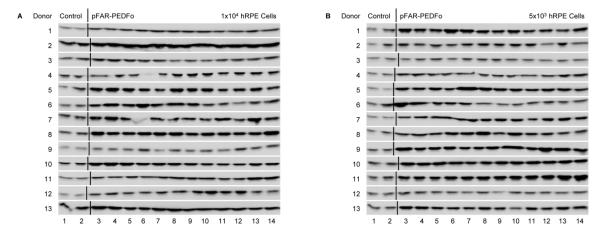


Figure S5. Western blot analysis of PEDF secretion by primary human RPE cells transfected with the pFAR4-ITRs CMV PEDFoptimized BGH transposon miniplasmid. Each analysis included 2 control transfections without the addition of miniplasmid DNA (columns 1-2) and 12 transfections using 0.03 µg pFAR4-CMV SB100X SV40 transposase and 0.47 µg pFAR4-ITRs CMV PEDFoptimized BGH transposon miniplasmid DNA (columns 3-14). Culture supernatants were analyzed for total PEDF secretion using anti-PEDF antibodies 21 days after transfection. (A) Western blots of PEDF secreted by 1×10^4 transfected RPE cells isolated from 13 human donor eyes (age: 61.1 ± 16.3 years; gender: 7 males and 6 females; time postmortem: 33.5 ± 16.2 hours; cultivation time before transfection: 39.8 ± 17.1 days). (B) Western blots of PEDF secreted by 5×10^3 transfected RPE cells isolated from 13 human donor eyes (age: 61.1 ± 16.3 years; gender: 8 males and 5 females; time postmortem: 32.5 ± 16.1 hours; cultivation time before transfection: 42.6 ± 18.6 days). Note that the same exposure time was used for all chemiluminescence reactions.

Supplemental Tables

Table S1. Western blot-based quantification of long-term PEDF secretion by primary bovine IPE cells after SB100X-mediated transfection. Each analysis included 2 control transfections without the addition of miniplasmid DNA and 2 transfections using 0.03 μg pFAR4-CMV SB100X SV40 transposase and 0.47 μg pFAR4-ITRs CMV PEDF BGH or pFAR4-ITRs CMV PEDFoptimized BGH miniplasmid DNA. Culture supernatants were analyzed for total PEDF secretion at times from 5 to 20 weeks. Western blot signal intensities of PEDF-transfected and PEDFo-transfected cells were normalized to the signal intensities of the control cells. Using an unpaired two-tailed t test, a statistical difference was observed between control and transfected cells, but not between cells transfected with pFAR-PEDF and pFAR-PEDFo at any time period.

•		Time N		Signal Intensities			pFAR-PEDF versus	
		[Days] [Samples]	[Samples]	Mean ± SD	Range		pFAR-PEDFo	
1x10 ⁴ bIPE Cells	Control pFAR-PEDF pFAR-PEDFo	49 ± 1	18	1.00 ± 0.25 19.9 ± 22.8 17.1 ± 16.1	0.54-1.46 1.95-74.9 2.29-58.1	**P=0.0013 ***P=0.0002	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	102 ± 9	18	1.00 ± 0.41 17.4 ± 13.2 22.6 ± 18.8	0.24-1.76 1.34-42.6 0.89-58.5	****P<0.0001 ****P<0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	136 ± 10	18	1.00 ± 0.30 15.2 ± 14.5 13.5 ± 8.74	0.44-1.56 2.93-65.6 2.98-29.7	***P=0.0002 ****P<0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	221 ± 10	16	1.00 ± 0.36 5.97 ± 4.20 6.00 ± 4.54	0.30-1.70 1.16-18.4 1.53-16.9	****P<0.0001 ***P=0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	365 ± 3	16	1.00 ± 0.24 13.5 ± 23.7 12.2 ± 22.1	0.49-1.51 0.50-73.8 0.19-76.3	*P=0.0499 Not significant	Not significant	
5x10 ³ bIPE Cells	Control pFAR-PEDF pFAR-PEDFo	49 ± 1	11	1.00 ± 0.24 15.2 ± 14.4 12.4 ± 12.5	0.54-1.46 1.75-55.6 1.28-57.0	****P<0.0001 ****P<0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	103 ± 9	11	1.00 ± 0.40 13.9 ± 12.3 19.1 ± 17.3	0.24-1.76 2.56-43.9 1.00-50.6	****P<0.0001 ****P<0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	136 ± 9	11	1.00 ± 0.29 10.2 ± 6.87 8.60 ± 7.55	0.44-1.56 2.08-25.1 1.84-27.8	****P<0.0001 ****P<0.0001	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	221 ± 9	10	1.00 ± 0.33 7.92 ± 7.18 7.88 ± 8.28	0.30-1.70 1.09-30.2 0.52-26.1	***P=0.0001 ***P=0.0007	Not significant	
	Control pFAR-PEDF pFAR-PEDFo	365 ± 3	10	1.00 ± 0.39 8.64 ± 11.1 8.79 ± 19.2	0.00-2.00 0.44-37.8 0.20-86.8	** <i>P</i> =0.0040 Not significant	Not significant	

Table S2. Western blot-based quantification of long-term PEDF secretion in primary human RPE cells after SB100X-mediated transfection. Each analysis included 2 control transfections without the addition of miniplasmid DNA and 2 transfections using 0.03 μg pFAR4-CMV SB100X SV40 transposase and 0.47 μg pFAR4-ITRS CMV PEDF BGH or pFAR4-ITRS CMV PEDFoptimized BGH miniplasmid DNA. Culture supernatants were analyzed for total PEDF secretion at the times indicated. Western blot signal intensities of PEDF-transfected and PEDFo-transfected cells were normalized to the signal intensities of the control cells. Statistical analysis by unpaired two-tailed t test showed a significant difference between transfected and non-transfected cells. No statistical significant difference was observed between cells transfected with pFAR-PEDF and pFAR-PEDFo for the first 110 days after transfection. However, at 160 days, a statistical significant decrease in PEDF secretion by pFAR-PEDF transfected cells compared to pFAR-PEDFo transfected cells was observed.

		Time	N [Samples]	Signal Intensities			pFAR-PEDF versus
		[Days]		Mean ± SD	Range		pFAR-PEDFo
1x10 ⁴	Control	31 ± 5		1.00 ± 0.15	0.74-1.26		
hRPE Cells	pFAR-PEDF			6.36 ± 3.27	2.08-11.3	****P<0.0001	
	Control	27 ± 1	4	1.00 ± 0.22	0.73-1.27		
	pFAR-PEDFo			10.7 ± 4.86	5.07-16.7	**P=0.0071	Not significant
	Control	61 ± 10	30	1.00 ± 0.25	0.56-1.44		
	pFAR-PEDF			6.03 ± 4.57	0.93-19.3	****P<0.0001	
	Control	64 ± 8	14	1.00 ± 0.27	0.61-1.39		
	pFAR-PEDFo			8.07 ± 4.14	1.71-15.5	****P<0.0001	Not significant
	Control	107 ± 8	30	1.00 ± 0.24	0.43-1.57		
	pFAR-PEDF			6.84 ± 7.03	0.41-27.1	****P<0.0001	
	Control	108 ± 7	14	1.00 ± 0.23	0.51-1.49		
	pFAR-PEDFo			8.13 ± 4.98	1.13-15.5	****P<0.0001	Not significant
	Control	162 ± 14	20	1.00 ± 0.15	0.75-1.25		
	pFAR-PEDF			2.51 ± 1.72	0.34-6.03	***P=0.0004	
	Control	154 ± 4	8	1.00 ± 0.17	0.76-1.24		
	pFAR-PEDFo			4.83 ± 2.49	1.66-8.12	***P=0.0007	**P=0.0098
	Control	215 ± 20	10	1.00 ± 0.10	0.85-1.15		
	pFAR-PEDF			2.61 ± 2.12	0.78-7.33	*P=0.0278	
	Control	193 ± 0	2	1.00 ± 0.08	0.94-1.06		
	pFAR-PEDFo			8.10 ± 3.92	5.32-10.9	Not significant	*P=0.0135
$5x10^{3}$	Control	33 ± 5	14	1.00 ± 0.24	0.65-1.35		
hRPE Cells	pFAR-PEDF			7.51 ± 4.84	2.13-19.4	****P<0.0001	
	Control	31 ± 6	8	1.00 ± 0.28	0.65-1.35		
	pFAR-PEDFo			6.88 ± 4.86	3.30-16.7	**P=0.0042	Not significant
	Control	62 ± 12	30	1.00 ± 0.23	0.56-1.44		
	pFAR-PEDF			7.29 ± 6.92	1.70-33.2	****P<0.0001	
	Control	64 ± 13	20	1.00 ± 0.19	0.76-1.24		
	pFAR-PEDFo			4.79 ± 2.75	0.81-10.7	****P<0.0001	Not significant
	Control	109 ± 10	26	1.00 ± 0.23	0.55-1.45		
	pFAR-PEDF			8.66 ± 11.4	1.32-55.8	**P=0.0012	
	Control	111 ± 11	16	1.00 ± 0.17	0.75-1.25		
	pFAR-PEDFo			8.47 ± 8.03	0.98-26.7	***P=0.0008	Not significant
	Control	162 ± 18	20	1.00 ± 0.25	0.56-1.44		
	pFAR-PEDF			3.20 ± 2.01	0.73-7.79	****P<0.0001	
	Control	153 ± 12	10	1.00 ± 0.29	0.56-1.44		
	pFAR-PEDFo			7.33 ± 7.90	1.35-23.8	*P=0.0208	*P=0.0379
	Control	216 ± 20	12	1.00 ± 0.40	0.43-1.57		
	pFAR-PEDF			2.87 ± 2.02	0.63-6.61	**P=0.0048	
	Control	201 ± 11	4	1.00 ± 0.47	0.43-1.57		
	pFAR-PEDFo			7.53 ± 1.32	6.33-9.40	****P<0.0001	***P=0.0010

Table S3. Primer sequences for integration site profiling of the pFAR4-ITRs CMV PEDF BGH transposon in human RPE cells.

SB_20_hmr	AACTTAAGTGTATGTAAACTTCCGACT
4mer primers	
atcc_asPE	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHNHNNNatcc
ggat_asPE	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTBBBNNNggat
gaca_asPE	GGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVVVNNNgaca
gcaa_asPE	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTVNVNVNgcaa
tgtc_asPE	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHHHNNNtgtc
ttgc_asPE	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTHHHNNNttgc
SB-7	cttAAGTGTATGTAAACTTCCGACTTCA
PE_first	Gtgactggagttcagacgtg
SB_PE_noTA_BC_1	A CACTCTTTCCCTACACGACGCTCTTCCGATCTATCACGatGTAAACTTCCGACTTCAACTG
SB_PE_noTA_BC_2	A CACTCTTTCCCTACACGACGCTCTTCCGATCTCGATGT at GTAAACTTCCGACTTCAACTG
SB_PE_noTA_BC_3	A CACTCTTTCCCTACACGACGCTCTTCCGATCTTTAGGC at GTAAACTTCCGACTTCAACTG
SB_PE_noTA_BC_4	$A CACTCTTTCCCTACACGACGCTCTTCCGATCTTGACCA \\ at GTAAACTTCCGACTTCAACTG$
PE nest	$CAAGCAGAAGACGGCATACGAGAT_reverse_complement_of_Illumina_TruSeq_barcode_GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT$
Illumina 1	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT Oligonucleotide sequences© 2006-2010 Illumina, Inc All rights reserved.