HOW TO MANAGE THE OBESE CANCER PATIENT

BY RENEHAN, ET AL

SUPPLEMENTAL MATERIAL

How to Manage the Obese Cancer Patient

Andrew G Renehan, Michelle Harvie, Ramsey I Cutress, Michael Leitzmann,

Tobias Pischon, Sacha Howell, Anthony Howell

Table S1 Proportion of cancer patients that are obese (BMI \ge 30 kg/m²) by cancer types and settings

Authors, ref.	Cancer type	Setting	Trial/ study name	No. of patients†	% obese
Crosbie et al. ¹	Endometrial cancer	Early stage - surgery	ASTEC	1408	47.0
Munstedt et al. 2008 ²	Endometrial	Mainly stage I- III	German consortium	1180	38.6
Hakimi et al. 2013 ³	Renal cell carcinoma	Undergoing surgery	Memorial Sloan- Kettering Cancer Centre	2119	42.1
Bokey et al. 2014 ⁴	Rectal cancer	Undergoing resection	Perth, Australia	255	37.2
Meyerhardt et al. 2004 ⁵	Rectal cancer	Adjuvant	USA Intergroup Trial 0114	1688	18.1
Melis et al. 2013 ⁶	Oesophageal adenoacrcinoma	Undergoing surgery	Moffitt Cancer Centre	540	34.6
STARSurg collaborative 2016 ⁷	Several malignancy; mainly gastrointestinal	Surgery for any malignancy	STARSurgUK	2129	26.2
Mullen et al. 2008 ⁸	Several malignancy; mainly gastrointestinal	Surgery for any malignancy	ACS-NSQIP database	2258	25.4
Sincrope et al. 2013 ⁹	Colon cancer	Adjuvant therapies	ACCENT trial consortium	25,291	17.6
Munstedt et al. 2008 ²	Ovarian cancer	Mainly stage I- III	German consortium	824	15.4
Barrett et al. 2008 ¹⁰	Ovarian cancer	81% FIGO stage III/IV	SCOTROC I	1067	12.0
Fischer et al. 2013 ¹¹	Breast cancer*	Breast reconstruction	ACS-NSQIP database	15937	27.1
Goodwin 2013	Breast cancer	Hormonal therapy	ATAC	4939	27.3

Goodwin 2013	Breast cancer	Hormonal therapy	BIG 1-98	4760	23.0
Goodwin 2013	Breast cancer	Hormonal therapy	TEAM	4700	23.3
Goodwin 2013	Breast cancer	Hormonal therapy	ABCSG	1684	10.8
Gennari et al. 2016 ¹³	Early Breast cancer	Adjuvant chemotherapy	IBIS 3	1066	21.0
Widschwender et al. 2015 ¹⁴	Early high-risk breast cancer	Chemotherapy	SUCCESS A	3754	20.9
Wong et al. 2014 ¹⁵	Breast cancer including 33% with metastatic disease.	Doxorubicin chemotherapy	All Asian patients in Singapore	84‡	14.3
Simkens et al. 2011	Colorectal cancer	Metastatic	CAIRO	796	12.0
Simkens et al. 2011 ¹⁶	Colorectal cancer	Metastatic	CAIRO2	730	12.0

*proportion with malignancy not specified.
† total number of patients in cohort.
‡ This is a small sample size study but included as it was a detailed Asian population.

Case studies to illustrate effects of sample size and composition

1. Small study size can yield both type 1 (<u>Table S2</u>) and type 2 (<u>Table S3</u>) statistical errors in relationships of proportions of interest (e.g. complications) and BMI categories.

Table S2 Data from Arndt et al. Patient delay and stage of diagnosis among breast
cancer patients in Germany – a population based study ¹⁷

		BMI categories						
	Normal weight	Overweight	Obese	P value				
	(n = 126)	(n = 80)	(n = 70)					
Proportions of								
patients with delay								
< 1 month	73.0	57.5	57.1					
1 – 3 months	13.5	27.5	15.0					
> 3 months	13.5	17.4	25.7	0.02				
	(n = 17)	(n = 13)	(n = 17)					

The study concluded that obesity was associated with delayed presentation, but the numbers here are small and might have occurred by chance.

Table S3 Data from Melis et al. Body mass index and perioperative complications after oesophagectomy for adenocarcinoma: a systematic database review ⁶

		BMI categories					
	Normal weight	Overweight	Obese	P value			
	(n = 155)	(n = 198)	(n = 187)				
30-day mortality (%)	1.3	1.5	2.7	0.7			
30-day mortality (n)	2	3	5				

The study concluded that there was no significant difference (for 30-day mortality) across the BMI categories, but this might simply reflect an underpowered study. A peri-operative mortality of 2.7% in obese patients is double that in normal weight patients (1.3%), which might be clinically significant

Studies should seek to justify their conclusions taking account the size and power of the cohort. This is nicely illustrated by the Determining Surgical Complications in the Overweight (DISCOVER) study protocol. This is a multicentre observational prospective cohort study to evaluate the role of obesity as a risk factor for postoperative complications in general surgery (UK), and in their protocol the power calculation reads as follows: "to detect a significant difference between obese patients (BMI \geq 30) and patients with healthy weight (BMI 18.5–24.99), a total of 3550 patients would provide 80% power to detect a 35% increase in the postoperative complication rate from 8% to 10.8% (α =0.05)".¹⁸

 Tabulations with greater than 2 rows of interest (e.g. histological grade) can be difficult to interpret (<u>Table S4</u>).

	BMI categories							
	Normal	Overweight	Obese I	Obese II	Obese III	P value		
	weight	Overweight	000301			i value		
Nodal						< 0.001*		
status (%)								
pN0	37.5	30.6	27.6	37.9	40.4			
pN1	44.9	46.7	47.8	38.4	33.3			
pN2	12.1	14.4	17.0	13.6	12.3			
pN3	4.3	7.8	7.2	10.2	14.0			
Histological grade (%)						0.126*		
G1	4.6	4.9	4.9	4.5	1.8			
G2	48.2	47.7	46.0	46.3	38.6			
G3	46.3	47.0	48.7	49.2	59.6			

Table S4 Data from Widschwendter et al. The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial (N: 3754)¹⁴

* Mantel-Haenszel linear-by-linear association chi-square test

The data for nodal status looks reasonably straightforward – the proportion with N3 stage increases with increasing BMI, but for example, the proportional changes of N0 (node

negative) with increasing BMI is more difficult to interpret. For histological grade, the p value is not significant but the increasing proportions of G3 tumors with increasing BMI seems reasonably clear-cut.

3. With an increasing size of the proportions of obese within a cohort, there is an increased likelihood of statistical significant for the same effect size between obese versus normal weight (Table S5).

Table S5 Data from two simulated scenarios - colorectal and endometrial cancers with contrasting proportions of BMI categories. We simulate an average event rate (say a complication) of 30% in 1000 patients and we fix the effect size (absolute) difference between normal weight and obesity at 10%

	Normal weight	Overweight	Obese	P value*
Colorectal cancer†				
BMI category, n (%)	390 (39)	400 (40)	210 (21)	
Event rate, n (%)	97 (25)	130 (32)	72 (35)	0.015
Endometrial cancer‡				
BMI category, n (%)	220 (22)	320 (32)	460 (46)	
Event rate, n (%)	55 (25)	84 (26)	161 (35)	0.006

*Overall chi-squared

† Taken from in-house data on 569 patients undergoing adjuvant chemotherapy.
 ‡ Taken from the ASTEC surgery in early endometrial trial.¹

Cancer type	Authors (year)	Studies/ Total cancers	Events	Summary conclusion	Summary estimates	Adjustments
Breast cancer (BC)	Chan et al. 2014 ¹⁹	37 population- based cohort; 28 treatment cohorts; 14	213,075 Two studies on CVD deaths: 151;		Non- cancer mortality (BMI < 12 months post-diagnosis) Versus normal BMI, Overweight: 0.96 (0.83-1.11) Obese : 1.29 (0.99-1.68)	
		secondary analyses of RCT	Five studies on non-cancer deaths; 2704		CVD mortality (BMI pre-diagnosis) Versus normal BMI, Overweight: 1.01 (0.80-1.29) Obese: 1.60 (0.66-3.87)	
Breast cancer (BC)	Kwan et al. 2012 ²⁰	After Breast Cancer Pooling Project. Breast† 1990-2006 Total no: 14,948	All deaths: 2,140 BC deaths: 1,423 Non-BC deaths: 717	Women who were obese II and III before breast cancer diagnosis were at the greatest risk of non-BC deaths. "Morbidly obese women were also at increased risk of death from breast cancer."	Non-breast cancer mortality Versus normal BMI, Overweight: 1.01 (0.91-1.12) Obese I: 1.13 (0.90-1.42) Obese II: 1.40 (1.02-1.92) Obese III: 3.01 (2.09-4.33) BC mortality Breast cancer mortality Versus normal BMI, Overweight: 1.04 (0.92-1.18) Obese I: 1.12 (0.94-1.32) Obese II: 0.92 (0.68-1.24)	Adjusted for age at diagnosis, AJCC stage, race/ethnicity, education, menopausal status, hormone receptor status, surgery, chemotherapy, radiation therapy, hormonal therapy, smoking, comorbidity, and physical activity
Colorectal cancer (CRC)	Campbell et al. 2012	Cancer Prevention Study II Nutrition Cohort 1992-2008 Total no: 2,303	All deaths: 851 CRC deaths: 380 CVD deaths: 153	Pre-diagnosis BMI (mean, 7 years before CRC diagnosis), obese BMI was associated with higher risk of mortality resulting from all causes, CRC, and CVD. Post-diagnosis BMI (mean, 1.5 years after diagnosis) was not associated with all-cause, CVD or cause-specific mortality.	Obese III: 1.40 (1.00-1.96) CVD mortality Pre-diagnosis BMI HR (95% Cls) per 5 kg/m ² : 1.28 (1.04-1.58) Post-diagnosis BMI HR (95% Cls) per 5 kg/m ² : 1.06 (0.84-1.33)	Adjusted for age at diagnosis, smoking status, physical activity, red meat intake, SEER summary stage at diagnosis, and sex
Endometrial (EC)	Ward et al. 2012 ²²	SEER registries, 1973-88 Total no:	All deaths: 23,934 EC deaths: 4,150	"cardiovascular disease is the leading cause of death among endometrial cancer patients and survivors"	Cardiovascular deaths: Localised low-grade: 42% Localised high-grade: 34% Advanced low-grade: 27%	Unadjusted

Table S6 Overview of studies evaluating relationships between elevated BMI and non-cancer prognosis by various cancer types*

33,232 CVD deaths:

8,777

Advanced high-grade: 15%

EC deaths:

Localised low-grade: 7% Localised high-grade: 26% Advanced low-grade: 33% Advanced high-grade: 56%

*Information directly from published systematic reviews/ meta-analyses - rather than directly from primary studies.

BMI: body mass index. CI: confidence interval. CVD: cardiovascular disease. SEER: Surveillance, Epidemiology, and End Results.

†Three of the cohorts specifically recruited breast cancer patients: the Shanghai Breast Cancer Survival Study (SBCSS), the Life after Cancer Epidemiology (LACE) Study [16], and the Women's Healthy Eating and Living (WHEL) Study. The fourth cohort included women with breast cancer diagnosed in the prospective Nurses' Health Study (NHS) cohort.

Cancer type	Authors (year)	Studies/ Total cancers	When BMI measured	Assessment tools	Summary conclusion	Summary estimates	Comments
Multiple cancer types: breast, prostate, colorectal, bladder, uterine, skin melanoma cancer survivors	Blanchar d et al. 2010 ²³	ASC SCS-II Cross- sectional design, Total N: 36,372 This analysis: 3,241	Any time during survivorshi p	Godin Leisure- Time Exercise Questionnaire; RAND-36 manual	"healthy-weight and/or overweight cancer survivors reported significantly better physical functioning compared with their obese counterparts overweight colorectal cancer survivors reported significantly better mental health compared with obese survivors"	Physical component composite score; main effect of BMI category Breast: $P = 0.001$ Prostate: $P = 0.005$ Colorectal: $P = 0.002$ Uterine: $P = 0.001$ Skin melanoma: $P = 0.034$	Adjusted for age, education, number of co-morbidities and physical activity
Breast cancer (BC)	Paxton et al. 2012	Within the WHEL study, N: 3013		SF 36-Item Health Survey	Obesity is associated with "functional decline among cancer survivors"		No controls. Associations between obesity and QoL were mixed.
Breast cancer (BC)	Connor et al. 2016 ²⁵	Long-Term Quality of Life Study: 200 cases/survivor s (69 Hispanic, 131 NHW) & 251 controls (79 Hispanic, 172 NHW).	Baseline & follow-up interviews	SF 36-Item Health Survey	" obesity at baseline and follow-up interviews was associated with reduced physical health, regardless of survivor/control status and that obesity at baseline interview was associated with reduced QoL for mental health among survivors."	Mental health SF-36 Obesity at baseline among survivors: $\beta = -13.30$, SE = 4.00, p = 0.001; Obesity at baseline among controls: $\beta = -1.14$, SE = 2.71, p = 0.674	Control population included. Comparison between Hispanic and NHW. No adjustment for multiple testing
Colorectal cancer (CRC)	Jansen et al. 2010 ²⁶	Meta-analysis of ten studies; two specifically evaluated BMI and QoL from same population (Wisconsin)	259 female CRC survivors. BMI measured post diagnosis		"Female survivors with higher B lower physical QoL even wh comorbidities, age and educatio Higher BMI was associated w functioning, role physical, boo vitality. Psychological QoL was not asso	en controlling for number of n. vith worse scores in physical lily pain, general health and	No equivalent studies for male survivors
Prostate cancer (PCa)	Allott et al. 2013 27	Systematic review; five studies identified that evaluated	-		"Several small retrospective of mixed findings between obesity treated with radical prostatectom The prospective multicentre bo survivors treated with RP of	and Qol among PCa survivors by (RP) or radiotherapy. Diston study among 1201 PCa	Whether these findings are indicative of obesity, physical inactivity, or an interaction between

Table S7 Overview of studies evaluating relationships between elevated BMI and quality of life by various cancer types*

		obesity and QoL			independent association of obes worse QoL. Obesity was associated with w which has a negative impact on po Erectile function following RP is de pre-surgery and is not independen Obese and inactive men were incontinent versus normal weight RP."	vorse pre-treatment vitality, ost-treatment QoL. etermined by erectile function itly associated with obesity. e 26% more likely to be	the two is unclear. There are potential confounding due to race and ethnicity
Endometrial cancer	Smits et al. 2015 28	Meta-analysis of four studies: 2 cross- sectional; 1 retrospective; 1 prospective Total N: 1362	At time of questionna ire completed (3 studies); at diagnosis (1 study)		"obese survivors had a significantly poorer physical functioning, social functioning and role functioning when compared to non-obese women. Emotional functioning and cognitive functioning did not show significant differences".	Obese versus non-obese (BMI \ge 30 kg/m ² v < 30 kg/m ²) poorer physical functioning: MD:-11.61 (95% CI: -18.66 to -4.55) social functioning: MD: -4.37 (95% CI: -7.75 to -1.00) role functioning: MD: -5.44 (95% CI: -8.90 to -1.98)	The authors recognised the high risk of bias "associated with non- randomisation, patient attrition, and selective reporting." While all studies adjusted for several potential confounders only one study adjusted for socio- demographic factors and comorbidities.
Ovarian cancer	Smits et al. 2015 29	Single institution, 2008-2013 Total N: 176	Any time during survivorshi p	EORTC QLQ- C30	"Increasing BMI is associated with poorer quality-of-life outcomes in terms of physical and emotional functioning in ovarian cancer survivors"	Mean (SD) global QoL score: Normal BMI: 67.9 (25.9) Overweight: 62.0 (30.0) Obese: 58.6 (28.6)	There were wide SDs on most scores and statistically significant differences were borderline

*Information directly from published systematic reviews/ meta-analyses – rather than directly from primary studies. BMI: body mass index. QoL: quality of life. MD: mean difference. CI: confidence interval. SD: standard deviation. WHEL: Women's Health Eating and Living Study. NHW: non-Hispanic Whites. ASC SCS-II: American Cancer Society's Study of Cancer Survivors II. EORTC: European Organization for Research and Treatment of Cancer.

References

1. Crosbie EJ, Roberts C, Qian W, et al: Body mass index does not influence post-treatment survival in early stage endometrial cancer: results from the MRC ASTEC trial. Eur J Cancer 48:853-64, 2012

2. Pfeiler G, Konigsberg R, Fesl C, et al: Impact of body mass index on the efficacy of endocrine therapy in premenopausal patients with breast cancer: an analysis of the prospective ABCSG-12 trial. J Clin Oncol 29:2653-9, 2011

3. Hakimi AA, Furberg H, Zabor EC, et al: An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J Natl Cancer Inst 105:1862-70, 2013

4. Bokey L, Chapuis PH, Dent OF: Impact of obesity on complications after resection for rectal cancer. Colorectal Dis 16:896-906, 2014

5. Meyerhardt JA, Tepper JE, Niedzwiecki D, et al: Impact of body mass index on outcomes and treatment-related toxicity in patients with stage II and III rectal cancer: findings from Intergroup Trial 0114. J Clin Oncol 22:648-57, 2004

6. Melis M, Weber J, Shridhar R, et al: Body mass index and perioperative complications after oesophagectomy for adenocarcinoma: a systematic database review. BMJ Open 3, 2013

7. Multicentre prospective cohort study of body mass index and postoperative complications following gastrointestinal surgery. Br J Surg 103:1157-72, 2016

8. Mullen JT, Davenport DL, Hutter MM, et al: Impact of body mass index on perioperative outcomes in patients undergoing major intra-abdominal cancer surgery. Ann Surg Oncol 15:2164-72, 2008

9. Sinicrope FA, Foster NR, Yothers G, et al: Body mass index at diagnosis and survival among colon cancer patients enrolled in clinical trials of adjuvant chemotherapy. Cancer 1528-36:1528-36, 2013

10. Barrett SV, Paul J, Hay A, et al: Does body mass index affect progressionfree or overall survival in patients with ovarian cancer? Results from SCOTROC I trial. Ann Oncol 19:898-902, 2008

11. Fischer JP, Nelson JA, Kovach SJ, et al: Impact of obesity on outcomes in breast reconstruction: analysis of 15,937 patients from the ACS-NSQIP datasets. J Am Coll Surg 217:656-64, 2013

12. Goodwin PJ: Obesity and endocrine therapy: host factors and breast cancer outcome. Breast 22 Suppl 2:S44-7, 2013

13. Gennari A, Amadori D, Scarpi E, et al: Impact of body mass index (BMI) on the prognosis of high-risk early breast cancer (EBC) patients treated with adjuvant chemotherapy. Breast Cancer Res Treat, 2016

14. Widschwendter P, Friedl TW, Schwentner L, et al: The influence of obesity on survival in early, high-risk breast cancer: results from the randomized SUCCESS A trial. Breast Cancer Res 17:129, 2015

15. Wong AL, Seng KY, Ong EM, et al: Body fat composition impacts the hematologic toxicities and pharmacokinetics of doxorubicin in Asian breast cancer patients. Breast Cancer Res Treat 144:143-52, 2014

16. Simkens LH, Koopman M, Mol L, et al: Influence of body mass index on outcome in advanced colorectal cancer patients receiving chemotherapy with or without targeted therapy. Eur J Cancer 47:2560-7, 2011

17. Arndt V, Sturmer T, Stegmaier C, et al: Patient delay and stage of diagnosis among breast cancer patients in Germany -- a population based study. Br J Cancer 86:1034-40, 2002

18. Nepogodiev D, Chapman SJ, Glasbey J, et al: Determining Surgical Complications in the Overweight (DISCOVER): a multicentre observational cohort study to evaluate the role of obesity as a risk factor for postoperative complications in general surgery. BMJ Open 5:e008811, 2015

19. Chan DS, Vieira AR, Aune D, et al: Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25:1901-14, 2014

20. Kwan ML, Chen WY, Kroenke CH, et al: Pre-diagnosis body mass index and survival after breast cancer in the After Breast Cancer Pooling Project. Breast Cancer Res Treat 132:729-39, 2012

21. Campbell PT, Newton CC, Dehal AN, et al: Impact of body mass index on survival after colorectal cancer diagnosis: the Cancer Prevention Study-II Nutrition Cohort. J Clin Oncol 30:42-52, 2012

22. Ward KK, Shah NR, Saenz CC, et al: Cardiovascular disease is the leading cause of death among endometrial cancer patients. Gynecol Oncol 126:176-9, 2012

23. Blanchard CM, Stein K, Courneya KS: Body mass index, physical activity, and health-related quality of life in cancer survivors. Med Sci Sports Exerc 42:665-71, 2010

24. Paxton RJ, Phillips KL, Jones LA, et al: Associations among physical activity, body mass index, and health-related quality of life by race/ethnicity in a diverse sample of breast cancer survivors. Cancer 118:4024-31, 2012

25. Connor AE, Baumgartner RN, Pinkston CM, et al: Obesity, ethnicity, and quality of life among breast cancer survivors and women without breast cancer: the long-term quality of life follow-up study. Cancer Causes Control 27:115-24, 2016

26. Jansen L, Koch L, Brenner H, et al: Quality of life among long-term (>/=5 years) colorectal cancer survivors--systematic review. Eur J Cancer 46:2879-88, 2010

27. Allott EH, Masko EM, Freedland SJ: Obesity and prostate cancer: weighing the evidence. Eur Urol 63:800-9, 2013

28. Smits A, Lopes A, Bekkers R, et al: Body mass index and the quality of life of endometrial cancer survivors--a systematic review and meta-analysis. Gynecol Oncol 137:180-7, 2015

29. Smits A, Lopes A, Das N, et al: Quality of life in ovarian cancer survivors: the influence of obesity. Int J Gynecol Cancer 25:616-21, 2015