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Abstract

Hemagglutinin (HA), the membrane-bound fusion protein of the Influenza virus, enables the entry 

of virus into host cells via a structural rearrangement. There is strong evidence that the primary 

trigger for this rearrangement is the low pH environment of a late endosome. To understand the 

structural basis and the dynamic consequences of the pH trigger, explicit-solvent molecular 

dynamics simulations were employed to investigate the initial stages of the HA transition. Our 

results indicate that lowered pH destabilizes HA and speeds up the dissociation of the fusion 

peptides (FPs). A buried salt-bridge between the N-terminus and ASP112 of HA stem domain 

locks the FPs and may act as one of the pH sensors. In line with recent observations from 

simplified protein models, we find that, after the dissociation of FPs, a structural order-disorder 

transition in a loop connecting the central coiled-coil to the C-terminal domains produces a highly 

mobile HA. This motion suggests the existence of a long-lived asymmetric, or “symmetry-broken” 

intermediate during the HA conformational change. This intermediate conformation is consistent 

with models of hemifusion, and its early formation during the conformational change has 

implications for the aggregation seen in HA activity.
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Introduction

Hemagglutinin (HA) is a viral membrane protein responsible for entry of influenza viruses 

into human cells.1 Recognition of the receptor-binding domain by the sialic acid receptors 

on the outer membrane of a host cell triggers endocytosis of the virus. Then, reduction of pH 

inside the endosome triggers a large conformational rearrangement of the C-terminal domain 

HA2 that results in the fusion of the viral and endosomal membranes and delivery of the 

viral genome inside the cell. Similar fusion mechanisms are shared by other viral fusion 

proteins.2,3 HA2 has recently been the subject of intense scrutiny because its evolutionary 

conservation suggests that it can serve as a target for drugs or vaccines effective against a 

large number of influenza subtypes.4–6

The endpoints of the functional HA2 rearrangement are known from X-ray crystallography. 

HA is a homotrimer composed of two domains: a globular, receptor-binding domain formed 

exclusively by HA1, and an inner stem domain formed primarily by HA2 with the N- and C-

terminal fragments of HA1 (Fig. 1A). Each monomer contains one chain of HA1 disulfide 

bonded to one chain of HA2. A pre-fusion structure containing both HA1 and HA2 shows 

how HA1 envelops HA2 and sterically restricts HA2 rearrangement.7 The post-fusion 

structure of HA2 was obtained under low pH conditions and trimmed to remove the fusion 

peptides (FPs).8,9 Comparison with the pre-fusion structure reveals dramatic changes in 

secondary, tertiary, and quaternary structure,8,10 which opens the possibility of long-lived 

intermediate ensembles. Therefore, any search for structure-based therapeutics is incomplete 

without an understanding of the paths HA2 follows during its conformational rearrangement. 

In this paper, we employ explicit-solvent molecular dynamics simulations to bridge previous 

studies into a clearer picture of the early events in the HA2 rearrangement.

To facilitate discussion of the HA2 rearrangement, the trimer is partitioned into 7 sections 

identified from crystal structures as regions with distinct structural changes during the 

transition:8,10 the fusion peptides (FPs), two beta-strands (TBS) and S1 to S5 (see Fig. 1, 

and details can be found in ref.10 and SI). The FP (residues 1 to 20 in each monomer. We 

note that a recent study suggests the functional FP contains residues 1 to 23.11) initially have 

their N-termini buried in a cavity surrounded by S4. The burial location is termed Loop3-4, 

because this subset of S4 becomes a loop connecting S3 and S4 in the post-fusion structure. 

S1 (often called the A-helix) and S2 (often called the B-loop) undergo secondary and tertiary 

changes, so that instead of connecting back to Loop3-4, they extend the three helix bundle of 

S3 into S1/S2/S3, moving the N-termini as far as possible from Loop3-4. TBS, S1, and S2 

together (residue ID 21 to 75) are abbreviated as the “arms.”
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Previously, both experimental and computational studies have highlighted the role of the late 

endosome’s lowered pH in initiating the conformational change. Mechanistically, a pH drop 

can create electrostatic repulsion between the three monomers of HA1 and encourage their 

dissociation, relieving their steric inhibition of the HA2 rearrangement.12,13 Importantly, 

there are titratable residues proximal to the burial pocket of the FPs in HA2 that may 

encourage their removal.14 Beyond the pH trigger, the paths that HA follows during the 

conformational rearrangement were recently studied for the first time10 with dual-basin 

structure-based simulations (SBS).15,16 These simplified protein folding models were 

parameterized using the pre- and post-fusion crystal structures of HA2. These simulations 

yielded a novel view of the HA2 rearrangement by indicating a highly dynamic intermediate 

ensemble after fusion-peptide release. This long-lived intermediate ensemble was 

characterized by a symmetry-breaking of the trimeric structure, which we called a 

“symmetry-broken intermediate” (SBI).10

Since the simulations presented here are motivated in part by the results of previous 

simplified models, it is important to review the relevant findings from these previous SBS. 

The SBS10 have indicated that an order-disorder transition of Loop3-4 (Fig. 1A,B) is integral 

to initiating the HA2 rearrangement. The disorder in Loop3-4 disrupts the sites where the S1 

monomers and FPs are docked onto S4 and encourages their dissociation.10 After FP 

dissocation, the S4 homo-trimer undergoes a symmetry-breaking as one monomer of S4 

bends anti-parallel to S3 to form its post-fusion contacts, leading to the long-lived SBI 

configuration. There are two causes of the instability of Loop3-4 in the SBS: 1) the absence 

of FP creates a void of stabilizing contacts at the interior of HA2 centered on Loop3-4, and 

2) the influence of the final structure in the Hamiltonian causes the Loop3-4 region of S4 to 

be unstable. Cause 1 in particular requires further scrutiny because the SBS were unable to 

explicitly include FPs. Cause 2 also deserves a closer look because the structural propensity 

of Loop3-4 towards a disordered loop may not exist when Loop3-4 is in the context of the 

pre-fusion structure. In the following we explore the dynamics of the FP and Loop3-4 in the 

context of the pre-fusion HA2 with detailed simulations based on transferable explicit-

solvent potentials.

Methods

Protonation of titratable residues

The acidic environment in the endosome leads to the protonation of acidic residues of HA. 

At pH 5 HA1 becomes strongly positive, likely leading to its dissociation.14 Because of this, 

in our simulations we do not explicitly represent most of HA1. HA2 also has several acidic 

residues which need to be assigned protonation states. In this paper we employ constant 

protonation state MD, as opposed to generalized ensemble constant pH methods.17 The 

PROPKA algorithm18 is used to determine the pKa of a residue in the context of a static 

structure. PROPKA takes into account a residue’s protein and solvent environment to 

determine pKa. To determine the protonation state of a residue for production simulations, 

we computed the pKa of a residue over an ensemble of structures generated from a 1 μs 

equilibration simulation starting at the crystal structure using a putative pH 4.5 protonation 

state taken from ref.14 The residues with a pKa above 4.5 in over half of the snapshots were 
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protonated and the protonation state held constant during a kinetic simulation. ASP112 was 

predicted to be unprotonated in the presence of FP and protonated after the dissociation of 

FP. In fact, at pH 4.5, ASP112 is the only residue that is predicted to change upon 

dissociation of the FP. Protonation state prediction for the later stage simulations were 

trained on the previous about 1 μs of simulation. That is, simulation set 2 (HA2 residues 21–

175 at pH 5.0) was trained on 1 μs of the full system at pH 4.5, and simulation set 3 (HA2 

residues 76–175 at pH 5.0) was trained on the last 1 μs of simulation set 2. Protonation states 

for titratable residues for all three sets of simulations are listed in Supporting Table 2.

As just described, in our simulations the protonation state of the titratable residues does not 

change during the time of a simulation. More sophisticated methods exist which allow 

protonation/deprotonation events during the simulation in order to approach a 

thermodynamically-correct ensemble.17 From a kinetic point of view, these individual 

protonation events should take longer than the μs-scale simulation length. A rate of 

protonation can be estimated using a diffusion-limited Smoluchowski encounter model19,20 

with the Grotthuss diffusion rate, and the assumptions that every residue is a perfect receptor 

and fully solvated. In this fastest ideal case, the rate of proton transfer at pH 5 would take 1–

5 μs (see Supporting Information). Thus, the approximation that the protonation states do not 

change in our simulation is valid, and any errors lie in the quality of the protonation state 

predictions.

Simulation details

Three sets of explicit-solvent simulations were performed at physiological temperature 

(310K) using the Anton supercomputer.21 The protein was solvated with the TIP3P water 

model, Na+ and Cl− ions were used to neutralize and mimic the endosomal ionic 

environment of HA molecule, with a physiological concentration of 0.15 M. The simulations 

were performed with a time step of 2.0 fs. The forcefield CHARMM22*22 was used. 

CHARMM22* was created to correct the overstabilization of helices in CHARMM22/

CMAP and to more accurately describe salt-bridge interactions.22 HA was oriented to fit 

into a rectangular simulation box. To prevent the protein molecule from tumbling and 

touching its periodic image, restraints were added to the most distant backbone residues 

(residue ID 76, 77, 174, 175; each monomer). The molecule was initially aligned with the Z-

axis. A harmonic restraint was then applied in the X-Y plane of C-terminal residues (residue 

ID 174, 175; each monomer) with force constant 0.2 kcal/mol/Å2. A weaker constraint was 

applied to the N-terminal residues (residue ID 74, 75; each monomer) in the X-Y plane with 

force contant 0.00025 kcal/mol/Å2. The difference in strength was to reduce the energetic 

penalty for HA2 to rotate about its central axis. In addition, a weak harmonic restraint was 

added to the Z-axis of C-terminal residues (residue ID 174, 175; each monomer) with force 

constant 0.0016 kcal/mol/Å2 to mimic the fact HA2 was bound to the viral membrane. 

Except for the N-termini of HA2, the termini were capped with ACE (acetyl group) and 

NME (methylamine) because they were cut from the full protein (C-termini of HA2 cut from 

its transmembrane domain; peptide of HA1 from the complete HA1). The Multigrator 

integrator23 was used in conjunction with the Nose- Hoover thermostat24,25 and the MTK 

barostat26 at 1 bar with time interval of 240 ps. The long-range electrostatics was treated 

with the Gaussian split Ewald method.27
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The dissociation of FPs was too slow at 310 K to generate statistics when the FP pocket was 

stabilized by salt bridges. Thus, a higher temperature of 398K was used to speed up the 

barrier crossing.28 Even if no FP dissociated, a simulation was stopped after a maximum of 

200 ns. These simulations were performed using Gromacs 5.0.4.29 PME (Particle Mesh 

Ewald) was used for long-range electrostatics30 with a Fourier grid spacing of 0.12 nm. 

Temperature was maintained using the velocity rescaling algorithm.31 Pressure was coupled 

at 1.0 bar with Parrinello-Rahman algorithm32,33 with time constant 2.0 ps. A symmetric 

dodecahedron box was used and, thus, no harmonic restraint was needed to maintain the 

orientation of the protein molecule.

Results

Protonation of titratable residues speeds the dissociation of FPs

The FPs are initially buried in a pocket surrounded by hydrophobic residues of HA2 (Fig. 1) 

and must be released in order to interact with membranes. Our simulations start from the 

crystal structure of HA including the complete stem domain HA2 and the three beta strands 

(residue ID 10–18 of three monomers) of HA1 that form disulfide bonds with HA2 (Fig. 

1(B)). 26 residues in each monomer were protonated according to our training scheme at pH 

4.5 (see Methods and Supporting Information for details). 12 of these residues are within 8 

Å of a FP (one Debye-Hückel screening length at a salt concentration of 150 mM). Notably, 

a strong electrostatic interaction is formed between ASP112 and the N-terminus of the FP in 

the crystal structure. PROPKA predicts that in the presence of a FP ASP112 stays charged, 

while after FP dissociated it becomes neutral. Thus, protonation of ASP112 can act as a 

switch that breaks the meta-stable salt-bridge-like interaction and reduce the stability of FPs. 

Evidence for the stabilizing effect of negatively charged ASP112 comes from experiments 

showing that the mutation of ASP112 raises the fusion pH and speeds up the fusion 

reaction.35–37 These experiments also highlighted the kinetic importance of the FP region by 

showing that mutations in FP-HA2 interactions that raised the fusion pH could not be 

rescued by stabilizing mutations elsewhere.

In order to investigate the kinetics of FP dissociation, we performed constant temperature 

(310K) MD simulations starting from the pre-fusion crystal configuration with varying 

protonation states. These simulations indicate that protonation of ASP112 along with the 

PROPKA predictions leads to FP release on the sub-μs time scale (Fig. 1C). The trajectory 

highlighted in Fig. 1C shows a first FP leaving the HA2 hydrophobic pocket completely at 

850 ns, and a second FP partially leaving near the end of the 2 μs simulation. In total, 3 out 

of 4 simulations show at least one FP dissociated, where the first FP left at an average of 500 

ns (Supporting Information).

To identify the barrier of FP release with the protonation of ASP112, we performed 

simulations with charged ASP112 where the salt bridge between the N-terminus of the FPs 

and ASP112 is initially intact. In this situation a FP is more stable, so a temperature higher 

than physiological temperature (T = 398K) is used to increase the kinetics of FP dissociation 

(Fig. 1D). In 10 simulations with neutral ASP112 and HA2 protonated for pH 4.5, FP release 

occurs at an average of 25 ns. If only one ASP112 is neutralized, the proximate FP is released 

at an average of 58 ns (not shown in Fig. 1D). However, in 7 simulations with charged 
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ASP112 and HA2 protonated for pH 4.5, FP release occurs at an average of ≥160 ns. The 

difference in FP lifetime for the two charge states comes from their disparate routes for FP 

release. With neutral ASP112, the FP has low affinity for its burial location and can rapidly 

dissociate while HA2 is still intact. With charged ASP112, FP burial is more stable than 

domain S5, and the FPs are only seen to dissociate after S5 has fallen apart. S5 melting 

opens and destabilizes the FP burial pocket, allowing FP release. A set of 6 control 

simulations with HA2 protonated for pH 7 and with neutral ASP112 showed a stable S5 and 

no FP dissociation within 200 ns. Though our ability to discern the dependence of FP 

stability on ASP112 protonation state is hampered by the lower relative stability of the S5 

domain, our result suggests that negatively charged ASP112 provides significant stability to 

the FPs. Also, S5 stability is affected by pH. Therefore, the kinetic simulations demonstrate 

a possible second route for FP dissociation; release after the melting of S5. However, such a 

route would likely lead to non-fusogenic HA2 because S5 melting before FP insertion into a 

host membrane would trap the FPs at the viral surface.10,38

Helical structure of Loop3-4 is unstable

While we have shown that protonation of titratable residues can drive the dissociation of the 

FPs, it is also important to consider how this process is related to the dynamics of Loop3-4, 

which creates the burial site for the FPs. Loop3-4 undergoes a helix-to-loop conversion 

between the pre- and post-fusion crystal structures8,10 and, therefore, is a natural candidate 

for a conformational switch. In order to investigate the role of Loop3-4 disorder on the HA2 

transition and its interplay with FP dissociation, we monitored the helical order of Loop3-4 

during three distinct stages of the HA2 transition at physiological temperature: Before any 

FP is released, after all FPs have dissociated, and after the breaking of the S1–S4 interface 

(Fig. 2). The helical order of a residue is defined as the fraction of time the STRIDE 

algorithm39 identifies its secondary structure as helical. Before dissociation of FPs, in the 

stretch of S3 to S4, only Loop3-4 lacks perfect helical order. This supports the idea that 

Loop3-4 is structurally unstable compared with the other residues in S3 to S4, consistent 

with the results from SBS and a secondary structure prediction algorithm.40 FP dissociation 

was modeled by taking the ending configuration of the simulation shown in Fig. 1C, deleting 

the FPs (residue ID 1 to 20), and extending the simulation for 2 μs. Interestingly, after FP 

dissociation, Loop3-4 becomes almost perfectly ordered. The Loop3-4 ordering may 

discourage backtracking of the FPs into the burial pocket and enhance the irreversibility of 

the HA2 transition. We note that this and subsequent simulations are performed at pH 5.0, 

which affects the charge state of residues in S1, S2 and S5, but not S3 or S4. The last step, 

breaking of the S1–S4 interface, leads to complete disordering of Loop3-4.

Breaking of the S1–S4 interface leads to symmetry-breaking

A clear function of HA is to expose the FPs to the host membrane. While S3 and S4 

maintain the prefusion interface with the “arms”, S1 and S2 (A-helix and B-loop), the FPs 

cannot extend away from the viral membrane. Thus, we anticipate that breaking this 

interface is an important event in the HA molecular rearrangement. Breaking of the S1–S4 

interface was not spontaneous within our available timescale (2 μs), so we studied the effects 

of arm dissociation by deleting the arms from HA2 and extending the simulation for 6 μs. 

Note that the FPs are also removed, and thus, these simulations explore the Loop3-4 

Lin et al. Page 6

J Phys Chem B. Author manuscript; available in PMC 2016 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dynamics in a scenario where the FPs have dissociated before or concommitantly with the 

arms.

Without the stabilizing contacts of the arms, the Loop3-4 region disorders on the sub-

microsecond timescale and initiates a symmetry-breaking of the HA2 molecule. Whereas in 

the pre-fusion structure S3 is perpendicular to the viral membrane, after the disordering of 

Loop3-4, the angle of S3 with respect to the viral membrane (θS3) can vary significantly on 

the microsecond timescale (Fig. 3). θS3 undergoes large fluctuations, up to a maximum of 

110°. The mean square deviation along θS3 is linear on the submicrosecond time scale 

giving an effective diffusion coefficient of 7 × 102 deg2/μs (Fig. 3D).

Sufficiently large motion along θS3 would allow S3 to interact with S5. Such an interface, 

assuming a rigid S3 and S5, can only be created near θS3 ~ 120°. Since the 5 μs simulation 

only visited θS3 ≤ 110°, we applied a bias towards large θS3, which led to the configuration 

shown in Fig. 3B with θS3 = 129°. This configuration resembles the symmetry-broken 

intermediate (SBI) seen in SBS, which is stabilized by one S3 monomer creating its post-

fusion contacts with S5. Unbiased simulations started from this configuration (Fig. 3B left) 

were stable, i.e. θS3 unchanged and S3/S5 interface maintained, for the length of the 

simulation (600 ns). A simulation started from the SBI structure predicted in SBS (Fig. 3B 

right) had the same result. While this analysis cannot discern which SBI is the most likely 

long-lived state, it does show that an S3/S5 interaction slows the dynamics along θS3 

significantly below that predicted in Fig. 3D. Thus, explicit-solvent simulations corroborate 

the SBS by predicting rapid movement along θS3 after arm dissociation, and support the 

existence of an SBI.

Discussion and Conclusion

Our simulations report on the initial kinetic events during the HA2 conformational 

rearrangement that are observed using explicit-solvent simulations of the complete HA2 

titrated as though in a reduced pH environment. A kinetic ordering suggested by our 

simulations is 1) HA1 dissociation, 2) FP removal, 3) arm dissociation, and 4) Loop3-4 

disordering and symmetry breaking. This particular ordering is dependent on the specific 

assumptions we have made, in particular that HA1 dissociation happens first, and that until 

HA1 dissociation, HA2 maintains a roughly pre-fusion crystallographic configuration. 

Additionally, we assume that apart from the N-terminal 9 residues (in each monomer) of 

HA1 that were explicitly included, the specific interaction between the dissociated HA1 and 

HA2 does not change any of these kinetic events.9,41 Nevertheless, the existence of HA1 

could delay some events. For example, the C-terminal loop of HA1 interacts with the FP 

burial pocket in the crystal structure and in principle could delay the FP dissociation. Also, 

for some HAs, at least one lobe of HA1 is attached to a sialic acid receptor, which could 

change the dynamics for these HAs. Our simulations best represent the majority of HAs that 

are not attached to receptors. Although allowing for HA1 interactions may delay or reorder 

steps 1-3, our simulations still suggest that the fusion competent HA2 configuration will be 

prone to symmetry breaking because the FPs and arms must dissociate in order to project the 

FPs away from HA, and without the stability afforded by the arms and FPs, Loop3-4 is 

unstable.
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The most obvious consequence of Loop3-4 disorder in our simulations was to allow for 

significant motion of the central coiled-coil S3 (Fig. 3). It seems counterintuitive that HA2 

would bend away from θS3 ~ 0 if its only function is to insert FPs into the host membrane, 

because this reduces its reach towards the host membrane. We can speculate on the 

functional consequences of motion in θS3. First, analogous to the ordering of Loop3-4 after 

FP dissociation, Loop3-4 disordering may discourage the reassociation of the S1/S4 

interface. Second, it provides a hinge for the tilting required to form a meta-stable SBI. 

Third, motion along θS3 increases the effective range of HA2 to interact with its neighbors. 

We expand on the second and third possibilities below.

The post-fusion structure with its S3–S5 interface, models of hemifusion,3 and recent results 

from simplified protein models all agree that HA2 must bend back on itself during the fusion 

process. Loop3-4 disordering suggests that this symmetry-breaking event may occur very 

early in the HA2 rearrangement, even before insertion of the FPs into a membrane. In a 

scenario where motion along θS3 allows the formation of a meta-stable SBI (Fig. 3B), S3 is 

effectively locked in an orientation close to parallel to the viral membrane. Such a 

configuration would bring FPs closer to viral membrane, before they have been inserted into 

the host membrane. This leads to a possible “cooperative” route10 for HA2 to guide 

membrane fusion (Fig. 4). Along this route, the FPs are shared between the viral and host 

membranes, and the full free energy of forming the S1–S3 helical bundle can be used to 

drive the membranes together. A more traditional “sequential” route, closely related to the 

“spring-loaded” model,42,43 has all three FPs inserted into the host membrane. In addition, 

recent experiments showed that S2, the loop region connecting S1 and S3 had affinity to 

membranes.44 This leaves open the possibility for S2 to engage into membranes after FPs 

insertion, to further disrupt lipid structure and facilitate membrane fusion, similar to a 

scheme proposed for the HIV-1 envelope glycoprotein.45,46 This scenario involves the 

melting of any S2 quaternary structure, as in the presented cooperative route.

Beyond providing the possibility for FP insertion into the viral membrane, motion along θS3 

increases the effective range of HA2 to interact with its neighbors. Kinetic models derived 

from experimental assays of viral membrane fusion kinetics predict that at least 3 HA2 must 

cooperate for a successful fusion.3,47 Additionally, in vitro studies have shown that HA2 can 

aggregate.48 The motion along θS3 would extend the potential radius of interaction between 

HA2 molecules. For example, in the case where S1 and S2 are α-helical, θS3 = 90° would 

extend the fusion peptides 17 nm further in the plane of the viral membrane, and θS3 = 60°/

120° would extend 14 nm further, compared to θS3 = 0° as in the pre-fusion crystal 

structure.

In summary, we observe that at pH 4.5–5.0, FP release strongly depends on protonation of 

ASP112, which breaks a salt bridge formed with the N-terminus and allows the release of a 

FP on the microsecond timescale. Apart from the FPs, the HA2 pre-fusion structure is stable 

on the microsecond timescale. After the dissociation of S1/S2 from the HA2 stalk, the 

subsequent disordering of Loop3-4 is consistent with secondary structure predictors and 

corroborates the findings of simplified models. Thus, we provide further evidence for a 

order-disorder transition of Loop3-4 and show that it leads to large motions of the HA2 

regions distal to the viral membrane. This motion is consistent with the formation of a 
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symmetry-broken intermediate early in the fusion process. Due to the extension of such an 

intermediate in the plane of the virus, there is an interesting possibility that it can play a role 

in providing HA2 spatial aggregation. Experimentally identifying an SBI is well within the 

capabilities of FRET, TIRF, pH-jump and FTIR,49 though in vitro preparation of pre-fusion 

HA2 remains challenging. Such experiments could monitor either the S3–S5 distance or the 

S3 distance from the viral surface, both of which undergo large changes upon symmetry-

breaking.

Supplementary Material
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Figure 1. 
An electrostatic environment induced by lowered pH increases the rate of FP release. (A) 
Schematic diagram showing the change of secondary structure of a monomer between the 

pre- and post-fusion crystal structures. The corresponding crystal structures are shown in the 

supplemental information. The sequence is partitioned into sections differentiated by their 

structural change in the HA2 rearrangement, with FP beginning at the N-terminus and S5 

ending at the C-terminus. Not shown is an additional C-terminal trans-membrane domain. 

FP (residue ID 1–20) and TBS (two beta-strands, residue ID 21 to 37) are hydrophobic 

domains at the N-terminus. They are missing in the post-fusion crystal structure.8 S1 

(residue ID 38 to 54, yellow) and S3 (residue ID 76 to 104, red) maintain their secondary 

structure. S2 (residue ID 55 to 75, blue) changes from a loop to helix. S4 (residue ID 105 to 

129, green) and S5 (residue ID 130 to 175, orange) have a partial secondary structure shift. 

Loop3-4 (residue ID 107 to 112) is a region of low helical propensity at S3–S4 interface that 

undergoes a helix-loop transition. (B) Pre-fusion HA2 crystal structure (PDB ID: 2HMG) 

shows the FPs to be buried in a hydrophobic pocket within S4. 3 N-terminal peptides of HA1 

(one for each monomer, residue ID 10 to 18 of HA1, violet) are disulfide bonded to S5. The 

inset magnifies a view of the FPs in the crystal and after dissociation during the simulation, 

with N-termini of FPs and ASP112 shown as spheres.34 The left inset defines the geometric 

center of the hydrophobic pocket as the center of mass of the three ASP112 in the crystal. (C) 
The distance between the N-terminus of each FP and the center of the hydrophobic pocket. 
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The curves are averaged over a 0.5 ns window for clarity. (D) The survival probability for 

the release of the first FP at high temperature (T = 398K) plotted as a function of time for 

the cases with neutral (red filled, 10 runs) and negative (green filled, 7 runs) ASP112. Also 

shown are control simulations (grey filled, 6 runs) with neutral ASP112 at pH 7.
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Figure 2. 
Helical order of domains S3/S4 during different stages of the conformational rearrangement. 

Representative snapshots highlighting the structure of regions contacting Loop3-4 are shown 

for HA2 (A) before FP release, (B) after FP release, and (C) after the dissociation of S1/S2. 

(D) The helical order of a residue is determined by averaging over the three monomers the 

probability that the STRIDE algorithm39 determines an alpha helical secondary structure. 

The black curve is averaged over a 700 ns simulation at pH 4.5 started from the crystal 

structure, before dissociation of the FP and corresponding to (A). The red curve is averaged 

for a 2 μs at pH 5 where the FPs are already ejected, corresponding to (B). The green curve 

is 6 μs of simulation after the deletion of S1/S2. Loop3-4 shows substantial disorder 

compared with the other parts of S3/S4.
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Figure 3. 
Disordering of Loop3-4 upon breaking of the S1–S4 interface leads to large fluctuations in 

HA2. (A) The coordinate θS3 estimates the deviation of S3 from a perpendicular orientation 

to the viral surface by measuring the angle the coiled-coil makes relative to S5. S5 is 

anchored to the viral membrane by a C-terminal transmembrane region. (B) Two possible 

structures for an SBI taken from explicit-solvent simulations and dual-basin SBS (see 2 

Basins C, E and F in ref.10 for explanation of the SBS results). (C) θS3 as a function of time 

during the final 5 μs of a constant temperature (310K) simulation of HA2 with S1 and S2 

removed. (D) Effective diffusion coefficient is obtained from the mean square displacement 

of the angle 〈δθS3(τ)2〉 in the diffusive regime. Linear fitting is drawn as a black dashed line.
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Figure 4. 
A cartoon illustration of possible fusogenic routes for HA2 from a symmetry-broken 

intermediate (SBI). (A) A “sequential route” where three FPs of each HA2 are inserted into 

host membranes. This route is called sequential because the arms fold into their post-fusion 

coiled-coil before the membranes are brought together. This resembles the “spring-loaded” 

model.42,43 (B) A “cooperative route” where the FPs are inserted into both the host and viral 

membranes. The SBI facilitates this route by bringing the FPs closer to viral membrane. 

This route is termed cooperative because the coiled-coil forms only as the membranes are 

brought close together. In both of these routes, S5 will eventually melt and wrap around 

HA2, presumably helping to bring two membranes together. If S5 breaks before at least one 

FP is inserted into the host membrane, likely all the FPs are pinned at the viral surface 

leading to a inactive conformational transition.10,38
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