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SUMMARY

The naked mole-rat is a subterranean rodent lacking
several pain behaviors found in humans, rats, and
mice. For example, nerve growth factor (NGF), an
important mediator of pain sensitization, fails to pro-
duce thermal hyperalgesia in naked mole-rats. The
sensitization of capsaicin-sensitive TRPV1 ion chan-
nels is necessary for NGF-induced hyperalgesia, but
naked mole-rats have fully functional TRPV1 chan-
nels. We show that exposing isolated naked mole-
rat nociceptors to NGF does not sensitize TRPV1.
However, the naked mole-rat NGF receptor TrkA dis-
plays a reduced ability to engage signal transduction
pathways that sensitize TRPV1. Between one- and
three-amino-acid substitutions in the kinase domain
of the nakedmole-rat TrkA are sufficient to render the
receptor hypofunctional, and this is associated with
the absence of heat hyperalgesia. Our data suggest
that evolution has selected for a TrkA variant that
abolishes a robust nociceptive behavior in this spe-
cies but is still compatible with species fitness.

INTRODUCTION

Inflammation and tissue injury cause hypersensitivity of the

affected tissue so that mild mechanical and thermal stimuli

become painful. This phenomenon is called hyperalgesia (Lewin

et al., 2014; Smith and Lewin, 2009). A critical endogenousmedi-

ator of inflammatory thermal and mechanical hyperalgesia, both

in rodents and in humans, is nerve growth factor (NGF). Early

studies in rodents and humans revealed that a single local

dose of exogenous recombinant NGF can produce profound

and long-lasting thermal and mechanical hyperalgesia (Dyck

et al., 1997; Lewin and Mendell, 1993; Lewin et al., 1993; Petty

et al., 1994). Furthermore, loss of function mutations in the

NGF gene or NTRK1, which encodes the high-affinity NGF re-
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ceptor TrkA, cause a range of congenital pain insensitivity syn-

dromes in humans (Carvalho et al., 2011; Einarsdottir et al.,

2004; Indo et al., 1996). The NGF/TrkA signaling system is critical

for the genesis and maintenance of hypersensitivity states in

mammals (Lewin et al., 1994, 2014; Woolf et al., 1994). The

importance of increased NGF signaling during pain has recently

been reinforced by the fact that blocking NGF signaling appears

to be highly effective in treating pain in humans on the basis of

phase 2 clinical trial data (Katz et al., 2011; Lane et al., 2010).

The naked mole-rat (Heterocephalus glaber) is a eusocial

African rodent that displays a range of extreme physiological

characteristics from cancer resistance and extreme longevity

to complete insensitivity to acid (Liang et al., 2010; O’Connor

et al., 2002; Park et al., 2008; Smith et al., 2011; Schuhmacher

et al., 2015). We discovered that this species completely lacks

behavioral heat hyperalgesia when challenged with NGF and

the pro-inflammatory agents capsaicin and complete Freund’s

adjuvant (Park et al., 2008). The polymodal, capsaicin-gated

ion channel TRPV1 is also required in mice for the development

of NGF-induced heat hyperalgesia (Chuang et al., 2001). How-

ever, our studies have shown that although naked mole-rats

are behaviorally insensitive to capsaicin, they have sensory neu-

rons that express a TRPV1 channel with ligand sensitivity and

biophysical properties indistinguishable from that found in

mice or humans (Smith et al., 2011). Here, we investigated how

heat hyperalgesia has been disabled in the naked mole-rat

over the course of evolution. We addressed this question using

molecular and cellular approaches to dissect out at which stage

of the sensitization pathway heat sensitization fails. A cellular

model of heat hyperalgesia is the rapid and potent sensitization

of TRPV1 currents that has been studied in isolated sensory neu-

rons (Shu and Mendell, 2001). We show that rapid sensitization

of TRPV1-mediated currents is absent in sensory neurons from

naked mole-rats. However, the naked mole-rat TRPV1 protein

can be sensitized when expressed in mouse sensory neurons.

We show that the cloned naked mole-rat TrkA receptor is less

efficient at engaging signal transduction pathways leading to

TRPV1 sensitization. Furthermore, we demonstrate that unique

amino acid variants in the kinase domain of the naked mole-rat
.
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Naked Mole-Rat Dorsal Root Ganglia Neurons Are Not Sensitized by NGF

(A) IB4 (green) and TrkA (red) label largely different populations of mouse DRG neurons, greater co-labeling occurs in naked mole-rat TrkA-positive DRG neurons

in culture (left panels) and sections (right panels). Asterisks denote double-labeled neurons; scale bar, 20 mm.

(B and C) NGF potentiates capsaicin-gated currents in mouse DRG neurons (B) but has no effect in naked mole-rat neurons (C).

(D and E) NGF superfusion causes sensitization of mouse DRG neurons, observed as increase in calcium influx (D), but not in naked mole-rat DRG neurons (E);

high-potassium solution (40 mM KCl) was used to verify cell viability.

(F) Ratios of sixth and fifth capsaicin response from (D) and (E), as labeled by arrows.

Mann-Whitney U test was used in (B), (C), and (F) (**p < 0.01; ****p < 0.0001). Data are presented as mean ± SEM.
TrkA receptor likely render the receptor hypofunctional. Thus,

millions of years of evolution appear to have led to an effi-

cient and possibly single-molecule change that disables heat

hyperalgesia.

RESULTS

TRPV1 Is Not Sensitized by NGF in Naked Mole-Rat
Nociceptors
We made whole-cell patch-clamp recordings from isolated

mouse and nakedmole-rat sensory neurons live-labeled with flu-

orescently tagged isolectin B4 (IB4). IB4 predominantly binds to

non-peptidergic small-diameter sensory neurons in mice, while

TrkA immunoreactivity is specific to peptidergic sensory neurons

that do not bind IB4 (Averill et al., 1995). Immunohistochemistry

confirmed that IB4-negative sensory neurons are TrkA positive in

mouse and naked mole-rat, but as in the rat (Price and Flores,

2007), some naked mole-rat TrkA-positive neurons were IB4

positive (Figure 1A). We also immunostained cultured naked

mole-rat sensory neurons and found that 50% (34/68 cells)

were TrkA positive while 35% (24/68) were IB4 positive, and

only a small proportion of TrkA-positive cells were IB4 positive

(15% [5/34]). We thus focused our analysis on IB4-negative neu-
rons to increase the likelihood of recording from naked mole-rat

sensory neurons that possess TrkA receptors. The ability of NGF

to rapidly sensitize TRPV1 was measured by comparing capsa-

icin-evoked current amplitudes before and after a 5-min NGF

superfusion (100 ng/mL). As in rat sensory neurons (Shu and

Mendell, 1999), there was a substantial increase in the average

size of the capsaicin-evoked current (>2-fold) after acute NGF

treatment of IB4-negative mouse sensory neurons (Figure 1B).

However, in naked mole-rat IB4-negative sensory neurons,

NGF never sensitized TRPV1 currents (Figure 1C). In order to

confirm these results we also performed calcium imaging on iso-

lated mouse and naked mole-rat sensory neurons. Given that

both capsaicin and calcium influx cause desensitization and ta-

chyphylaxis of TRPV1 (Koplas et al., 1997; Lishko et al., 2007),

we applied five consecutive pulses (100 nM capsaicin, 30 s

pulse) in order to obtain stable calcium signals before exposing

the neurons to NGF (Hanack et al., 2015), followed by the sixth

capsaicin pulse (Figures 1D and 1E). In mouse sensory neurons,

NGF caused robust sensitization of capsaicin responses, but no

increase in calcium influx was observed in naked mole-rat sen-

sory neurons (Figure 1F). Thus, the absence of behavioral signs

of NGF-induced heat hyperalgesia in the naked mole-rat (Park

et al., 2008) can be accounted for bymolecular changes, intrinsic
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Figure 2. Naked Mole-Rat TRPV1 Currents

Can Be Sensitized by NGF

(A) Naked mole-rat Trpv1 cDNA was transfected

into DRG neurons originating from Trpv1�/� mice.

(B) Trpv1�/�DRG neurons expressing nakedmole-

rat TRPV1 channels were identified by co-trans-

fection with EGFP; IB4-568 labeling allowed tar-

geting of TrkA-positive neurons. Scale bar, 50 mm.

(C) NGF potentiates naked mole-rat TRPV1-

mediated capsaicin currents in IB4-negative, but

not IB4-positive, Trpv1�/� DRG neurons.

(D) In CHO cells co-expressing rat Trpv1/rat

TrkA, NGF sensitized capsaicin responses, unlike

in control cells.

(E) Naked mole-rat fibroblast cells expressing

naked mole-rat Trpv1/ratTrkA were sensitized by

NGF when compared to controls.

Sensitization in (D) and (E) was scored if change in

[Ca2+]i intensity > (mean + 2 SD) of controls (dotted

lines in lefthand panels). Mann-Whitney U test was

used in (C) and chi-square test in (D) and (E) (*p <

0.05; ***p < 0.001). Data in (C) are presented as

mean ± SEM.
to naked mole-rat nociceptors, that have disabled NGF sensiti-

zation of TRPV1.

The cloned naked mole-rat TRPV1 receptor (nmrTrpv1) dis-

plays biophysical properties similar to its mouse counterpart

with respect to proton, capsaicin, and heat gating (Smith et al.,

2011). It is, however, possible that the naked mole-rat TRPV1

protein cannot be phosphorylated on critical residues that are

required for full sensitization. Several conserved amino acid

residues that can be phosphorylated within the TRPV1 molecule

have been shown to be important for sensitization (Bhave et al.,

2003; Chuang et al., 2001; Prescott and Julius, 2003; Zhang

et al., 2005); however, all but one of these residues were

conserved in nmrTrpv1 (Figure S1A). Thus, Ser502 (numbering

for ratTrpv1), a normally conserved residue involved in protein ki-

nase C epsilon type (PKCε)-mediated sensitization (Numazaki

et al., 2002), was substituted by a threonine in the naked mole-

rat protein. By using the phorbol-12-myristate-13-acetate ester

(PMA) to activate PKCε in cells transfected with ratTrpv1,

we observed robust sensitization using calcium imaging as

the readout (Figure S1B). To measure PKCε sensitization of

nmrTRPV1, we used a new naked mole-rat fibroblast cell line

(Figure S1C) to enable recording of PKCε-mediated sensitization

of nmrTRPV1 in its native environment, which was robustly

observed (Figure S1D). We also generated a naked mole-rat

TRPV1T502S mutant that was also sensitized by PMA in naked

mole-rat fibroblast cell lines (Figure S1E) and conclude that in

terms of TRPV1 sensitization, threonine is functionally equivalent

to serine at position 502.

To demonstrate more directly that naked mole-rat TRPV1 is

fully capable of being sensitized, we expressed it in mouse sen-

sory neurons from Trpv1�/� mice. Using an Alexa-Fluor-568-
750 Cell Reports 17, 748–758, October 11, 2016
conjugated IB4, mouse Trpv1�/� IB4-

negative sensory neurons were selected

by their green fluorescence after trans-

fection with plasmids encoding EGFP
and the naked mole-rat Trpv1 cDNA (Figures 2A and 2B). We

used whole-cell patch-clamp electrophysiology to demonstrate

that capsaicin-evoked currents are present in transfected

Trpv1�/� sensory neurons and that these currents could be

sensitized by NGF (Figure 2C). In contrast, no sensitization of

the capsaicin current in mouse IB4-positive sensory neurons

was observed presumably because of the absence of TrkA in

these cells (Figures 2C and 1A). Transfected Trpv1�/� sensory

neurons had heat-gated currents with an activation threshold

of 44.4�C ± 0.7�C (n = 5) and pH-gated currents sensitive to

ruthenium red (Figure S1F). Heat-activated currents are reported

to be otherwise rare in Trpv1�/� sensory neurons (Caterina et al.,

2000). Thus, the naked mole-rat TRPV1 protein can rescue

capsaicin and heat sensitivity in Trpv1�/� sensory neurons with

a heat-activation threshold concomitant with the heat-activation

threshold of nmrTRPV1 (Smith et al., 2011) and is fully capable of

NGF initiated sensitization in the mouse cellular context.

Rapid TRPV1 sensitization via NGF activation of TrkA re-

ceptors can be reconstituted in human and animal-derived

cell lines as well as Xenopus laevis oocytes (Bonnington and

McNaughton, 2003; Prescott and Julius, 2003; Zhang et al.,

2005). It is possible that TRPV1 sensitization by NGF cannot

take place in the naked mole-rat cellular context. We used cal-

cium imaging to measure TRPV1 sensitization after Chinese

hamster ovary (CHO) cells were transfected with ratTrpv1/

ratTrkA. In control experiments, ratTrkA was either not trans-

fected or buffer instead of NGF was superfused between the

capsaicin pulses. NGF produced a robust sensitization with

29.5% of capsaicin-responsive CHO cells showing increased

calcium signals post-NGF compared to just 4.5% in controls

(Figure 2D). Similarly, using naked mole-rat fibroblast cells



co-transfected with nmrTrpv1/ratTrkA, 19.8% of capsaicin-

responsive naked mole-rat fibroblast cells showed increased

calcium signals post-NGF compared to just 3.5% in con-

trols (Figure 2E). These data indicate that naked mole-rat

cells possess the necessary signaling components for TRPV1

sensitization.

Naked Mole-Rat TrkA Is Hypofunctional
We cloned the naked mole-rat TrkA cDNA from mRNA isolated

from sensory neurons (nmrTrkA). The nmrTrkA sequence was

identical to that predicted from the naked mole-rat genome as-

sembly (Keane et al., 2014; Kim et al., 2011). The predicted

naked mole-rat TrkA peptide sequence was aligned with orthol-

ogous sequences from 26 other mammalian species (Figure S2).

There was significant sequence divergence in the extracel-

lular TrkA domains, including the juxtamembrane NGF-binding

domain; however, the intracellular sequences within the kinase

domain were highly conserved (Figure S2B). All tyrosine residues

important for receptor activation were conserved in all the spe-

cies, including the naked mole-rat. We reasoned that at least

some of the amino acid variants in the kinase domain of nmrTrkA

may be common variants found in Africanmole-rats (family Bath-

yergidae). In order to screen for such variants, we obtained TrkA

sequences from five further African mole-rat species: the Dam-

araland mole-rat (Fukomys damarensis), the Mashona mole-

rat (Fukomys darlingi), the giant mole-rat (Fukomys mechowii),

the Natal mole-rat (Cryptomys hottentotus natalensis), and

Emin’s mole-rat (Heliophobius emini) (Figure S3A). We used

genomic DNA from these species to PCR amplify the exonic re-

gions of the TrkA gene, guided by variants found in nmrTrkA.

However, we also assembled TrkA transcripts from published

RNA sequencing (RNA-seq) data from African mole-rat species

(Davies et al., 2015). In addition, we obtained RNA from the

brains of three Mashona mole-rats and performed RNA-seq fol-

lowed by de novo transcriptome assembly (Table S1). An African

mole-rat phylogeny was constructed including the new tran-

scriptome data from the Mashona mole-rat (Figure S3C), and

this was in close agreement with previous analyses that had

not included this species (Davies et al., 2015). Alignment of the

available predicted TrkA amino acid sequences from African

mole-rats revealed that the nmrTrkA kinase domain has accumu-

lated at least three amino acid variants that are either absent or

rare in the animal kingdom, including African mole-rats (Fig-

ure S3B). There was just one amino acid change that appeared

to be unique to naked mole-rat, which was a leucine (rat) to

cysteine substitution at position 774 (Figure S2B). The accumu-

lation of amino acid variants in the nmrTrkA kinase domain

encouraged us to carry out a functional analysis of the ability

of this receptor to participate in nociceptor sensitization. To do

this, we tested the ability of the naked mole-rat TrkA receptor

to sensitize TRPV1 using electrophysiology with X. laevis oo-

cytes as the heterologous expression system. Oocytes were in-

jected with a ratTrpv1cRNA and cRNAs coding for either ratTrkA

or nmrTrkA. We observed that 1 mMcapsaicin causes substantial

and long-lasting desensitization of TRPV1 currents in oocytes

and thus decided to record proton-gated TRPV1 currents to

quantify NGF sensitization, as others have done (Zhang et al.,

2005). Using a two-electrode voltage clamp, we showed that
an acidic stimulus (pH 5.8) produced robust inward currents in

TRPV1-expressing oocytes that were absent in non-injected oo-

cytes (data not shown). In oocytes injected with ratTrkA and

ratTrpv1 cRNA, superfusion of NGF (100 ng/mL, 5 min) caused

a robust sensitization of acid-gated currents (Figure 3B). How-

ever, the same NGF concentration produced a significantly

smaller sensitization of TRPV1 currents in oocytes injected

with nmrTrkA and ratTrpv1 cRNA (Figures 3B and 3E). Compara-

ble amounts of rat and nakedmole-rat TrkA protein were present

in membranes isolated from X. laevis oocytes (Figure 3C), indi-

cating that differences in TrkA protein levels was unlikely to

account for the reduced TRPV1 sensitization. We next varied

NGF concentration (1–1,000 ng/mL) but kept the superfusion

time constant (5 min). TrkA is a high-affinity NGF receptor with

a dissociation constant Kd of less than 10�9 M (Kaplan et al.,

1991; Klein et al., 1991). When oocytes were stimulated with

1,000 ng/mL NGF, activation of the naked mole-rat TrkA recep-

tor produced a degree of sensitization similar to that observed

with rat TrkA (Figure 3C). These results strongly suggest that

the naked mole-rat TrkA molecule is less efficient at initiating

sensitization with NGF concentrations of �100 ng/mL, which

was shown to be saturating in adult rat sensory neurons (Shu

and Mendell, 1999). It is conceivable that recombinant human

NGF used in this study (rhNGF) displays stronger binding affinity

to rat TrkA than to the naked-mole-rat TrkA. To test this idea, we

cloned chimeric TrkA receptors containing the N-terminal, extra-

cellular part of the receptor from rat TrkA together with the trans-

membrane domain and entire intracellular kinase domain from

the naked mole-rat molecule (Figures 3D and 3E). HEK293 cells

were transiently transfected with either rat or chimeric TrkA

construct to assess NGF-stimulated TrkA activation (Figure S4).

An antibody raised against extracellular rat TrkA domain was

used tomeasure the total level of TrkA protein in cell lysates (total

TrkA), and two antibodies that recognize phosphorylated tyro-

sine residues in the TrkA kinase domain were employed to study

receptor activation. Anti-phospho-TrkA (Tyr674/675; numbering

for human TrkA) was used tomeasure the phosphorylation levels

of the activation loop tyrosines (Segal and Greenberg, 1996; Se-

gal et al., 1996), and an anti-phospho-TrkA (Tyr490) was used

that recognizes the activated putative Shc binding site (Oberme-

ier et al., 1993a). NGF stimulation triggered rapid phosphoryla-

tion of Tyr674/675 in rat TrkA, but not in chimeric TrkA (Figures

S4A and S4B). In contrast to rat TrkA, NGF treatment did not

have any effect on activation of Tyr674/675 in the chimeric

TrkA receptor. However, the Tyr674/675 residues in both

chimeric TrkA and rat TrkA displayed strong basal receptor

phosphorylation in the absence of NGF, probably triggered by

receptor dimerization events due to overexpression. This obser-

vation is in agreement with previous findings that an antibody

against the TrkA extracellular domain can itself crosslink two re-

ceptors, causing their activation in PC12 cells (Clary et al., 1994;

Hempstead et al., 1992). NGF triggered increased phosphoryla-

tion of the Tyr490 residue in the rat TrkA molecule after 1 min but

did not have any apparent effect on the phosphorylation level

of the chimeric TrkA Tyr490 residue (Figures S4C and S4D).

Next, we tested chimeric TrkA in the context of NGF-mediated

TRPV1 sensitization. Proton acid-gated TRPV1 currents in

X. laevis oocytes co-expressing chimeric TrkA could only be
Cell Reports 17, 748–758, October 11, 2016 751
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Figure 3. Naked Mole-Rat TrkA Is Impaired in TRPV1 Current Potentiation

(A) Schematic representation of the transfection and recording conditions used.

(B) NGF causes substantial sensitization of proton-gated rat TRPV1 currents when signaling through rat TrkA, but this effect is reduced in the oocytes co-ex-

pressing the naked mole-rat TrkA receptor.

(C) Sensitization levels across NGF concentrations were calculated as the ratio of a current immediately after and before NGF superfusion. High NGF con-

centration rescues the sensitization through NGF TrkA. For all the measurements, at least three pH stimuli were applied before the NGF superfusion in order to

obtain the stable current responses, while at least two acid-gated currents were recorded post-NGF application. Between 2 and 18 oocytes were recorded for

every NGF concentration. Inset: ten oocytes, injected with equal concentration of rat or naked mole-ratTrkA cRNA, were lysed, and pelleted membranes were

subjected to western blotting. Prior to blotting, the protein concentration wasmeasured to ensure equal sample loading. TrkA is expressed as a 140-kDa protein.

(D and E) 100 ng/mL NGF potentiated acid-gated TRPV1 currents recorded in X. laevis oocytes via chimeric TrkA (D), but the sensitization level was significantly

smaller than for rat TrkA and not different from the NMR TrkA receptor quantified in (E).

Two-way ANOVA with Sidak’s multiple comparison was used in (C), and one-way ANOVA with Bonferroni’s multiple comparison test was used in (E) (*p < 0.05;

***p < 0.001). Data are presented as mean ± SEM, except in (C) for NMR TrkA at 1 ng/mL NGF (only mean current plotted), where two oocytes were recorded.
moderately sensitized with 100 ng/mL NGF; indeed, the mean

level of sensitization observed was not significantly larger than

that found with the full-length nmrTrkA (Figure 3E). In contrast,

sensitization of TRPV1 proton currents by NGF-stimulated oo-

cytes co-expressing ratTrkA was at least twice as large as with

full-length nmrTrkA or chimeric receptors. These results strongly

suggest that a hypo-functional naked mole-rat TrkA kinase

domain underlies the lack of TRPV1 sensitization in this species.

Quantitative Proteomics Reveals Hypofunctional
Downstream Signaling of the nmrTrkA Intracellular
Domain
A quantitative proteomics approach was used that combined

HEK293 cell stable isotope labeling by amino acids in cell culture

(SILAC) (Ong et al., 2002) with high-resolution liquid chromatog-

raphy coupled with tandem mass spectrometry (LC-MS/MS).

Heavy-stable isotope (Lys-8 and Arg-10)-labeled HEK cells tran-
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siently expressing rat or chimeric TrkA were stimulated with

murine NGF (100 ng/mL) for 10 min and light-stable isotope

(Lys-0 and Arg-0) cells were left untreated (Figure 4A) (Olsen

et al., 2006). Following stimulation, cells were lysed, and equal

amounts of protein were used for each SILAC pair (Figure 4A).

Titanium dioxide (TiO2) chromatography was used for phospho-

peptide enrichment, and peptides were analyzed with LC-MS/

MS. Typically, phosphopeptides were sequenced several times

in different forms (such as oxidized methionine or missed tryptic

cleavage), and overall, a similar number of phosphopeptide sites

were quantified and identified in cells transfected with rat TrkA or

chimeric TrkA (Figure 4B), indicating a similar overall number of

phosphorylated proteins in each condition. Class I phosphopep-

tide sites comprise those residues with the highest localization

probability for the phospho-group (>0.75); that is, the sum of

probabilities of other potential sites is less than 0.25. From

more than 2,000 identified and quantified class I phospho-sites,



A B

C

rat TrkA
- NGF

chimeric TrkA
+ NGF - NGF + NGF

Lysis

MS/MS MS/MS

Lysis Lysis Lysis

Mix
Trypsin digestion
Phosphopeptide 

enrichment

Mix
Trypsin digestion
Phosphopeptide 

enrichment

0

1.5

2.0

1.0

0.5

lo
g 2(

+N
G

F
/-

N
G

F
)

rat rat  chimeric
Erk2 (pY-187) Erk1 (pY-204)

VADPDHDHTGFLTEpYVATR
IADPEHDHTGFLTEpYVATR

 chimeric

D E

0

-0.2

0.2

0.4

0.6

rat rat  chimeric
p38-α (pS-2) p38-α (pY-182)

 chimeric

pSQERPTFYR HTDDEMTGpYVATR

lo
g 2(

+N
G

F
/-

N
G

F
)

2,239 2,007

rat
Phosphosites Class I

 chimeric rat  chimeric

pSer
(90.2%)

pSer
(89.9%)

pThr
(9.1%)

pTyr
(0.95%)

pThr
(8.6%)

pTyr
(1.2%)

Upregulated Phosphosites

361 (16.1%) 270 (13.5%)

pSer
(89.5%)

pSer
(88.5%)

pThr
(8.5%)

pTyr
(3.0%)

pThr
(6.1%)

pTyr
(4.4%)

[min] 0NGF
rat chimeric

0 1010

Erk1/2

Phospho-
Erk1/2

0

30

20

10

rat  chimeric
NGF (10 min)

ph
os

ph
or

yl
at

io
n

 in
cr

ea
se

 (
a.

u.
)

Figure 4. Quantitative Proteomics Reveals Hypofunctional Signaling of the nmrTrkA Intracellular Domain
(A) Overview of the SILAC experiment, performed as a biological duplicate for both receptors. Following the trypsin digestion, samples were enriched for

phosphopeptides on TiO2 columns.

(B) Similar number of phosphopeptides were identified and quantified in both rat and chimeric TrkA samples, but significantly more peptides were upregulated

when signaling through rat TrkA than through chimeric TrkA (Fisher’s exact test, two-tailed p = 0.0155).

(C and D) Activation of rat TrkA triggers stronger phosphorylation of Erk1/2 key regulatory residues than activation of chimeric TrkA.

(E) Regulatory tyrosine-182 residue of p38-a kinase shows stronger phosphorylation when signaling through rat TrkA, but NGF activation does not change

phosphorylation levels of the serine-2 residue.

Data in (C)–(E) are presented as mean values from two experiments.
the distribution of phosphoserine (pSer), phosphothreonine

(pThr), and phosphotyrosine (pTyr) sites observed in cells trans-

fected with rat or chimeric TrkA was similar to distributions re-

ported previously with cells stimulated with NGF or epidermal

growth factor (EGF) (Emdal et al., 2015; Olsen et al., 2006). We

next examined the NGF-upregulated phospho-sites and found

that significantly more phosphopeptides were upregulated in

NGF-treated cells with rat TrkA (361/2,239 [16.8%]) compared

to cells with chimeric TrkA (270/2,007 [13.5%]; Figure 4B).

Analysis of upregulated phospho-site sequence motifs

was used to extract over-represented and enriched sequence

patterns (Chou and Schwartz, 2011; Schwartz and Gygi,

2005). NGF stimulation was associated with the upregulation

of a similar pattern of sequence motifs surrounding pSer res-

idues in cells with rat or chimeric TrkA (Figure S5). However,

stimulation of the rat TrkA receptor was associated with a

more substantial enrichment of proline-containing motifs

compared to chimeric TrkA, which is an indicator of stronger
activation of MAPK/CDK protein families (Amanchy et al.,

2007).

An additional quantitative proteomics experiment revealed

that there was a stronger activation of specific phosphopeptides

from Erk2 (MAPK1, pTyr-187) and Erk1 (MAPK3, pTyr-204) (Crit-

ton et al., 2008; Sacco et al., 2009) after stimulation of the cells

expressing rat TrkA compared to chimeric TrkA (Figure 4C). In

addition, western blotting for phosphorylated Erk in HEK293

cells transfected with rat or chimeric TrkA after NGF stimulation

revealed reduced levels of phospho-Erk protein after stimula-

tion of the chimeric receptor (Figure 4D). We could also iden-

tify and quantify the changes in phosphopeptides from p38-a

(MAPK14), a kinase involved in TRPV1 regulation in sensory neu-

rons (Ji et al., 2002; Raingeaud et al., 1995). We observed a

stronger increase in the abundance of p38-a derived-phospho-

peptides containing the pTyr182 residue after stimulation of rat

TrkA compared to chimeric TrkA (Figure 4E). A phosphoserine

residue on the same protein (pSer2) (Olsen et al., 2010) did not
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Figure 5. Naked Mole-Rat Pups Have More

C-Fibers in Peripheral Nerves than Adults

(A and B) Example electron micrograph of the

saphenous nerve of an NMR P3 pup (A) and an

adult animal (B). Different myelination stages of

single A-fibers and C-fibers within Remak bundles

are visible; scale bar, 1 mm.

(C) Numbers of fibers with detectable myelination

were comparable for neonatal and adult nerves in

both naked mole-rat and mouse.

(D) Quantification of C-fiber number for the

saphenous and peroneal nerve in the pup

compared to the adult nerve from naked mole-rat

and mouse. For comparison, naked mole-rat adult

data were taken from St. John Smith et al. (2012)

andmouse adult data were taken fromMoshourab

et al. (2013) and Robertson and Sima (1980) for

mouse saphenous and common peroneal nerve,

respectively.

Numbers in (C) and (D) indicate the number of

animals used for quantification (two nerves per

animal). Mann-Whitney U test was used (*p < 0.05;

**p < 0.01). Data are presented as mean ± SEM.
show any significant change in either condition after NGF

stimulation indicating specificity of NGF-mediated activation

(Figure 4E).

Developmental Consequences of Hypofunctional TrkA
in the Naked Mole-Rat
NGF-TrkA signaling is essential for the survival of embryonic sen-

sory neurons (Lallemend and Ernfors, 2012; Lewin and Barde,

1996). Adult naked mole-rats have a striking paucity of C-fibers

in cutaneous nerves (St John Smith et al., 2012), a feature that

is reminiscent of NGF/TrkA loss of function in humans and mice

(Crowley et al., 1994; Indo et al., 1996). We thus used transmis-

sion electron microscopy to quantify the numbers of myelinated

and unmyelinated fibers in peripheral nerves of postnatal day 3

(P3) naked mole-rats and mice (Figures 5A and 5B). We

compared the numbers of myelinated (or myelinating) axons in

the saphenous and common peroneal nerves in neonates with

the published values for adult mice and naked mole-rats using

identical methods. We found that the number of unmyelinated

C-fibers counted in cross-sections from the purely cutaneous

saphenous nerve and the mixed common peroneal nerve from

naked mole-rats was between 2- and 3.5-fold higher than the

number observed in adult nerves (Figure 5D). However, the num-

ber of unmyelinated fibers found in themouse common peroneal

nerve did not change between P3 and adult mole-rats, although

there was a small attrition of C-fibers from the saphenous nerve

(Figure 5D). In contrast, although the peripheral nerves of P3

naked mole-rats and mice are still undergoing myelination

(Figures 5A and 5B), the number of fibers with a myelin sheath

(A-fibers) was not different between nerves from the neonate

and adult (Figure 5C). These data suggested that there is sub-

stantial loss of unmyelinated axons from cutaneous and mixed

peripheral nerves of nakedmole-rats between P3 and adulthood.
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DISCUSSION

We dissected the molecular mechanism that underlies the

absence of thermal hyperalgesia in the African naked mole-rat

(H. glaber) (Park et al., 2008). NGF is central player in the gener-

ation of thermal hyperalgesia and acts via its receptor TrkA to

initiate hyperalgesia in a TRPV1-dependent manner (Bonnington

and McNaughton, 2003; Chuang et al., 2001; Lewin et al., 2014).

We have shown that lack of heat hyperalgesia in the nakedmole-

rat is associated with absence of NGF-induced TRPV1 sensitiza-

tion in sensory neurons. Our data indicate that the key molecular

change in the signal transduction pathway from NGF to hyperal-

gesia is a unique but minimal sequence change in the naked

mole-rat TrkA molecule. We provide evidence that between

one and three unique amino acid substitutions within the kinase

domain make the naked mole-rat TrkA receptor less efficient at

engaging downstream signal transduction, including members

of the MAPK family of effectors. Efficient NGF signaling is also

a prerequisite for the survival and terminal branching of embry-

onic sensory neurons in the mouse (Crowley et al., 1994; Patel

et al., 2000). Interestingly, a hypofunctional TrkA receptor in

the naked mole-rat is associated with a striking paucity of unmy-

elinated C-fibers in adult peripheral nerves (St John Smith et al.,

2012). A comparative anatomical study of six other African mole-

rat species (for which TrkA sequences were obtained here) indi-

cated that the C-fiber deficit appears to be unique to naked

mole-rats (St John Smith et al., 2012). Even though the Mashona

mole-rat (F. darlingi) shares two out of the three unique amino

acid variants found in TrkA kinase domain of the naked mole-

rat receptor (Figure S3B), it does not lack C-fibers (St John Smith

et al., 2012). We thus postulate that hypofunctional TrkA

signaling in vivo may lead to a loss of C-fibers in naked mole-

rats. However, newborn naked mole-rats were found to have



manymore C-fibers in peripheral nerves than adults. This finding

suggests that C-fibers in the nakedmole-rat are lost between P3

and adulthood, perhaps as a consequence of hypofunctional

TrkA signaling.

Among vertebrate receptors, the TrkA receptor displays the

strictest conservation in the intracellular kinase domain (Fig-

ure S2). Using chimeric TrkA receptors (rat extracellular/naked

mole-rat intracellular), we could show directly that the reduced

ability of the naked mole-rat TrkA receptor to sensitize TRPV1

currents is likely localized to the kinase domain (Figure 3). Indeed,

biochemical experiments demonstrated a striking reduction

in signaling capacity in terms of ligand-dependent tyrosine phos-

phorylation (Figure S4); however, all the important tyrosine

residues in the kinase domain are conserved in the naked

mole-rat TrkA molecule (Figure S2). We speculate that insertion

of a cysteine for a leucine at position 774 in the naked mole-rat

TrkA receptor may alter the efficiency of phosphorylation or

recognition of the flanking tyrosine’s Tyr751 and Tyr785. Tyro-

sine 751 has been implicated in binding of the p85 subunit

of phosphoinositide 3-kinase (Obermeier et al., 1993b), and

Tyr785 serves as a major and selective interaction site for phos-

phoinositide phospholipase C-g (Obermeier et al., 1993a). It is

of course also possible that accumulated effects of the other

variants that are not specific to naked mole-rat TrkA (Fig-

ure S3B) contribute to the reduction in receptor signaling we

have observed.

Our data strongly suggest that molecular changes in naked

mole-rat TrkA molecule alter signal transduction efficiency.

Ligand concentration of 100 ng/mL produced almost maximal

sensitization of TRPV1 in our oocyte expression system, a similar

dose dependence to that found for capsaicin current sensitiza-

tion in rat sensory neurons (Shu and Mendell, 1999). In contrast,

NGF stimulation of chimeric TrkA receptor produced little sensi-

tization of TRPV1 currents at 100 ng/mL but normal sensitization

at 1,000 ng/mL (Figure 3C). The maintained efficacy of the naked

mole-rat TrkA receptor at very high NGF concentrations is

consistent with our previous observation that NGF (500 ng/mL)

promotes neurite outgrowth of both mouse and naked mole-

rat sensory neurons in culture (Park et al., 2008). However, it is

well known that orders-of-magnitude lower concentrations of

NGF (<1 ng/mL) are capable of promoting maximal neuronal

survival or neurite outgrowth in developing neurons (Davies

et al., 1993; Vaillant et al., 2002; Ye et al., 2003). Using a high-res-

olution quantitative proteomics approach, we found that 10 min

after NGF stimulation with 100 ng/mL, there were subtle but sig-

nificant differences in upregulated phosphopeptides between

rat TrkA and a chimeric TrkA containing the naked mole-rat

intracellular domain. We obtained evidence of reduced pTyr on

peptides belonging to MAPK proteins, including p38a, which

has been directly implicated in the sensitization of TRPV1 (Ji

et al., 2002).

Surprisingly, naked mole-rat pups do not show the deficit

in C-fibers that we had observed in adult animals (Figure 5).

It thus appears that the signaling capacity of the naked mole-

rat TrkA is sufficient to support the survival and functional devel-

opment of sensory neurons during embryonic development

(Crowley et al., 1994; Lechner et al., 2009). NGF is functionally

important for themaintenance of mature sensory neurons (Lewin
et al., 2014), but rodents exposed to NGF-function blocking an-

tibodies exhibit death of sympathetic neurons, but probably not

sensory neurons (Gorin and Johnson, 1980; Lewin et al., 1992;

Ruberti et al., 2000). The concentrations of NGF that robustly

sensitize TRPV1 in adult neurons are clearly much higher than

those needed to support embryonic survival (see above). It is

thus conceivable that the molecular changes in the naked

mole-rat TrkA receptor that we describe are more relevant to

physiological processes that follow strong receptor stimulation.

In this context it is interesting to note that NGF signaling in adult

naked mole-rat is still capable of producing mechanical hyperal-

gesia, a process that does not involve TRPV1 (Lewin et al., 2014).

It is possible that hypofunctional TrkA signaling leads to the loss

of sensory neurons in naked mole-rats after birth. Naked mole-

rats have an extraordinarily long gestation period of �70 days

and can live for up to 32 years (Jarvis, 1991; Sanchez et al.,

2015). It is thus feasible that developmental events that occur

just after birth, like the loss of TrkA expression in approximately

half of the nociceptors (Bennett et al., 1998; Molliver et al., 1997),

occur over amore protracted period in the nakedmole-rat. In this

context, it is important to note that some nociceptors in rats and

mice are still dependent on NGF for survival for a few days after

birth (Crowley et al., 1994; Lewin et al., 1992). We find that the

paucity of C-fibers in cutaneous nerves is correlated with molec-

ular changes in the TrkA receptor associated with reduced

signaling (Figure S4). However, it is still possible that effects of

other as-yet-unknown gene variants in the naked mole-rat

potentiate the effects of the TrkA variants to promote postnatal

nociceptor loss.

In summary, we provide evidence that evolution has selected

for a single-molecule change in the nakedmole-rat NGF receptor

TrkA that is sufficient to abolish heat hyperalgesia in this species.

Mutations in the trkA gene are highly detrimental in humans,

but here we show that evolution has selected for sequence

change(s) in the naked mole-rat gene that are not only function-

ally powerful but also compatible with species survival and

continued fitness. We speculate that heat hyperalgesia is not

an essential phenotypic attribute for the naked mole-rat that is

adapted to a subterranean habitat in equatorial East Africa,

where temperatures have remained constant for millions of

years. Other African mole-rat species have apparently not

dispensed with efficient TrkA signaling, and we speculate that

one reason for this is that the naked mole-rat is probably the

most energetically challenged species in this family (Bennett

and Faulkes, 2000). Thus, naked mole-rats can make do with

a stripped-down nociceptive system, equipped with fewer C-fi-

bers, that requires less energy but is sufficient for acute nocicep-

tion and mechanical hyperalgesia following injury (Park et al.,

2008). Our study illustrates how evolution can select for mecha-

nistically novel single-molecule changes that exert dramatic

phenotypic effects but are compatible with the maintenance of

species fitness.
EXPERIMENTAL PROCEDURES

DRG Neuron and Cell Culture

Animal housing, care, and protocols for euthanasia were approved by German

federal authorities (State of Berlin). Dorsal root ganglia (DRG) neurons were
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prepared from both naked mole-rat and mouse as described previously (Park

et al., 2008) and plated onto glass coverslips plated with poly-L-lysine (PLL;

200 mg/mL) and laminin (20 mg/mL). CHO and naked mole-rat fibroblast cells

were cultured in F12-Ham medium (Life Technologies) and incubated at 37�C
in 5% CO2. For electrophysiology experiments, cells were plated onto PLL-

coated plastic dishes and the following day transfected with Lipofectamine

(Invitrogen).

Electrophysiology

Recordings fromDRG neurons took place after a 10- to 20-min incubation with

either IB4-Alexa 488 or IB4-Alexa Fluor 568 (Invitrogen). Whole-cell recordings

were made using pipettes (3–6 MU resistance) pulled with a Flaming-Brown

puller (Sutter Instruments). Extracellular solution contained 140 mM NaCl,

1 mM MgCl2, 2 mM CaCl2, 4 mM KCl, 4 mM glucose, and 10 mM HEPES

(pH 7.4) with NaOH. Electrodes were filled with 110 mM KCl, 10 mM NaCl,

1 mMMgCl2, 1 mMEGTA, and 10mMHEPES (pH 7.3). Solutions were applied

and heated using a gravity-driven multi-barrel perfusion system (WAS-02)

(Dittert et al., 2006).

X. laevis defoliculated oocytes (stage V or VI) were purchased from EcoCyte

Bioscience. Each oocyte was injected in Barth solution using the Nanoject II

Auto-Nanoliter Injector (Drummond) with 32.2 nL cRNA mix. Two-electrode

voltage-clamp recordings were performed at room temperature 3–5 days after

injection using a GeneClamp500B Amplifier, Digidata 1322A, and pClamp 8.0

Software (Axon Instruments). Additional details are available in Supplemental

Experimental Procedures.

Molecular Biology and RNA Sequencing

Cloning of naked mole-rat Trpv1 was described before (Smith et al., 2011).

In order to clone naked mole-rat TrkA, total RNA was isolated from DRGs

with TRIzol (Life Technologies) and dissolved in 30 mL RNase-free water.

1–3 mg total RNA and oligo(dT) and random hexamers (BioTeZ) were

used for cDNA synthesis using SuperScript III Reverse Transcriptase (Life

Technologies).

To sequence the coding DNA sequence (CDS) for the TrkA intracellular ki-

nase domain of other African mole-rat species, primers specific for NMR

TrkA were used to amplify exons 12–17 from species’ genomic DNA. Five

mole-rats representative of the Bathyergidae family were used: Giant

(F. mechowii), Damaraland (Fukomys damarensis), Mashona (Fukomys dar-

lingi), Natal (Cryptomys hottentotus natalensis), and Emin’s (Heliophobius

emini) mole-rats. RNA-seq data for F. darlingiwere generated from three brain

samples using paired-end, strand-specific (dUTP) libraries that were

sequenced on an Illumina HiSeq2000 platform. The accession number for

the annotated transcriptome and the sequencing reads from the Mashona

mole-rat reported in this paper is NCBI: PRJNA303968. Additional details

are available in Supplemental Experimental Procedures.

Immunocytochemistry and Calcium Imaging

Standard immunohistochemistry and immunocytochemistry protocols on

NMR and mouse DRGs were used using an anti-TrkA antibody (kind gift

from L.F. Reichardt, UCSF) and IB4-488. Immunofluorescent images were

examined with a Leica DM 5000B microscope and MetaVue software

(Visitron).

Calcium imaging was conducted as described previously (Milenkovic et al.,

2007). Standard Fura-2 ratiometric calcium imaging was conducted to mea-

sure responses to capsaicin in CHO and naked mole-rat fibroblast cells trans-

fected with rat TRPV1and NMR TRPV1, respectively, with or without rTrkA. An

inverted microscope (Zeiss Observer A1) equipped with the MetaFluor pho-

tonics imaging system, including Polychromator V or DG4 (Sutter Instruments),

and a CoolSNAP ES camera (Visitron) was used for cell imaging. Additional

details are available in Supplemental Experimental Procedures.

MS-Based Protein Quantification Using SILAC

SILAC-labeled HEK293 cells were transfected with TrkA constructs (rat or

chimeric) and pEGFP plasmid (5:1) with polyethylenimine. 24 hr after transfec-

tion, cells were serum starved and stimulated for 10 min with 100 ng/mL NGF

(murine 2.5S, Promega) or left untreated. Equal amounts of protein from each

SILAC pair were mixed together. Protein mixtures were reduced with DTT, al-
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kylated with iodoacetamide, pre-digested with Lysyl endopeptidase (LysC,

Wako), and subjected to trypsin digestion overnight. Peptides were purified

from stop-and-go extraction (STAGE) tips. Phosphopeptide enrichment was

performed on 0.5 mg TiO2 beads. Phosphopeptides were separated on a

monolithic column (100 mm inner diameter 3 2,000 mm, MonoCap C18 High

Resolution 2000 [GL Sciences]; kindly provided by Dr. Yasushi Ishihama

[Kyoto University]). The Q Exactive instrument (Thermo Fisher Scientific) was

operated in the data-dependent mode, and MaxQuant software was used to

identify and quantify proteins. MS/MS spectra were searched using the

Andromeda search engine. Additional details are available in Supplemental

Experimental Procedures.

ACCESSION NUMBERS

The accession number for the annotated transcriptome and the sequencing

reads from the Mashona mole-rat reported in this paper is NCBI:

PRJNA303968.
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Figure S1 related to Figure 2. Thr502 does not affect PKCε-mediated sensitization of NMR TRPV1. (A) 

In NMR TRPV1, a conserved serine is substituted by threonine at position 502 (numbering for rat TRPV1). (B) 

Rat TRPV1 expressed in CHO cells is potentiated by a 30 second pulse of PMA. (C) Generation of naked mole- 

rat immortalized fibroblasts, four clones were isolated and population doubling (PD) measured weekly. Clone 3 

ceased to grow at a cumulative PD of 56, clones 1, 2 and 4 reached PDs of 87, 64 and 60 respectively. Note 

primary fibroblasts grow normally at 32°C, but form multi-nucleated syncytium at 37°C (D). Naked mole-rat 

TRPV1 expressed in NMRF cells (clone 1) is similarly potentiated by PMA as rat TRPV1. (E) Naked mole-rat 

TRPV1T502S expressed in NMRF cells is potentiated by PMA. Chi-squared test; **p < 0.01, ***p < 0.001. (F) 

pH5.0 solution elicits inward currents in Trpv1
-/-

 mouse neurons transfected with naked mole-rat Trpv1, currents 

were inhibited by 10 µM ruthenium red (RR) and transfected Trpv1
-/-

  DRG neurons displayed heat-activated 

currents with mean thresholds of 44.4 ± 0.7°C (n = 5), example heat activated current shown is from a Trpv1
-/-

 

DRG neuron transfected with naked mole-rat Trpv1. 



 

Figure S2 related to Figure 3. Sequence alignment of naked mole-rat TrkA peptide sequence. Cloned and 

predicted naked mole-rat TrkA sequences (Kim et al., 2011) were aligned with sequences available from public 

databases. (A) Domain 5 of the extracellular region responsible for NGF binding shows less sequence 

conservation than the intracellular kinase domain (B). Black squares represent conserved naked mole-rat 

tyrosines; Tyr759 (human Tyr751) and Tyr793 (human Tyr785). Turquoise square indicates a residue solely 

found in the naked mole-rat TrkA sequence (see also Figure S3A). 



 

 

 

 

Figure S3 related to Figure 3. Comparison of naked mole-rat TrkA kinase domain sequences those of five 

other African mole-rat species. (A) Alignment of the TrkA kinase domain sequence for mouse (M. musculus), 

naked mole-rat (H. glaber), Giant (Fukomys mechowii), Mashona (F. darlingi), Natal (Cryptomys hottentotus 

natalensis), Damaraland (F. damarensis), and Emin’s mole-rat (Heliophobius emini)(Faulkes et al., 2011). A 

purple square represents a bathyergid-specific amino acid variant while orange squares represent the residues 

defining unique naked mole-rat TrkA kinase domain sequence. (B) Unusual residues that are shared between the 

naked mole-rat and the designated species are highlighted in red. Numbering is based on NMR TrkA. (C) 

Phylogenetic relationships between African mole-rat species were calculated from 827 transcripts per species 

with Mus musculus and Tachyoryctes splendens (Tanzanian root rat) as outgroups. Sequences were aligned 

using Clustal Omega (version 1.2.0). A phylogenetic tree was calculated with a maximum likelihood approach 

implemented in the RAxML tool (version 8.2.3). The F. darlingi sequences were obtained from our RNAseq 

data after de novo transcriptome assembly, publicly available RNAseq data was used to assemble sequences 

from the other African mole-rat species (see Table S1 for details). Branch lengths are proportional to the 

average number of substitutions per site. 

 

 

  



Figure S4 related to Figure 3. NGF-induced activation of rat and chimeric TrkA. Serum-depleted HEK 293 

cells expressing either rat or chimeric TrkA were stimulated with NGF (50 or 100 ng/ml) for 1 and 5 minutes, or 

left untreated, and total cell lysates were subjected for Western blotting analysis. (A) Representative 

immunoblots against total TrkA and TrkA Tyr674/675. Due to overexpression, a substantial amount of total 

TrkA was present in its immature form, and only the bands representing mature TrkA (110 and 140 kDa), that 

can be activated by ligands (Wolf et al., 1998) were used for quantification.  (B) Quantification of TrkA 

intensities from five independent experiments. In rat TrkA, phosphorylation levels were significantly increased 

after both 1 and 5 minutes of NGF treatment when compared to the basal state. In the cells expressing the 

chimeric TrkA, the phosphorylation levels after 1 and 5 minute NGF stimulation were not different to the 

control, non-stimulated receptor. (C) Immunoblotting against total TrkA and TrkA Tyr490. (D) Quantification 

of TrkA intensities from seven independent experiments. NGF triggered phosphorylation of the Tyr490 residue, 

where rat TrkA samples showed a significant increase in phosphorylation level after 1 minute NGF stimulation. 

NGF treatment did not have any effect on the phosphorylation level of the chimeric TrkA Tyr490 residue, where 

both 1 minute and 5 minute NGF-treated samples were not different to the constitutive phosphorylation level of 

this receptor. One-sample t-test was used, with the value of basal phosphorylation level set as 1, with *p < 0.05; 

**p < 0.01 and ***p < 0.001. Data are represented as mean ± SEM. 

  



 

Figure S5 related to Figure 4. Over-represented motifs surrounding upregulated phosphoserine sites 

when signaling through NGF-stimulated cells expressing either rat or chimeric TrkA. Proline moieties in 

sequence motifs are common in Erk 1/2 kinase substrate motifs. (Amanchy et al., 2007).  



Table S1 

Species SRA 

accession 

# read pairs # full-length 

transcripts 

% TrkA sequence 

identified 

Fukomys darlingi SRP066607* 107,855,116 9,798 68 

Tachyoryctes splendens SRR2141217 18,135,605 7,466 35 

Heliophobius emini  SRR2141215 17,410,109 1,580 0 

Bathyergus suillus SRR2141210 18,175,296 5,849 26 

Georychus capensis SRR2141216 20,038,942 3,375 0 

Cryptomys hottentotus mahali SRR2141211 17,253,040 5,262 0 

Cryptomys hottentotus 

natalensis 

SRR2141212 17,290,951 4,973 0 

Cryptomys hottentotus 

pretoriae 

SRR2141213 17,833,375 5,883 0 

Fukomys damarensis SRR2141214 18,220,998 6,109 33 

 

Table S1 related to Figure 3. Summary of transcriptome assemblies from African mole-rat RNAseq data. 

Asterisk indicates data set deposited at NCBI accession code PRJNA303968.  



Supplemental Experimental Procedures 

 

DRG neuron culture and transfection 
Animal housing, care and protocols for killing are registered with and approved by the appropriate German 

federal authorities (State of Berlin). DRG neurons were prepared from both naked mole-rat and mouse as 

described previously (Hu et al., 2010; Park et al., 2008) and plated onto glass coverslips plated with poly-L-

lysine (200 mg/ml) and laminin (20 µg/ml). Neurons were maintained in DMEM (Life Technologies, U.S.A.) 

containing 10% heat-inactivated horse serum (Biochrom), 20 mM glutamine, 0.8% glucose, 100 U penicillin 

and 100 mg/ml streptomycin (Life Technologies) and incubated at 37°C in 5% CO2. For transfection of naked 

mole-rat TRPV1/EGFP into DRG neurons from Trpv1
-/-

 mice (Jax Mice, Bar Harbor, Maine), the Amaxa 

Nucleofector system was used according to the manufacturer’s protocol (Amaxa). All recordings were made 

within 36 hours of isolation. Note NGF was never added to the medium of cultured DRG neurons as this is 

known to lead to an up-regulation of heat-activated currents in sensory neurons (Stucky and Lewin, 1999).  

 

CHO cell culture and transfection 
CHO cells were cultured in F12-Ham medium (Life Technologies) and incubated at 37°C in 5% CO2. For 

electrophysiology experiments cells were plated onto PLL coated plastic dishes and the following day 

transfected with Lipofectamine (Invitrogen). The plasmid of interest was transfected at a 4:1 ratio with EGFP. 

For calcium imaging experiments cells were plated onto PLL coated glass coverslips and transfected with 

Fugene (Promega). xTRPV1 and rat TrkA (kind gift of P.A. McNaughton, Kings College London) were 

transfected at a 5:5:1 ratio with EGFP. 

 

Electrophysiology 

Recordings took place after a 10 – 20 min incubation with either IB4-Alexa Fluor®-488 or IB4-Alexa Fluor®-

568 (Invitrogen) to allow IB4-positive and -negative neurons to be discerned from one another. Whole-cell 

recordings were made from DRG neurons using pipettes (3 – 6 MΩ resistance) pulled with a Flaming-Brown 

puller (Sutter Instruments, USA). Extracellular solution contained (mM): NaCl 140, MgCl2 1, CaCl2 2, KCl 4, 

glucose 4, HEPES 10, pH7.4 with NaOH. Electrodes were filled with (mM): KCl 110, NaCl 10, MgCl2 1, 

EGTA 1 and HEPES 10, pH7.3. Solutions were applied and heated using a gravity driven multi-barrel perfusion 

system (WAS-02) (Dittert et al., 2006). All recordings were made using an EPC-10 amplifier in combination 

with Patchmaster© and Fitmaster© software (HEKA). Pipette and membrane capacitance were compensated 

using the auto function of Patchmaster and series resistance was compensated by ~70% to minimize voltage 

errors. IB4-positive of GFP-positive cells were observed using a Polychromator V (Visitron) and MetaFluor 

(Visitron). 

 

Molecular biology and cloning strategies 

Cloning of naked mole-rat Trpv1 was described before (Smith et al., 2011). QuickChange II XL kit (Stratagene) 

was used to introduce point mutations. A plasmid coding for rat TrkA was a kind gift from P. A. McNaughton, 

Cambridge, UK. In order to clone NMR TrkA, total RNA was isolated from naked mole-rat DRGs with TRIzol 

(Life Technologies) and dissolved in 30 μl of RNase-free water. 1 – 3 μg of total RNA, and oligo(dT) and 

random hexamers (BioTeZ, Berlin) were used for cDNA synthesis using SuperScript III Reverse Transcriptase 

(Life Technologies). Given that no genomic data was available for naked mole-rat at the time when TrkA was 

cloned, cloning primers were designed in silico by aligning the nucleotide sequence of a TrkA coding sequence 

(CDS) from mouse, rat, human, orangutan and cow. Primers were designed from regions of high sequence 

conservation. This allowed us to clone and sequence a 2092 bp long transcript, aligning to the 3’ of the TrkA 

CDS. Sequence was proofread by cloning the respective exons from NMR genomic DNA. The remaining 305 

bp, aligning to the 5’ end of the transcript, were devised from Kim et al., 2011. The final 2397 bp long transcript 

was synthesized and cloned into pUC57 by GenScript.  

Chimeric TrkA was cloned by overlap extension PCR, by using rat and NMR TrkA constructs. The overlapping 

primers used were 5’TM_nmr CAG TGG AGA AGA GAG ACG ACA CGC CT and 3’TM_rat AGG CGT 

GTC GTC TCT CTT CTC CAC TGG.  

In order to sequence the CDS for the TrkA intracellular kinase domain of other African mole-rat species, primers 

specific for NMR TrkA were used to amplify exons 12 – 17 from species’ genomic DNA. Five mole-rats 

representative of the Bathyergidae family were used: Giant (Fukomys mechowii), Damaraland (F. damarensis), 

Mashona (F. darlingi), Natal (Cryptomys hottentotus natalensis) and Emin´s (Heliophobius emini) mole-rats.  

The constructs used for Xenopus oocyte recordings (rat TRPV1, rat TrkA, NMR TrkA, chimeric TrkA) were 

subcloned into a modified pCI vector (Promega), linearized with ClaI and cRNA was synthesized by using the 

mMESSAGE mMACHINE T7 Transcription Kit (Life Technologies) according to the manufacturer’s protocol. 

The quality and integrity of the cRNA constructs was verified by RNA electrophoresis. The constructs used for 

activation of TrkA in HEK 293 cells (rat TrkA, chimeric TrkA) were subcloned into pEXPR-IBA105. All 



constructs were verified by Sanger sequencing (Source Bioscience). MultAlin software was used for multiple 

alignment analysis and visualization (Corpet, 1988). 

 

Xenopus laevis oocyte recordings 

cRNA was diluted to 0.55 μg/μl (TRPV1 : TrkA = 2.15 : 1) in ultra-pure water. X. laevis defoliculated oocytes 

(stage V or VI) were purchased from EcoCyte Bioscience and delivered in Barth solution complemented with 

Pen/Strep. Glass capillaries were pulled on DMZ-Universal Puller (Zeitz, Germany) and each oocyte was 

injected in Barth solution using the Nanoject II Auto-Nanoliter Injector (Drummond, USA) with 32.2 nl of 

cRNA mix and kept at 16°C in Barth solution complemented with 10% horse serum and 1% Pen/Strep. Two-

electrode voltage-clamp recordings were performed at RT 3 – 5 days after injection using a GeneClamp500B 

Amplifier, Digidata 1322A and pClamp 8.0 Software (Axon Instruments). Borosilicate glass electrodes (0.5 – 1 

MΩ) were filled with 3 M KCl. Solutions were gravity fed with a flow rate of ~5 ml/min using a Bath Perfusion 

System valve controller (ALA-VM8, Ala Scientific Instruments, USA). Membrane potential was clamped to -40 

mV and only those oocytes with leak currents < 500 nA were used for analysis. Between every acid pulse, 

oocytes were allowed to recover for 2 min with constant oocyte Ringer perfusion. For NGF sensitization, two or 

three acid pulses (pH5.8) were administered before NGF perfusion (1 – 1000 ng/ml for 5 min) followed by two 

acid pulses. Current responses right before and after NGF application were used for analysis. Currents were 

analyzed with pCLAMP9 Software (Axon instruments) after digital filtering at1 kHz. 

 

TrkA activation in HEK cells 

HEK 293 cells (grown in DMEM (Gibco), 100 U/ml penicillin, 100 μg/ml streptomycin, 4 mM L-glutamine, 

10% fetal calf serum (FCS)) were transfected on Day 0 with either rat or chimeric TrkA construct with the PEI 

reagent. In some experiments, to control for equal level of transfection, cells were co-transfected with a plasmid 

coding for EGFP protein (DNA ratio TrkA : EGFP = 5 : 1). The GFP signal was visualized on the Day 1, prior 

to serum depletion. Recombinant human NGF (Sigma, cat. number N1408) was reconstituted in water (1 μg/ml 

stock) under sterile conditions and stored at -20°C. Prior to NGF stimulation, cells were serum depleted for 2 

hours. 30 min prior to NGF stimulation, 0.5 mM sodium orthovanadate (Sigma) was added in order to block the 

phosphatases. This step was introduced in order to reduce dephosphorylation by phosphatases in stimulated 

cells, given that pilot experiments showed low relative increase in TrkA phosphorylation upon NGF stimulation. 

NGF working solutions (50 and 100 ng/ml) were prepared freshly in DMEM. Cells were incubated with NGF 

for 1 and 5 min to allow for TrkA receptor activation. Cells were washed 2× in ice cold DPBS and collected by 

scraping in 1× RIPA buffer (New England Biolabs) supplemented with cOmplete, Mini and PhosSTOP (Roche). 

Cell lysates were homogenized by passing them 10× and 5× through a 20 G and 23 G needle, respectively. 

Lysates were incubated for 10 min on ice and cell debris was pelleted at 13.000 rpm at 4°C. The supernatant 

was subjected to Western blotting. Proteins were transferred to a nitrocellulose membrane (pore size 0.2 μm, GE 

Healthcare). Membranes were blocked under agitation in blocking solution (5% BSA in TBS, 0.1 % Tween20) 

for 30 min at RT. Primary (anti-TrkA (kind gift from L.F. Reichardt, UCSF), and TrkA and TrkB Antibody 

Sampler Kit (CST)) and secondary (anti-rabbit and anti-mouse HRP conjugated) antibodies were diluted in 5% 

BSA in TBST. The chemiluminescent signal was detected by the photo imager device FusionSolo (Vilber 

Lourmat) using Super Signal West Dura Chemiluminescent Substrate (Thermo Scientific). For quantification 

purpose, in order to account for loading and transfer errors, each membrane was immunoblotted twice. 

Phosphorylation status of a specific residue was assayed first, followed by membrane stripping and 

immunoblotting for the total TrkA. Membranes were stripped by agitation (75 rpm, 55°C, 25 min) in 25 ml 

prewarmed stripping solution (2% SDS, 0.8% ß-ME, 80 mM Tris HCl pH6.8). 

 

Calcium imaging 

Calcium imaging was conducted as described previously (Milenkovic et al., 2007). Standard Fura-2 ratiometric 

calcium imaging was conducted to measure responses to capsaicin in CHO and NMRF cells transfected with rat 

TRPV1and NMR TRPV1 respectively, with rTrkA co-transfected in certain experiments. An inverted 

microscope (Zeiss Observer A1) equipped with MetaFluor photonics imaging system, including Polychromator 

V or DG4 (Sutter Instruments), a CoolSNAP ES camera (Visitron) was used for cell imaging. Paired images 

(340 and 380 nm excitation, 510 nm emission) were collected every 1.7 s. Capsaicin (1μM), NGF (100ng/ml) 

and PMA (1μM) were diluted in the same extracellular buffer as described for electrophysiology experiments 

previously. A 5 second capsaicin pulse was followed by 10 minutes perfusion with NGF or buffer lacking NGF 

before a second capsaicin response was applied. After the first capsaicin pulse only cells whose baseline 

recovered to at least 50% of the initial value before the second capsaicin application were analyzed. A 10 minute 

perfusion time was chosen because more cells recovered to within this 50% limit. Sensitization was scored if a 

cell’s percentage change was > mean percentage change + 2 s. d. in controls with percentage change calculated 

as: (100*(peak 2 – peak 1)/peak 1). For experiments with PMA, normal extracellular buffer was superperfused 

for 9.5 minutes followed by 30 seconds PMA treatment and then capsaicin. DRG neurons plated on a 5 mm 



glass coverslip were placed in a recording chamber of 300 µl volume (Harvard Apparatus) and were 

continuously perfused with extracellular solution at a rate of 2 ml/min. Cells were loaded with Cal-520 (5 μM, 

AAT Bioquest) for 1 hour at 37 °C in the presence of Pluronic acid 0.02% dissolved in Ringer solution [(mM): 

140 NaCl, 5 KCl, 2 CaCl2, 2 MgCl2, 10 HEPES and 10 glucose, adjusted to pH 7.4]. Capsaicin (100 nM, 

Tocris) was dissolved in extracellular solution from a stock concentration of 10 mM in ethanol. Capsaicin was 

perfused for 30 s at 5 minutes interval. A solution contained 100mM KCl and 40mM NaCl was applied at the 

end of each experiment in order to select only viable and neuronal cells. 

 

Statistical analysis 
All statistical analyses were performed with GraphPad Prism 5. For electrophysiological analysis and for 

calcium imaging in DRG neurons, the Mann-Whitney U test was used to detect differences between neurons 

subjected to NGF and those not. For calcium imaging in CHO and NMRF cells, Fishers exact test was used. For 

oocyte recordings, One-way ANOVA with Bonferroni’s Multiple Comparison Test was used. For Western 

blotting analysis, one-sample t-test was used, with the basal state phosphorylation of the non-stimulated samples 

was set to 1. All data are represented as mean ± SEM, unless otherwise stated. *p < 0.05; **p < 0.01; ***p < 

0.001 and ****p < 0.0001. 

 

Immunohistochemistry and immunocytochemistry 

Standard immunohistochemistry and immunocytochemistry protocols on NMR and mouse DRGs were used 

(Wetzel et al., 2007) using an anti-TrkA antibody (kind gift from L.F. Reichardt, UCSF) and IB4-488. 

Immunofluorescent images were examined with a Leica DM 5000B microscope and MetaVue software 

(Visitron). 

 

Generation of NMRF cell line 

Fibroblast isolation and immortalization was conducted along similar lines to that described previously (Silva et 

al., 1995). Both kidneys were removed from 1 naked mole-rat and washed 3× in DMEM with 100 U penicillin, 

100 mg/ml streptomycin. Tissue was chopped into small pieces and the subsequent sludge was shaken at ~37°C 

for 10 min in 0.05% trypsin (Sigma) in PBS. A 5 ml aliquot was taken and placed in a 50 ml tube with 5 ml 

DMEM (with 10% FCS, 100 U penicillin and 100 mg/ml streptomycin). 5 ml 0.05% trypsin was added to the 

original tissue suspension, shaken again for 10 min and 5 ml were taken again. This procedure was repeated for 

another 40 min. The trypsin/DMEM suspension was then spun down, cells resuspended in 20 ml supplemented 

DMEM and plated onto two 10 cm dishes. After initially noticing growth problems at 37°C (as has been noted 

previously (Salmon et al., 2008), cells from further isolation procedures were incubated at 32°C in 5% CO2 and 

split when confluent. A pMSPE plasmid encoding SV40LT (kind gift from J. Fuhrmann, MDC) and G418 (800 

µg/ml) were used for immortalization. Clones were selected passaged weekly calculating population doubling 

(PD). The cells frozen and stored in liquid N2 could be defrosted and grown at the same rate as the same clone 

still in culture. Furthermore, after successful transformations cells could grow at 37°C with no major change in 

weekly PD (tested for 4 passages).  However, cells used for experiments were incubated at 32°C to maintain the 

environment preferred by primary fibroblasts. Clone 1 was used in the experiments described here. 

 

Cell culture for SILAC and sample preparation for MS based protein quantification  

HEK293 cells were grown and labelled in SILAC media for at least seven population doublings. SILAC media 

were prepared as described before (Paul et al., 2011). Briefly, DMEM lacking pyruvate, glutamine, arginine and 

lysine (GIBCO) were supplemented with 10% dialyzed fetal bovine serum (dFBS, Gibco), pyruvate (1x, 

GIBCO), Glutamax (1x, GIBCO) and L-proline (20 mg/ml, Sigma). “Heavy” (H) SILAC media contained 28 

mg/l 
13

C6 
15

N4 L-arginine (Arg-10) and 49 mg/l 
13

C6 
15

N2 L-lysine (Lys-8; all labeled amino acids from Sigma 

Isotec). “Light” (L) SILAC medium was prepared by adding the corresponding non-labeled amino acids (Arg-0 

and Lys-0; Sigma). TrkA plasmids were co-transfected with pEGFP plasmid (5:1) to ensure equal transfection, 

and linear polyethylenimine (Sigma) was used as a carrier. Cells were grown on 10 cm plates to reach 80%-90% 

confluence on the day of NGF stimulation. Twenty-four hours after transfection cells were washed once in 

warm DPBS and incubated for four hours in corresponding media lacking dFBS for serum starvation. Cells were 

stimulated for 10 min with 100 ng/ml NGF (murine 2.5S, Promega) or left untreated, and washed once in ice-

cold DPBS before lysis. For total and upregulated phosphopeptide analysis, a biological duplicate was 

performed where H-labeled cells were stimulated with NGF, and L-labeled cells were left untreated (PMID 

27136326). For assessment of MAPK phosphorylation levels a biological duplicate (label swap) was performed 

where in the forward set-up, H-cells were stimulated with NGF and L-cells left untreated, and in the reverse set-

up L-cells were stimulated with NGF and H-cells left untreated. Cells were collected and lysed in 200 µl lysis 

buffer (8M urea, 100 mM TrisHCl pH8.0 and benzonase (Merck)) and sonicated in ice-cold water for 5 min. 



Protein concentration was measured by DC assay (Bio-Rad) and 250 µg of protein from each SILAC pair were 

mixed together. Protein mixture was reduced with 10 mM DTT in 50 mM ammonium bicarbonate, alkylated in 

50 mM ammonium bicarbonate, 55 mM iodacetamide, pre-digested with Lysyl endopeptidase (LysC, Wako, 

Osaka, Japan), and subjected to trypsin digestion (Promega) overnight. Digestion was stopped by trifluoroacetic 

acid (TFA). Peptides were purified from stop-and-go extraction (STAGE) tips (Rappsilber et al., 2003) 

containing C18 Empore disks (3M, Minneapolis, USA) pre-loaded with 10 mg of Reprosil-Gold 120 C18, 3 µm 

beads (Dr Maisch, Germany). Peptides were eluted from the C18 material with 400 µl TiO2 loading buffer (80% 

acetonitrile (ACN), 6% TFA). Phosphopeptide enrichment was performed on 0.5 mg TiO2 beads loaded into 

small stage tip containing a C8 Empore disk (3M, Minneapolis, USA). The TiO2 tips were washed once with 

TiO2 loading buffer and once with washing buffer (50% ACN, 0.1% TFA). The first elution was performed with 

5% NH4OH and the second elution was performed with 5% piperidine. Enriched phosphopeptides were purified 

and eluted from the C18 Empore disks (Rappsilber et al., 2003).  

LC-MS/MS and MS data processing 

Phosphopeptides were separated on a monolithic column (100 µm i.d. x 2,000 mm, MonoCap C18 High 

Resolution 2000 [GL Sciences] kindly provided by Dr. Yasushi Ishihama [Kyoto University]) using 6 hour 

gradient of increasing ACN concentration at a flow rate of 300 nl/min. The Q Exactive instrument (Thermo 

Fisher Scientific) was operated in the data dependent mode with a full scan in the Orbitrap followed by top 10 

MS/MS scans using higher-energy collision dissociation (HCD). MaxQuant software (v1.5.1.2)(Cox and Mann, 

2008) was used to identify and quantify proteins. False discovery rate was set to 1% at both peptide and protein 

level. Carbamidomethylation of cysteine was selected as a fixed modification, and oxidation of methionine, 

acetylation of the protein N terminus and phosphorylation of serine, threonine and tyrosine (Phospho (STY)) 

were used as variable modifications. MS/MS spectra were searched using the Andromeda search engine (Cox et 

al., 2011) against a UniProt human database (release 2014–10) with an additional 248 common contaminants, 

and a separate search was performed for rat and chimeric TrkA sequences. All protein sequences were also 

reversed to generate a target-decoy database. Peptides were scored as up-regulated if log2(NGF+/NGF-) > 0.3 in 

at least one replicate. UniProt database was used to assess protein phosphorylation sites of serine, threonine and 

tyrosine.  

 

Electron microscopy and quantification of peripheral nerves 

The general procedure followed for quantification of peripheral nerves was described in (St John Smith et al., 

2012). Three NMR pups (postnatal day 3) were intracardially perfused and the nerves of interest were dissected 

from both legs. Three ultra thin sections were taken from at least two nerves, usually three (nerve loss or 

damage sometimes occurred during either dissection or the embedding procedure), and on each ultra thin section 

five images (9422.22 × 7233.52 nm) were taken. Myelinated and unmyelinated axons were counted in these 

areas in iTEM software (Olympus Soft Imaging Solutions, Münster, Germany) and normalized to the whole 

nerve. For calculating C:A-fiber ratios (C-fiber count/A-fiber count), an average was taken for each ultra thin 

section per nerve. 

 

RNA sequencing and de novo transcriptome assembly and annotation 
RNAseq data for Fukomys darlingi were generated from three brain samples using paired-end, strand-specific 

(dUTP) libraries that were sequenced on an Illumina HiSeq2000 platform. Multiplexed libraries were sequenced 

for 2x101 cycles. Quality clipping of the raw reads was performed with Trimmomatic 0.32 (Bolger et al., 2014). 

Adapters were clipped off using 1 seed mismatch, a palindromic score threshold of 30 and a simple clip 

threshold of 15. Minimum quality for trailing bases was set to 20. Leading 10 bases were clipped off any read 

due to a sequence bias introduced by random hexamer priming. Read pairs with at least one read shorter than 30 

bases after quality clipping were discarded.  

The Trinity tool (Grabherr et al., 2011) (version 20140717) and the Bridger software (Chang et al., 2015) 

(version 2014-12-01) were used with default parameters to assemble the raw transcriptomes from Fukomys 

darlingi and other African mole-rat species (SRA accession: SRP061925). After the primary assembly, both 

assemblies were combined using CAP3 (Huang and Madan, 1999) and all merged and non-merged sequences 

were used for downstream analyses. To identify sequencing library contamination and exclude ribosomal RNA 

and mitochondrial DNA sequences, the assembly was aligned using BLASTn (Altschul and Lipman, 1990) 

against mouse and human mRNA sequences from RefSeq (Pruitt et al., 2014), sequences of bacterial genomes 

often found in laboratory samples (Salter et al., 2014) as well as rRNA sequences from mouse, rat and human 

and mitochondrial sequences from mouse, rat, human and naked mole-rats. All assembled transcripts with a 

BLAST hit with an e-value <1e-20 against rRNA or bacterial or mitochondrial DNA that covers at least 10% of 

the transcript were discarded. Transcripts putatively originating from humans or mice were discarded if they 



showed an e-value <1e-20 and sequence identity of >99% and the BLAST hit covered at least 70% of the 

respective transcript.  

To identify protein-coding transcripts in the assembly, we performed a reciprocal best hit (RBH) strategy using 

UniProt consortium  2014) data sets from four organisms. The UniProt data were downloaded on February 2nd, 

2015 and included sequence information from human, mouse, rat and guinea pig. Those species were chosen to 

be able to annotate transcript sequences that are well conserved among the mammalian kingdom. As proteins are 

annotated on isoform level in the UniProt data base, only the longest isoform per protein was considered for 

annotation. After removal of putatively contaminating sequences from the assembly, remaining transcript 

sequences were mapped to the four protein data sets using BLASTx (Altschul and Lipman, 1990). All hits with 

an e-value <1e-20 in both forward and reverse direction were considered for further analyses.  The same 

stringency level was used for the alignment of protein sequences against the transcript sequences using 

tBLASTn (Altschul and Lipman, 1990). Transcripts were discarded as putatively chimeric if there was more 

than one protein with a best hit to the respective transcript (``collapse factor'' >1(O’Neil and Emrich, 2013). 

RBHs were identified per species and a full-length annotation was assigned if the BLASTx hit covered at least 

70% of the protein. To integrate information on transcript annotation across species and to increase the 

specificity level, a transcript was only annotated as being coding for a specific protein if there existed a full-

length annotation in at least two of the four species used for transcript annotation. Sequencing data and 

annotated transcripts from the Mashona mole-rat can be found under the accession number PRJNA303968 at the 

NCBI database. 

Phylogenetic tree reconstruction: 

Eight hundred and twenty-seven (827) transcripts were used per species to reconstruct a phylogenetic tree of the 

African mole-rats with Mus musculus and Tachyoryctes splendens as outgroups. De novo assembled 

transcriptomes were used for eight African mole-rat species and Tachyoryctes splendens, while naked mole-rat 

and mouse sequences were obtained from the RefSeq data base using the longest transcript isoform as a gene 

representative. In all species 827 transcripts were found and aligned using Clustal Omega (Sievers et al., 2011) 

(version  1.2.0). Their intersecting regions were compared to compute the phylogeny to avoid biases due to 

falsly assembled 3'- or 5'-UTRs. A phylogenetic tree was calculated with a maximum likelihood approach 

implemented in the RAxML tool (version 8.2.3). The general time reversible (GTR) model (Tavaré, 1986) was 

used to account for variable base frequencies and symmetrical substitution rates. A gamma distribution was 

assumed to underlie the rate heterogeneity over the sites. One hundred rapid bootstrap searches were performed 

in addition to 20 ML searches, the best ML tree was reported. 
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