
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
in the Helmholtz Association  
 
http://edoc.mdc-berlin.de/16051  
 
 
 
 
 
Kinetic analysis of protein stability reveals age-dependent degradation 
 
McShane, E. and Sin, C. and Zauber, H. and Wells, J.N. and Donnelly, N. and Wang, X. and Hou, 
J. and Chen, W. and Storchova, Z. and Marsh, J.A. and Valleriani, A. and Selbach, M. 
 
 
 
 
 
NOTICE: this is the author’s version of a work that was accepted for publication in Cell. Changes 
resulting from the publishing process, such as peer review, editing, corrections, structural 
formatting, and other quality control mechanisms may not be reflected in this document. Changes 
may have been made to this work since it was submitted for publication. A definitive version was 
subsequently published in: 
 
Cell 
2016 OCT 20 ; 167(3): 803-815 
2016 OCT 06 (first published online) 
doi: 10.1016/j.cell.2016.09.015 
 
Publisher: Cell Press / Elsevier 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2016 Elsevier. This work is licensed under the Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 International. To view a copy of 

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative 
Commons, PO Box 1866, Mountain View, CA 94042, USA. 

https://creativecommons.org/licenses/by-nc-nd/4.0/
http://edoc.mdc-berlin.de/16051
https://doi.org/10.1016/j.cell.2016.09.015
http://www.cell.com/
http://www.elsevier.com/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


Kinetic analysis of protein stability reveals age-dependent 

degradation 

Erik McShane1, Celine Sin2, Henrik Zauber1, Jonathan N. Wells3, Neysan Donnelly4, Xi 

Wang1, Jingyi Hou1, Wei Chen1,7, Zuzana Storchova4,5, Joseph A. Marsh3, Angelo 

Valleriani2 and Matthias Selbach1,6,* 

 

1 Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str.13, 13092 Berlin, 

Germany 

2 Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, 

14424 Potsdam, Germany 

3 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of 

Edinburgh, Western General Hospital, Edinburgh EH4, UK 

4 Max-Planck-Institut für Biochemie, Am Klopferspitz 18, 82152 Martinsried, Germany 

5 TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany 

6 Charité - Universitätsmedizin Berlin, Germany 

7 present address: Department of Biology, South University of Science and Technology 

of China, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055 

China 

 

* Lead Contact 

Correspondence should be addressed to matthias.selbach@mdc-berlin.de  

mailto:matthias.selbach@mdc-berlin.de


2 
 

Abstract 

Do young and old protein molecules have the same probability to be degraded? We addressed 

this question using metabolic pulse-chase labeling and quantitative mass spectrometry to 

obtain degradation profiles for thousands of proteins. We find that over 10% of proteins are 

degraded non-exponentially. Specifically, proteins are less stable in the first few hours of their 

life and stabilize with age. Degradation profiles are conserved and similar in two cell types. 

Many non-exponentially degraded (NED) proteins are subunits of complexes that are produced 

in super-stoichiometric amounts relative to their exponentially degraded (ED) counterparts. 

Within complexes, NED proteins have larger interaction interfaces and assemble earlier than ED 

subunits. Amplifying genes encoding NED proteins increases their initial degradation. 

Consistently, decay profiles can predict protein level attenuation in aneuploid cells. Together, 

our data show that non-exponential degradation is common, conserved and has important 

consequences for complex formation and regulation of protein abundance.   
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Introduction 

Pioneering experiments by Rudolph Schönheimer established that proteins are in a dynamic 

state of synthesis and degradation (Schoenheimer, 1942). The subsequent discovery of 

lysosomes and the ubiquitin-proteasome system (UPS) provided detailed insights into the 

molecular mechanisms of cellular protein homeostasis. It is now well-established that proteins 

are extensively turned over, that this process is specific, and that the stability of individual 

proteins can vary under different physiological conditions (Ciechanover, 2005). 

Despite these mechanistic insights, the kinetics of cellular protein degradation are still not well 

understood. Early analyses indicated that intracellular protein degradation follows first order 

kinetics (Goldberg and Dice, 1974; Schimke and Doyle, 1970). Accordingly, protein degradation 

is thought to be an exponential decay process in which young and old proteins have the same 

degradation probability per unit time (i.e., degradation rate) (Fig. 1 A). However, there is 

substantial evidence that protein degradation does not always follow first-order kinetics. Pulse-

chase experiments by Wheatley et al. indicated that a substantial fraction of proteins are 

degraded within the first 2 h after synthesis (Wheatley et al., 1980). In addition, the newly 

synthesized immature forms of proteins, like the cystic fibrosis transmembrane conductance 

regulator (CFTR) and basigin (CD147), were found to be rapidly degraded while the “older” 

mature forms were stable (Tyler et al., 2012; Ward and Kopito, 1994). It was also observed that 

proteins can be ubiquitinated co-translationally (Duttler et al., 2013) and that most 

ubiquitinated proteins in a cell are relatively young (Kim et al., 2011). Finally, it has been 

estimated that around 30% of newly synthesized proteins are quickly degraded (Schubert et al., 
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2000), although this number was questioned in later studies (Vabulas and Hartl, 2005). 

Collectively, these studies suggest that decay probabilities of proteins can vary as a function of 

their molecular age. However, to the best of our knowledge, the degradation kinetics of 

individual proteins has not yet been investigated globally. 

To systematically assess cellular protein degradation kinetics we sought to perform pulse-chase 

experiments on a proteome-wide scale. The general idea is to metabolically label a population 

of proteins with a short pulse and then to quantify how much of this population is left after 

different lengths of chase. We and others have previously used stable isotope labeling by amino 

acids in cell culture (SILAC) to study protein synthesis and turnover (Andersen et al., 2005; 

Doherty et al., 2009; Hinkson and Elias, 2011; Jovanovic et al., 2015; Kristensen et al., 2013; 

Larance et al., 2013; Schwanhäusser et al., 2011; Selbach et al., 2008). A disadvantage of these 

approaches is that they require rather long labeling times. Metabolic labeling with 

bioorthogonal amino acids has emerged as an attractive alternative (Dieterich et al., 2006). 

Cells can incorporate the artificial amino acid azidohomoalanine (AHA) into newly synthesized 

proteins instead of methionine (Kiick et al., 2002). AHA contains an azide group enabling 

capture of proteins via click chemistry (Dieterich et al., 2006). Combining AHA with SILAC 

enables relatively short pulse times (Eichelbaum and Krijgsveld, 2014; Eichelbaum et al., 2012). 

Here, we combined AHA and SILAC to obtain a global survey of protein degradation kinetics. 

We find that a sizable fraction of proteins are degraded non-exponentially. Many non-

exponentially degraded (NED) proteins are members of heteromeric protein complexes that are 

over-produced relative to other members of the same complex. Thus, in contrast to recent 
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findings in bacteria (Li et al., 2014), disproportional protein synthesis appears to be common 

and evolutionarily conserved in metazoans. Our data allowed us to predict how protein levels 

change in response to gene copy number alterations in aneuploid cells. Global quantification of 

protein degradation kinetics reveals an unexpected layer of posttranslational regulation with 

important functional implications. 
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Results 

Combining metabolic pulse labeling and click-chemistry for global pulse-chase 

experiments 

To perform proteome-wide pulse-chase experiments we combined AHA and SILAC labeling (Fig. 

1 B). First, cells are fully labeled heavy, medium-heavy or light using SILAC. Second, all three cell 

populations are pulse labeled with AHA for 1 h. This relatively long pulse labeling time was 

chosen to allow sufficient label incorporation. Heavy cells are harvested immediately after the 

pulse while medium-heavy and light cells are chased in AHA-free medium for different lengths 

of time. All three cell populations are then combined and lysed. AHA-containing proteins are 

purified from the mixed lysate. After digestion into peptides, SILAC-based quantification reveals 

how much of the pulse labeled fraction remains at different time points. 

We first confirmed that click chemistry-based capturing of heavy AHA labeled proteins is highly 

specific and reproducible (Figure S1 A-C). Next, we checked if AHA might itself affect protein 

degradation kinetics and found no evidence for this (Fig. S1 D-G). Also, peptides derived from 

both the N-terminal and C-terminal halves of AHA-labeled proteins had similar intensities, 

suggesting that AHA does not induce premature termination (Fig. S1 H). Collectively, these data 

indicate that AHA pulse-chase (AHA p-c) enables specific enrichment of newly synthesized 

proteins with no apparent impact on protein stability, consistent with previous reports (Cohen 

et al., 2013; Dieterich et al., 2006; Howden et al., 2013; tom Dieck et al., 2015). 
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For global quantification of protein degradation kinetics we performed three parallel triple-

SILAC experiments with different chase times (1, 2, 4, 8, 16 and 32 h) in mouse fibroblasts (NIH 

3T3). Heavy cells were always harvested immediately after the pulse and served as a common 

reference point. Exemplary mass spectra for a stable protein (filamin A, Flna) and an unstable 

protein (cathepsin L, Ctsl1) show expected slow and fast degradation, respectively (Fig. 1 C). 

The levels of basigin (Bsg) quickly decreased after the chase but then stabilized after 

approximately 4 h. This is consistent with the observation that most of the newly synthesized 

immature basigin is degraded while the mature form of the protein is stable (Tyler et al., 2012). 

We combined the data from the three triple-SILAC experiments to obtain kinetic profiles with 

seven time points. To compensate for differences in cell numbers we normalized the data using 

a selected set of very stable proteins (Fig. S2). We also subtracted background signals which 

could otherwise give rise to erroneous degradation profiles (see Method and Resources for 

details). The entire large scale experiment was carried out three times, thus yielding data from 

three independent biological replicates. In total, we obtained profiles for 5,247 proteins (Fig. 1 

D). After applying several quality filters (Fig. S3 A) we kept 3,605 profiles for further analysis 

(Fig. S3 E). About half of these profiles were derived from at least two biological replicates, 

allowing us to assess reproducibility. Overall, reproducibility was very good with coefficients of 

variation (CVs, computed in log space) of less than 10% at time point 32 h for approximately 

90% of the proteins (Fig. S3 F). 
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Stochastic modeling reveals extensive non-exponential degradation 

To model our experimental protein degradation profiles we adapted a Markov chain-based 

approach previously used to study mRNA decay (Fig. 2 A) (Deneke et al., 2013). We considered 

two different models. In the first model proteins only exist in a single state “A” that is 

characterized by a constant decay probability. This “1-state model” therefore describes 

exponential degradation (ED). The second model has an additional state: Newly synthesized 

proteins first populate state A from where they can either be degraded or transit to state B, 

which is characterized by a different decay probability. This “2-state model” thus describes non-

exponential degradation (NED). To distinguish between both scenarios we compared the 

relative quality of both models for each protein degradation profile using the Akaike 

information criterion (AIC) (Akaike, 1974). This approach considers the trade-off between the 

goodness of fit and model complexity (that is, the number of parameters). Hence, the 2-state-

model is only preferred when the improved fit outweighs the increased complexity. The AIC 

thus provides a conservative estimate of the fraction of NED proteins. Degradation profiles of 

Ctsl1 and Flna were better explained by the 1-state model (Fig. 2 B). In contrast, the 

degradation profile of basigin was better explained by the 2-state model. 

Overall, we found that the profiles of 509 proteins are better explained by the 2-state model 

(Fig. 2 C, AIC probability > 0.8). This corresponds to approximately 14% of the 3,605 proteins 

that passed our quality criteria (Fig. S3). We conclude that a sizable number of proteins show a 

tendency towards NED.  
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In principle, the 2-state model can describe two different scenarios: When the degradation rate 

in state A is higher than in state B (kA > kB) the model describes proteins that become more 

stable as they age. Alternatively, when the degradation rate in state B is higher than in state A 

(kB > kA) the model describes destabilization of older proteins. Intriguingly, we only observed 

age-dependent stabilization (Fig. 2 D). This is surprising, as we originally expected proteins to 

become more unstable over time due to the cumulative effects of age-related damage. 

However, in our cell line model and within the time period monitored (32 h) we did not find any 

evidence for this.  

While our AIC probability describes the relative quality of both models, it does not provide 

information about the extent of NED for individual proteins. We therefore also measured the 

distance of intermediate data points from the linear fit in the semi log plot (Fig. 2 E). This delta 

score (Δ-score) is a simple measure for the extent of non-exponentiality of individual 

degradation profiles. We then defined NED and ED proteins based on their AIC probabilities and 

Δ-scores (Methods and Resources). With these filters, ~10% of proteins were classified as NED 

and ~50% as ED. The remaining proteins were classified as undefined (“UN”, Figure 2 F). For all 

subsequent analyses we relied on this classification (Supplemental Table S1). In summary, our 

global quantification of cellular protein degradation kinetics reveals that many proteins become 

more stable once they have survived the first few hours of their existence. 
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NED can be validated by independent methods 

Although AHA labeling does not appear to globally affect protein degradation (Fig. S1), it is still 

possible that labeling with an artificial amino acid introduces systematic biases. We therefore 

wanted to validate our data with independent methods. First, we compared protein 

degradation rates in the present study with previously published dynamic SILAC data from the 

same cell line (Schwanhäusser et al., 2011) and found overall good agreement (Figure S4 A-D). 

Second, we used classical radioactive pulse-chase and immunoprecipitation to confirm 

degradation kinetics of an ED and an NED protein (Figure S4 E). Finally, to systematically 

validate our classification, we designed a novel SILAC-based strategy (Fig. 3 A): We pulse 

labeled light cells with heavy SILAC medium for 4 hours. At this time point, the proteome 

consists of two populations of protein molecules: Light proteins, which are older than 4 hours, 

and heavy proteins with an age between 0 and 4 hours. We harvested half of the cells to 

quantify the H/L ratio at this time point. Since NED proteins become more stable with age, the 

younger heavy protein molecules should degrade faster than the older light ones. We therefore 

cultivated the other half of cells on medium-heavy growth medium for 8 additional hours. This 

resulted in the expected decrease in H/L ratios for NED but not for ED proteins (Fig. 3 B-D). 

Label swap experiments and different chase times confirmed this finding (Fig. S4 F-H). We 

computed a NED validation score based on the average rank of proteins across these SILAC 

pulse-chase experiments (Fig. 3 E, F). This score indicates how well non-exponential 

degradation could be validated for individual NED proteins and is included in Supplemental 

Table S1. Since these validation experiments have longer pulse times and thus lower sensitivity 



11 
 

a low validation score of a NED protein should not be interpreted as evidence for erroneous 

classification. 

 

The ubiquitin proteasome system mediates NED 

Having shown that a sizable number of proteins are non-exponentially degraded, we next asked 

how degradation occurs. The two major cellular protein degradation systems are the 

proteasome and the lysosome. We therefore used drugs, MG132 or wortmannin in 

combination with bafilomycin A1, to inhibit proteasomal or lysosomal degradation, 

respectively. To assess non-exponential degradation we performed AHA p-c experiments with 4 

and 8 h chase times in the presence of the inhibitor or carrier controls (DMSO). The impact of 

both pathway inhibitions on NED was quantified by measuring their impact on the Δ-score (Fig. 

4 A). Proteasome inhibition reduced Δ-scores of most NED proteins (Fig. 4 B and D, and 

Supplemental Table 2). In contrast, inhibition of the lysosome did not have an observable 

impact (Fig. 4 C and E, and Supplemental Table 2). We conclude that the ubiquitin proteasome 

system is involved in the initial degradation of most NED proteins.  

 

Many NED proteins are members of multiprotein complexes 

We next characterized features that distinguish ED and NED proteins and found that NED 

proteins are on average more abundant and have a higher degree of secondary structure (Fig. 

S5 A). Moreover, many NED proteins are members of annotated heteromeric complexes (Fig. 

S5 A and B). Mapping the data to protein structures showed that 70% of NED proteins are 
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members of heteromeric protein complexes, which is a significant enrichment relative to ED 

and UN proteins (Fig. 5 A, S5 C and Supplemental Table 3).  

Many complexes contain both NED and ED proteins. Therefore, we investigated if the 

properties of NED and ED proteins in complexes differ. We found that NED proteins have 

significantly larger interaction interfaces within complexes (Fig. 5 B and Supplemental Table 3). 

It has been shown that complexes form via ordered and evolutionarily conserved assembly 

pathways (Marsh et al., 2013). We found that NED subunits assemble significantly earlier than 

ED subunits (Fig. 5 C and Supplemental Table 3). Finally, we found that the NED subunits show 

stronger correlated coexpression with other subunits of the same complex, while the ED 

subunits show less coherent expression (Fig 5D, S5D, Supplemental Table 3). Together, these 

data indicate that NED proteins are typically core components of multiprotein complexes while 

ED proteins tend to be more peripheral.  

A long-standing hypothesis is that proteins are stabilized by complex formation (Goldberg, 

2003). While several individual examples support this idea (Blikstad et al., 1983; Lam YW, 2007; 

Toyama et al., 2013) it has, to the best of our knowledge, not yet been investigated 

systematically. We reasoned that complex formation could explain non-exponential 

degradation (Fig. 5 E): If NED proteins were produced in excess relative to ED proteins, the 

degradation of the non-assembled subunits would lead to non-exponential decay. We therefore 

analyzed the abundance of newly synthesized proteins directly after the pulse. To this end, we 

normalized the data in a complex-centric manner (Fig. 5 F). We found that NED proteins are 

indeed over-synthesized relative to ED proteins in the same complex. Moreover, while the 
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initial degradation rates (i.e. the degradation rates of state A) of NED proteins within a complex 

varied considerably, their second (state B) degradation rates were more similar and close to the 

degradation rates of the ED subunits (Fig. S6). Thus, many NED proteins in complexes appear to 

be produced in super-stoichiometric amounts relative to their ED counterparts. 

To independently validate these findings, we performed the same complex-centric analysis on 

ribosome profiling data (Subtelny et al., 2014) and observed the same trend (Fig. 5 G). To 

directly assess the link between complex assembly and NED we focused on the ribosome – a 

complex rich in NED proteins. Since the ribosome consists of proteins and rRNAs, ribosome 

assembly can be inhibited by blocking rRNA transcription. We found that actinomycin D 

treatment increased the initial degradation of ribosomal proteins (Fig. 5 H), consistent with our 

hypothesis and with previous data (Lam YW, 2007). 

 

NED is evolutionarily conserved 

All data presented so far are based on the analysis of mouse fibroblasts (NIH 3T3). We 

therefore asked if our findings are due to specific features of this model system. For example, 

even though NIH 3T3 cells are derived from primary cells, a recent cytogenetic study revealed a 

complex rearranged karyotype (Leibiger et al., 2013). It is therefore possible that the super-

stoichiometric synthesis of NED proteins is due to genomic amplification of the corresponding 

genes. In this case, our data would have little relevance for other model systems. 

To test this possibility, we analyzed the diploid human retinal pigmented epithelial cell line RPE-

1. Low coverage whole genome sequencing of this cell line confirmed that, with the exception 
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of partial trisomies for chromosome 10 and 12, it is mostly diploid (Fig. S7). We performed 

three independent large AHA p-c experiments to obtain degradation profiles for 4,079 proteins. 

47% and 9.4% of the proteins that passed the quality filters (n=3,133) were classified as ED and 

NED, respectively (Fig. 6 A left bar and Supplemental Table 4). These fractions are similar to the 

mouse fibroblast data. We then grouped the human proteins according to the degradation 

profiles of their mouse orthologs (Fig. 6 A). Human orthologs of mouse NED proteins were 

enriched in NED proteins. Conversely, human orthologs of mouse ED proteins were enriched in 

ED proteins. In addition, the Δ-scores of the human proteins and their mouse orthologs were 

significantly correlated (Fig. 6 B). This is surprising, especially since there are many reasons why 

degradation profiles may actually differ (cell cycle properties, overall proteome composition 

which may drastically differ between both cell types). We also found that human NED proteins 

that are part of multiprotein complexes tend to be produced in super-stoichiometric amounts 

(Fig. 6 C), consistent with the mouse data (Fig. 5 F). This observation still holds when human 

proteins are classified according to the degradation profile of their mouse orthologs, further 

supporting the notion of conservation. 

To further assess the conservation of NED we used ribosome profiling data from different 

species (human, HEK293 (Liu et al., 2013), mouse (Shalgi et al., 2013), zebrafish (Chew et al., 

2013) and C. elegans (Nedialkova and Leidel, 2015)). We classified proteins in these datasets 

according to the degradation profiles of their human orthologs (in RPE-1 cells). We then 

normalized the ribosome protected fragment (RPF) reads in a complex-centric manner. We 

found that orthologs of human NED proteins tend to be over-synthesized in mouse and 

zebrafish (Fig. 6 D). The trend also holds in C. elegans although it is not significant. Together, 
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these data show that non-exponential degradation is not mainly due to “erroneous” protein 

overproduction caused by genomic rearrangements in a specific cell line. Instead, our findings 

show that protein degradation kinetics are – at least partially – conserved between species and 

independent of the cell type. 

 

NED predicts protein level attenuation in aneuploidy  

Based on our findings we propose a simple model that explains the relationship between 

protein degradation kinetics and complex formation (Fig. 7 A). Accordingly, NED proteins are 

overproduced relative to the ED proteins in the same complex. Therefore, only a fraction of the 

overproduced proteins are stabilized by complex formation while the rest are degraded. 

Importantly, this overproduction occurs in disomic cells and is thus not generally due to 

aneuploidy. However, we reasoned that aneuploid cells would allow us to test the model: 

Genomic amplification of NED proteins should increase their over-production and thus the 

initial degradation (Fig. 7 A). Consequently, amplification of genes encoding NED proteins 

should not lead to correspondingly increased protein levels. Instead, NED proteins should be 

attenuated, i.e. their protein levels should remain relatively constant despite the genomic 

amplification (Dephoure et al., 2014; Geiger et al., 2010; Stingele et al., 2012). 

To test this prediction we took advantage of RPE-1 cells that were engineered to carry one 

additional copy of specific chromosomes (Stingele et al., 2012). Low coverage genome 

sequencing (Fig. S7 A,B) and chromosome painting (Fig. S7 C and D) verified that these cells are 

trisomic for chromosome 5 and part of chromosome 11. We therefore also performed AHA-pc 
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experiments with these “RPE-1 trisomic” cells (Supplemental Table 5). We then compared 

protein production in RPE-1 and RPE-1 trisomic cells using abundance levels after the pulse as a 

proxy. As expected, proteins encoded by trisomic regions were up-regulated in trisomic cells 

(Fig. 7 B). Note that chromosome 10 and 12 were also partially trisomic in the parental cell line 

and therefore excluded from subsequent analyses. 

We next compared the extent of non-exponential degradation in RPE-1 and RPE-1 trisomic cells 

using the Δ-score. Proteins encoded in disomic regions of the genome had similar Δ-scores in 

both cell lines (Fig. 7 C). However, consistent with our prediction, NED proteins in trisomic 

regions displayed significantly increased non-exponential degradation as measured by the 

change in their Δ-scores. Importantly, this behavior was specific for NED proteins and not 

observed for ED proteins. We conclude that increasing over-production of NED proteins tends 

to increase their initial degradation. 

Aneuploidy has severe developmental effects, it is the leading cause of mental retardation and 

spontaneous abortions, as well as a hallmark of cancer (Santaguida and Amon, 2015). However, 

the functional consequences of aneuploidy are only beginning to emerge. Studies in yeast and 

mammalian cell lines have shown that mRNA levels generally scale with gene copy numbers. 

However, protein levels are sometimes attenuated towards the euploid state. It has also been 

noted that most attenuated proteins are members of multiprotein complexes (Dephoure et al., 

2014; Geiger et al., 2010; Stingele et al., 2012). However, not all proteins in multiprotein 

complexes are attenuated and not all proteins that are attenuated are part of (known) 

multiprotein complexes. 
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Our model predicts that NED proteins should be attenuated. To test this idea, we directly 

quantified relative changes in steady-state protein levels in RPE-1 and RPE-1 trisomic cells in a 

separate SILAC experiment. We found that NED proteins encoded in trisomic regions were 

more attenuated than ED proteins (Fig. 7 D). This is consistent with our model, even though 

interpreting the data is complicated by the rather small number of NED proteins in trisomic 

regions. We also observed this effect in the subset of proteins that are part of annotated 

complexes (Fig. 7 E). Hence, protein degradation kinetics can explain why some proteins in 

complexes show more attenuation (NED proteins) than others (ED proteins). Moreover, even 

for the subset of proteins that are not part of an annotated complex, NED proteins showed 

more attenuation than ED proteins (Fig. 7 F). Collectively, these data show that NED can help to 

predict protein level attenuation in aneuploidy. 
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Discussion 

Our kinetic analysis of protein stability reveals widespread age-dependent degradation. We find 

that kinetic profiles are similar in two different cell types and conserved between mouse and 

humans. Many non-exponentially degraded proteins are subunits of multiprotein complexes 

that are produced in excess. Accordingly, we propose a simple model in which only a fraction of 

newly synthesized NED proteins is stabilized by complex formation while the rest are degraded. 

This model can help to predict how changes in DNA copy-number affect protein levels. 

While the AHA-pc method employed here has many advantages, it is also important to keep its 

limitations in mind. For example, due to the technical challenges of AHA-pc our data is not 

comprehensive. We do not know how our findings extrapolate to the uncovered part of the 

proteome. Also, the pulse time of 1 h is too long to capture events on the timescale of minutes. 

Therefore, our data cannot be used to estimate the extent of co- or peri-translational 

degradation (Duttler et al., 2013; Schubert et al., 2000; Wheatley et al., 1980). Moreover, since 

our longest chase time is 32 h, we cannot tell what happens to older proteins. It is possible that 

longer chase times would reveal age-dependent destabilization. Additionally, the seven time 

points we covered allowed us to distinguish between a 1-state and a 2-state model, whereas 

more complex multi-stage models would require measurements at more time points. 

Increasing the number of data points per profile would also decrease the number of proteins 

we could not classify as NED or ED. We classified these unclear cases as “undefined” – a purely 

technical definition that has probably no biological significance. Finally, despite validation by 

independent methods, we cannot fully rule out biases in our AHA-pc data. 
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We find that some proteins become very stable after they have survived the first few hours of 

their molecular life. We have experienced that this surprises many scientists since they 

intuitively believe that all proteins are constantly turned over. However, our finding is 

consistent with other observations. For example, SILAC labeling of post-mitotic cells typically 

remains incomplete despite long labeling times (Liao et al., 2008). Moreover, using metabolic 

labeling of rats, Toyama and co-workers identified several proteins with extraordinarily long 

lifespans in the rat brain (Toyama et al., 2013). The latter study also provided evidence that the 

high stability of one protein, Nup96, is due to its deposition into a stable complex. 

The observation that mammalian cells overproduce specific subunits of multiprotein complexes 

is surprising and in marked contrast to E. coli where subunits were reported to be made in 

precise proportion to their required stoichiometry (Li et al., 2014). Why are mammalian cells 

producing excess amounts of specific proteins? We would like to discuss four potential answers 

to this question: 

(i) It is possible that only a fraction of newly synthesized proteins adopt a functional 

state while the rest are terminally misfolded and thus degraded. However, since 

NED proteins tend to be relatively short and well-structured (Fig. S5 A) this 

explanation does not seem to generally hold. 

(ii) The observation that ED proteins tend to be disordered (Fig. S5 A) suggests an 

alternative explanation: Disordered proteins are often harmful when overexpressed, 

which is probably due to their tendency to make promiscuous interactions (Vavouri 

et al., 2009). Overproduction of NED proteins may have evolved to ensure that 
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potentially harmful ED proteins are never alone: The super-stoichiometric synthesis 

of “benign” NED subunits would be a failsafe mechanism against deleterious effects 

of unbalanced production of the more harmful ED proteins. NED proteins would 

thus have a chaperone-like function towards their cognate ED proteins. 

(iii) ED proteins might have evolved as limiting factors to facilitate the coordinated 

regulation of protein complex abundance: Up-regulating an ED protein would 

stabilize interacting NED proteins and thus increase the abundance of the entire 

complex. Conversely, reducing the expression of the limiting ED protein would 

decrease complex abundance. This explanation resonates well with the finding that 

mRNAs encoding ED proteins show less co-expression with mRNAs encoding other 

subunits and have longer 5’ and 3‘ UTRs (Fig. 5 D and data not shown). It also fits to 

data from yeast showing that most complexes consist of both constitutive and 

periodically expressed subunits (de Lichtenberg et al., 2005) and to the finding that 

complex stoichiometry can vary across tissues in mammals (Ori et al., 2016). 

(iv) Overproduction of NED proteins may be important for ordered complex assembly 

(Marsh et al., 2013; Matalon et al., 2014): Since the formation of protein-protein 

interactions depends on protein concentration, the relative abundance of proteins 

may in part determine the assembly order. This explanation is consistent with our 

observation that NED proteins tend to assemble earlier (Fig. 5 C). 

Which (if any) of these four possibilities explains protein overproduction and NED remains to be 

investigated. It is likely that different reasons are relevant for different proteins. It is also 

important to note that not all NED proteins are components of (known) multiprotein 
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complexes. NED of monomers could be due to many different molecular mechanisms. For 

example, NED of CFTR and basigin appears to be due to failed protein folding in the ER (Tyler et 

al., 2012; Ward and Kopito, 1994). More generally, biphasic degradation can be due to the 

existence of distinct pools of a protein. For example, these pools may reflect residency in 

different compartments (cytosol, nucleus, mitochondria, extracellular etc.), different 

posttranslational modification states (glycosylation, phosphorylation etc.) or assembly into 

different complexes. While our manuscript focusses on the latter possibility, this is by no means 

the only possible explanation. Finally, while we have interpreted the age-dependent rate as 

giving information on the ageing of every individual molecules, we would like to note that an 

alternative interpretation based on frailty theory (Aalen, 1994) would give similar fitting quality. 

Our results have significant implications for aneuploidy. First, we confirm the previous 

observation that amplified genes encoding members of multiprotein complexes are often 

attenuated at the protein level (Dephoure et al., 2014; Geiger et al., 2010; Stingele et al., 2012). 

This finding was interpreted in the light of the longstanding idea that unassembled subunits of 

complexes are unstable (Goldberg, 2003). Accordingly, overproduction caused by gene 

amplification is attenuated for proteins in complexes. Our findings considerably extend this 

concept. The important difference is that we already observe unbalanced subunit production at 

baseline (Fig. 7 A). Consequently, our model can explain why only some subunits of complexes 

show attenuation (Fig. 7 E). More broadly, our data helps to predict how protein levels change 

in response to altered protein production. We expect that this will turn out to be useful for 

comprehending the complex cellular phenotypes of aneuploidy and somatic copy number 
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alterations in cancer. The data might also help to explain posttranslational buffering (Battle et 

al., 2015). 
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METHODS AND RESOURCES 
 

CONTACT FOR REAGENT AND RESOURCE SHARING  

Further information and requests for reagents may be directed to, and will be fulfilled by the 

corresponding author Matthias Selbach (matthias.selbach@mdc-berlin.de). 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell Lines 

NIH 3T3 Mouse fibroblasts cells were acquired from ATCC. The human retinal pigmented 

epithelium cell line RPE-1 hTERT, referred to as “RPE-1”, was a kind gift from Stephen Taylor 

(University of Manchester, UK). The trisomic cell line, referred to as “RPE-1 trisomic”, was 

generated using microcell-mediated chromosome transfer (Stingele et al., 2012) but has 

spontaneously gained a part of chromosome 11 specific to this study.  

Cells were, if nothing else is stated, cultured in SILAC DMEM (life technologies) complemented 

with glutamine (Glutamax, life technologies), 1 % Penicillin and Streptomycin (life technologies) 

and 10 % dialyzed fetal calf serum (Pan-Biotech). The SILAC DMEM was supplemented with 

standard L-arginine (Arg0, Sigma-Aldrich) and L-lysine (Lys0, Sigma-Aldrich) as in  

(Schwanhäusser et al., 2011) and referred to as “Light SILAC DMEM” below. Alternatively, Arg6 

and Lys4 or Arg10 and Lys8 were added in place of their light counterparts these media are 

referred to as “Medium-heavy SILAC DMEM” and “Heavy SILAC DMEM”, respectively (Ong et 

al., 2002). Cells were cultured at 37°C and 5% CO2. 

For the radioactive pulse-chase in combination with AHA or methionine experiments cells were 

cultured in Light SILAC DMEM. Confluent cells in 6-well plate wells were washed in pre-warmed 

PBS before being starved of methionine and cysteine for 45 min in DMEM free of both amino 

acids (Sigma-Aldrich) supplemented with glutamine, 1 % Penicillin and Streptomycin and 10 % 

dialyzed fetal calf serum referred to as “methionine and cysteine starvation DMEM”. Cells were 

then pulsed for 1 h with 80 µCi final concentration of 35S-Cysteine (Perkin Elmer) in combination 

with either 1 mM AHA or 1 mM methionine (Dieterich et al., 2006). Cells were washed twice in 

Light SILAC DMEM before either being directly lyzed or chased for 6 or 24 h in “cold” medium 

mailto:matthias.selbach@mdc-berlin.de
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with either 50 µM cycloheximide or 10 fold cysteine (Sigma-Aldrich) added to prevent re-

incorporation of the radiolabeled amino acids. 

For the radioactive pulse-chase coupled to immunoprecipitation experiments the mouse cells 

were grown in 15 cm plates in Light SILAC DMEM. Cells were washed twice in pre-warmed 

PBS before being starved for 1 h in methionine and cysteine starvation DMEM supplemented 

with 5% HEPES buffer (life technologies) added to compensate for the incubator lacking a CO2 

source. Cells were then pulsed for 1 h in the same medium supplemented with radioactive 35S 

methionine and cysteine (Perkin Elmer) at a 125 µCi/mL final concentration. After the pulse cells 

were washed twice in pre-warmed PBS before being chased in Light SILAC DMEM containing 

10 fold cysteine and methionine. 

For the enrichment specificity experiments mouse cells were cultured in a 15 cm plate with 

Heavy SILAC DMEM. The cells were washed twice in pre-warmed PBS before being starved of 

methionine for 1h in Heavy SILAC DMEM depleted of methionine (custom made from Biosera) 

referred to as “methionine starvation SILAC DMEM”  below. The methionine starvation was 

followed by a 2.5 h long incubation with 1mM AHA. 

For the AHA pulse-chase experiments mouse and human cells were cultured in either Light 

SILAC DMEM, Medium-heavy SILAC DMEM or Heavy SILAC DMEM until fully labelled. 

Experiments were started when cells reached ~25 % cell density. For the first two biological 

replicates two 10 cm plates were used per time point and for the third biological replicate two 

15 cm plates were used per time point to increase the starting material. After 1 h in the 

respective Light, Medium-heavy or Heavy methionine starvation SILAC DMEM cells were 

labeled with 1 mM AHA for 1 h. After the pulse Medium and Light cells were washed in PBS 

then Light or Medium-heavy SILAC DMEM, respectively, before being chased in the same 

medium. 

The AHA pulse-chase of mouse fibroblasts in combination with inhibitor treatments experiments 

were performed in a manner similar to the AHA p-c experiments. Methionine starved cells were 

pulsed with 1 mM AHA for 1 h before being washed twice in pre-warmed PBS and then chased 

in Light or Medium-heavy SILAC. In these experiments different inhibitors or the vector control 

dimethyl sulfoxide (DMSO, Biomol) were added as follows. Proteasomes were blocked using 20 

µM (S)-MG-132 (MG132, Cayman chemical) and inhibition of autophagy was secured by a 

combination of 250 nM Bafilomycin A1 (Invivogen) and 500 nM wortmannin (Calbiochem) both 
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treatments were added only during the chase. In contrast, 100 nM Actinomycin D (Sigma-

Aldrich) was added both during the pulse and chase.  

For SILAC pulse-chase the mouse fibroblasts were grown to 80 % confluency in 15 cm plates in 

Light SILAC DMEM. Cells were washed three times in PBS before being pulsed in Heavy 

SILAC DMEM for 4 h (or as annotated in fig. S4 F-H). Cells were then washed in PBS before 

being trypsinated for 2 min at 37 °C. Cells were resuspended in PBS before half of the cells 

were transferred to a 10 cm plate containing Medium-heavy SILAC DMEM and the other half 

spun down and pellet then frozen.  

For measurements of relative protein levels at steady state in RPE-1 and RPE-1 trisomic cells 

fully Heavy SILAC labeled RPE-1 and Light labeled RPE-1 trisomic cells were grown to 70 % 

confluency in 10 cm plates as described above. 

For the chromosome spreads RPE-1 and trisomic RPE -1 cells were maintained at 37 °C with 

5 % CO2 in DMEM GlutaMax (Gibco) containing 10 % fetal bovine serum (FBS), 100U penicillin 

and 100U streptomycin. The cells were grown to 70-80 % confluency before being treated with 

50 ng/ml colchicine for 3-5 h. 

 

METHOD DETAILS 

35S cysteine pulse-chase in combination with AHA or methionine 

NIH 3T3 mouse fibroblast cells were grown in Light SILAC DMEM. Confluent cells in 6-well 

plate wells were washed in pre-warmed PBS before being starved of methionine and cysteine 

for 45 min in methionine starvation SILAC DMEM. Cells were then pulsed for 1h with 80 µCi 

final concentration of 35S-Cysteine in combination with either 1mM AHA or 1mM methionine. 

Cells were then washed twice in Light SILAC DMEM before either being directly lyzed or chased 

for 6 or 24 h in “cold” medium with either 50 µM cycloheximide or 10 fold cysteine (Sigma-

Aldrich) added to prevent re-incorporation of the radiolabeled amino acids. After chase, cells 

were scraped and lyzed in modified radio-immunoprecipitation buffer (50 mM Tris HCl (pH 7.4), 

1 mM EDTA, 150 mM NaCl, 1 % Nonidet P-40, 0.25 % Na-deoxycholate and 0.1 % SDS) 

containing 2 fold protease inhibitor cocktail (Roche). All samples were frozen at -80 °C before 

being thawed on ice for 30 min in the presence of an endonuclease (Benzonase, Merck). 

Samples were spun down to clear cell debris. The resulting supernatant was diluted in LDS 
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sample buffer (Invitrogen) complemented with DL-Dithiothreitol (DTT, Sigma-Aldrich) before 

being boiled at 95 °C for 5 min. Proteins were resolved by SDS-PAGE using a 10 % 

polyacrylamide gel. Proteins were fixed in the gel by 5 % Acetic acid and 50 % methanol and 

then Commassie stained (colloid blue stain kit, Novex). The gel was vacuum dried for 2 h using 

a gel drying system (Bio Rad) at 75°C. Vacuum dried gels were scanned using a scanner 

(Cannon) for quantification of total loaded protein. The radioisotope signal was measured by 

exposing the gel to a magnetic photostimulable phosphor plate overnight. The plate was then 

scanned on a phosphorimager (Typhoon FLA 9500, GE Healthcare). Radioactive and 

Coomassie images were quantified using the ImageQuant software (GE Healthcare). Each lane 

was quantified separately and background signal was estimated by marking a lane with no 

proteins loaded. The measured background was subtracted from the signal. The radioactive 

signal was then further normalized to total protein input estimated by the Coomassie staining. 

Three biological replicates were performed each containing technical triplicates. Statistics and 

plotting was performed in Excel (Microsoft). 

 

Enrichment specificity of AHA labeled proteins 

Fully Heavy SILAC labelled mouse fibroblasts were cultured in a 15 cm plate until 50 % 

confluent. The cells were washed twice in pre-warmed PBS before being starved of methionine 

in Heavy methionine starvation SILAC DMEM for 1h. The starvation was followed by a 2.5 h 

long incubation with 1 mM AHA. The AHA-labeled heavy cells were then washed and scraped in 

ice cold PBS, spun down and mixed 1:1 with fully light labeled cells not labeled by AHA (see Fig 

S1A for experimental design). Two reversed experiment were also performed in where the Light 

cells were AHA-labeled and the Heavy cells not. The cells were lyzed using urea lysis buffer 

from the Click-iT protein enrichment-kit supplemented with two-fold protease inhibitors (Roche). 

The lysate was treated with benzonase for 10 min before being sonicated in a water bath. 

Samples were spun down at 20,000 rcf and supernatants were transferred to new tubes 

containing alkyne agarose beads. The click reaction was performed overnight following the 

“Click-iT protein enrichment kit”-protocol as described earlier (Hou et al., 2015).  Proteins were 

reduced by heating to 70 °C in the presence of 10 mM DTT in SDS buffer and later alkylated by 

the addition of 40 mM iodoacetamide (Sigma-Aldrich) final concentration. Beads were 

sequentially washed in SDS buffer, 8 M Urea in 100 mM Tris (pH 8) and 80 % acetonitrile by 

centrifugation and decanting supernatant. Proteins were digested “on bead” in 5 % acetonitrile 
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in ABC buffer first 3 h by LysC and then over night with trypsin. The peptide solution was 

acidified by addition of trifluoroacetic acid (TFA, Sigma-Aldrich) before peptides were desalted 

and stored on StageTips (Rappsilber et al., 2003). In short, stageTips were prepared by 

inserting 3 discs of C18 material (3M) into 200 µL pipette tips. The C18 was activated by 

methanol. Organic solvents were washed away by Buffer A (5 % acetonitrile and 0.1 % formic 

acid) before peptides were loaded onto the stageTips. Salts were washed away by washing the 

retained peptides in Buffer A. Peptides were eluted using Buffer B (80 % Acetonitrile and 0.1 % 

formic acids) and organic solvent was evaporated using a speedvac (Eppendorf). Samples were 

diluted in Buffer A (5 % acetonitrile and 0.1 % formic acid) before being put on SCX tips (3 M) 

(Kulak et al., 2014). In brief, 3 discs of SCX material (3 M) were added to a 200 µl pipette tip 

and activated by sequentially washing in methanol, buffer B and 500 mM ammonium acetate in 

15 % acetonitrile and 0.5 % formic acid. SCX tips were washed three times in 0 mM salt buffer 

(15 % acetonitrile and 0.5 % formic acid) before the samples were added. Flow through was 

collected and the remaining peptides were eluted by increasing the salt concentration in three 

fractions using 50, 150 and 500 mM ammonium acetate. Eluted peptides were once again 

desalted on stageTips.  

In parallel, peptides from the input to the click chemistry (lyzed cells mixed 1:1) were prepared 

by Wessel-Flügge precipitation and “on pellet” digest as previously described (Sheean et al., 

2014). In short proteins from the input were precipitated by sequentially adding, MS-grade 

methanol, chloroform and finally water before spinning down the samples at 10,000 rcf 

(Puchades et al., 1999). The upper water phase was removed, methanol was added, the 

sample was centrifuged again and supernatant discarded. The retrieved protein pellet was air 

dried before being resuspended in 6 M Urea, 2 M Thiourea in 10 mM Hepes (pH8). Proteins 

were denatured by adding 10 mM DTT in 50 mM ammoniumbicarbonate (ABC buffer) and then 

alkylated by the addition of 55 mM iodoacetamide in ABC buffer. Proteins were then digested by 

the addition of LysC for 3 h. The sample was diluted in ABC buffer until the concentration of 

urea was less than 2 M before trypsin was added over night. Resulting peptides were desalted 

on stageTips.  

Input and on bead digested peptides were separated on a 2,000 mm monolithic column with a 

100‐μm inner diameter filled with C18 material that was kindly provided by Yasushi Ishihama 

(Kyoto University) (from now on referred to as “2 m monolithic column”) with a flow rate of 

300 nl/min using a 4 h linear gradient with 250 nl/min flow rate of increasing Buffer B 

concentration on a High Performance Liquid Chromatography (HPLC) system 
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(ThermoScientific). Peptides were ionized using an electrospray ionization (ESI) source 

(ThermoScientific) and analyzed on a Q Exactive mass spectrometer (ThermoScientific). The 

mass spectrometer was run in data dependent mode selecting the top 10 most intense ions in 

the MS full scans (Orbitrap resolution: 70,000; target value: 3,000,000 ions; maximum injection 

time of 20 ms) for higher energy collision induced dissociation. The resulting MS/MS spectra 

from the Orbitrap had a resolution of 17,500 after a maximum ion collection time of 60 ms with a 

target of reaching 1,000,000 ions.  

The resulting raw files were analyzed using MaxQuant software version 1.5.1.2 (Cox and Mann, 

2008). Default settings were kept except that `match between runs` was turned on. Lys8 and 

Arg10 were set as labels and oxidation of methionines, n-terminal acetylation and deamidation 

of aspargine and glutamine residues were defined as variable modifications. Carbamidomethyl 

of c-termini was set as fixed modification. The in silico digests of the mouse Uniprot database 

(2014-10) and a database containing common contaminants were done with Trypsin/P. The 

false discovery rate was set to 1 % at both the peptide and protein level and was assessed by in 

parallel searching a database containing the reversed sequences from the Uniprot database. 

The resulting text files were filtered to exclude reverse database hits, potential contaminants 

and proteins only identified by site. Plotting and statistics were done using R and figures were 

modified in Illustrator (Adobe). The median H/L ratios from the input samples were used to 

estimate the mixing ratio of the input and the H/L ratios after the enrichment were adjusted 

correspondingly.  

 

AHA pulse-chase of SILAC labelled NIH 3T3 mouse fibroblasts 

Fully Light, Medium and Heavy SILAC labelled mouse fibroblast were grown as in the 

“enrichment efficacy experiment”. Experiments were performed when cells reached ~25 % cell 

density so that full confluency would not be reached during the 32 hours of chase time (See 

Figure 1B for experimental design). For the first two replicates two 10 cm plates were used per 

time point and for the third replicate two 15 cm plates were used to increase the starting 

material. During the whole experiment cells were grown in the presence of arginine and lysine in 

their respective labeling sate (Light, Medium-heavy or Heavy). After 1h in methionine starvation 

SILAC DMEM cells were labeled with 1 mM AHA for 1h. After the pulse Medium and Light cells 

were washed first in PBS then SILAC DMEM before being chased in the same medium. Heavy 

cells used for time point 0 h were instead washed in ice cold PBS before being scraped in the 
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same, spun down and cell pellets were frozen. After the chase the medium and light cells were 

also scraped and frozen.  

The frozen pellets were thawed and lyzed as described for “enrichment efficacy experiment”. 

Also the click reaction and washing of beads, denaturation, alkylation and digestion was 

performed as above. In one, out of the three experiments, the peptides were pre-fractionated by 

isoelectric focusing into 12 fractions as described in (Eravci et al., 2014). In two experiments the 

peptides were separated using strong anion exchange (SAX). The SAX protocol was performed 

as in (Wisniewski et al., 2009). In short SAX material (3M) was put in 200 µL pipette tips and 

activated by methanol. The SAX tip was then washed by high pH buffer (20 mM Acetic acid, 

20 mM phosphoric acid, 20 mM boric acid, pH was adjusted to 11 by titrating in 1 M sodium 

hydroxide) before peptides were loaded onto the tip. The peptides were then eluted stepwise by 

decreasing the pH of the buffer in discrete steps (pH of 11 (flow though), 8, 5 and 3 all prepares 

as above with the addition of 0.25 M NaCl to the pH 3 buffer). The eluted peptides were stored 

on stageTips.  

IEF and SAX fractionated peptides were separated on a HPLC system as described above by 

either 4 or 2 h gradients with a 250 nl/min flow rate on a 15 cm column with an inner diameter of 

75 µm packed in house with ReproSil-Pur C18-AQ material (Dr. Maisch, GmbH). Peptides were 

ionized using an ESI source and analyzed on a Q-exactive with the above described settings. 

The acquired raw-files were analyzed using MaxQuant with the same settings as for the 

enrichment specificity experiment but with Arg10 and Lys8 set as heavy labels and Arg6 and 

Lys4 as medium-heavy labels.  

For all downstream analysis we used non-normalized SILAC ratios (see below for normalization 

procedure) with a minimum of 2 SILAC counts. Reverse database hits, potential contaminants 

and proteins only identified by site were all excluded.  

 

Data normalization 

Normalization is a common challenge for experiments measuring abundances – differences in 

starting material, labeling efficiency, instrument sensitivity, etc. are all contributors to deviations 

in the scale of measurements.  A common normalization strategy is to normalize the data to the 

median value in each experiment or replicate, assuming that the median values should not 
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change through the series of experiments.  However, for pulse chase experiments, we expect 

the measured quantities (and thus also the median) to decay over time, thus this strategy 

cannot be used.  In our data, we expect each time point to have an unknown and potentially 

different multiplicative factor which affects all measurements at that time point.  Thus, we aim to 

estimate the average value of the multiplicative factor that affects the real data at each time 

point without assuming any protein degradation rates a priori while being robust to experimental 

errors.   

Our normalization scheme is based on the assumption that there are stable proteins within the 

pool of proteins measured, whose amounts decay very little during the time course of the 

experiment (Fig. S4) (Schwanhäusser et al., 2011; Toyama et al., 2013).  Without noise, the 

signals corresponding to these proteins would remain unchanged and equal to 100 % left 

throughout the experiment.  With noise, these very stable proteins can still be identified; the 

Medium/Heavy and Light/Heavy SILAC ratios of these proteins should be among the highest 

throughout the experiment. Using this method, we identify the most stable proteins and then 

calculate the multiplicative factor necessary to normalize the data for each time point such that 

the geometric mean of the measurements of these very stable proteins will have a signal of 

100 % (see Fig S2 for overview of normalization strategy). 

To find the most stable proteins, we consider proteins with data at all time points in all replica – 

one reason for this is that it ensures that all the potential candidates are able to contribute to the 

normalization factor.  Furthermore, being in this subset suggests that these proteins are reliably 

measurable.  For each of these proteins, we assign a score, defined as 

scorei = PercentileRanki t( )
tÎ 8,16,32{ }

å  

Where the index i denotes the protein and PercentileRanki(t) maps the rank of each protein’s 

signal strength (from smallest to largest, at time t) to the interval (0, 1).  Proteins with higher 

signals at each time point will have higher scores. Thus for a protein who has the highest signal 

at all time points would have a score equal to the number of time points, which we call 

maxScore (i.e. the range of scores is (0, maxScore]).  Each protein has up to 3 scores, one from 

each replica.  From the three scores, we calculate the deviation of the score from the maximum 

score: 
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Candidates for normalization are those proteins with the lowest deviations. This normalization 

scheme is based on 4 key assumptions: 

1. All groups of cells (heavy/medium/light) produce and degrade proteins equally. 

2. Proteins degrade at different rates, which can be differentiated in the time scale of our 

experiments) 

3. Proteins degrading the slowest have the highest Medium and Light to Heavy ratios (and 

thus lowest deviations) 

4. The slowest degrading proteins do not degrade at all in the time scale of our experiment. 

Note that protein dilution due to cell division does not impact our data since we harvest 

the entire cell population. 

From the data, we find the population of proteins with the lowest score deviations (LSD, n = 

200, <5% of total population) and deem these to be the stable proteins (i.e. the LSD-proteins). 

This set is chosen intentionally large in order to mitigate the effects of outlying data points.   

In addition, based on the enrichment efficacy experiments (Fig S1 A-C) described above we 

applied a stringent cut-off excluding all data points smaller than 10 % protein remaining after 

normalization. Alternatively, we also tried to subtract protein specific background based on the 

fact that the background was highly reproducible (Fig. S1C). This did not have any major impact 

on the protein classification and we therefore stayed with the simpler 10% cut-off. 

  

Parameter fitting 

In this study, we consider two simple models: a 1-state model (exponential decay, ED) and a 2-

state model (non-exponential decay, NED).  In the 1-state model, proteins are in state A just 

after synthesis. From state A, they are degraded at the rate kA. The system is memoryless, 

meaning that the life expectancy for any single protein molecule does not change as the 

molecules age. For true exponential decay, the data should resemble a straight line when 

plotted in a log-linear plot. While the one-state model is a good approximation for some decay 

patterns, other decay patterns have dynamics that are not well described by a one-state model 

(Deneke et al., 2013). 
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In the two-state model, proteins are in state A after synthesis. From state A, the molecule can 

immediately degrade at the rate of kA, or it can transition to state B with the rate kAB. Molecules 

that reach state B are degraded with rate kB. From the analysis point of view, one important 

distinction between the 1-state and 2-state models is that we lose the property of 

memorylessness; for 2-state models, the history of a specific molecule (which determines 

whether the molecule is in state A or state B) changes the expected residual life of the 

molecule. In short, the residual life of the molecule depends on the age of the molecule. In 

pulse-chase experiments, the duration of the pulse affects the composition of molecule ages at 

the beginning of the chase – for a very short pulse, the molecules synthesized in the pulse are 

likely to have the same age. However, for a longer pulse, molecules synthesized at the 

beginning of the pulse are “older”) while there are some molecules which are just newly 

synthesized. In short, the length of the pulse must be taken into account for the calculations to 

accurately uncover the dynamics of degradation.  

The derivation of the mathematical description consists of two steps:  First is to translate the 

single molecule dynamics model (e.g. the one-state or two-state model) into the degradation 

from steady state at the level of population averages.  The translation of single molecule 

dynamics to population averages has been covered in (Deneke et al., 2013).  The second step 

takes the pulse into account and returns the degradation curve of the population averages (e.g. 

the measurements from the experiments). Calculation of the response of the system resulting 

from a pulse has been covered in (Sin et al., 2016).   

In our formalism, the function L t( )  defines the theoretical decay pattern, namely the fraction of 

molecules left after a decay of t time units. This function is expressed in terms of parameters 

defined through the underlying degradation model.  In our degradation model, we have 

assumed that the proteins follow either a 1-state model, in which there is only one degradation 

parameter, or a 2-state model, where there are three parameters.  The equations used for fitting 

are as follows: 

    for the 1-state model 

  for the 2-state model 

where        tkk
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Parameter estimation is performed by MATLAB through nonlinear fitting by minimizing the 

square deviation from the logarithm of the experimental data and the logarithm of the theoretical 

function. The routine employed for the nonlinear fit is fmincon.  

After parameter fitting we applied two quality criteria for selection of proteins for downstream 

analysis. First, only proteins which had measurements for more than four data points were kept. 

Second, profiles with RSS > 0.05 were not considered for downstream analysis. 

 

Model selection by the Akaike Information Criterion (Burnham K.P., 2002) 

The Akaike Information Criterion (AIC) indicates the quality of the model for a given set of data. 

Based on information theory, the AIC aims to find the model with minimal Kullback-Leibler 

distance between the proposed model and the “true” model (as assessed from the data).  

Models with more parameters have more degrees of freedom during the parameter estimation 

process, and can often deliver a more accurate fit to the data.  However, a more accurate fit to 

the data does not necessarily imply a higher quality model – instead of a model describing the 

system’s dynamics, these “overfitted models” describe quantities not related to degradation, 

such as measurement noise.  To decide which model we should adapt for each protein, we 

calculate the AIC for each model. The model resulting in the lowest AIC is the preferred model.  

We use the AIC with correction for small sample sizes to evaluate each of the two models fitted 

to each protein degradation pattern: 

 

where n is the number of data points, is the number of parameters, and is the residual 

sum of squares.  The AIC penalizes models with more parameters, worse fits, and less data.  

That is, the AIC quantifies the tradeoff between fit accuracy and model complexity. 

Furthermore, we can calculate the probability that a particular model  is the preferred one 

(relative to the other models we consider) by: 
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Our modeling approach connects to a more general approach based on the hazard rate, which 

is the key functional in survival analysis (Aalen and Gjessing, 2001). In our models, the hazard 

rate is the age-dependent degradation rate (Deneke et al., 2013). Based on biological 

reasoning, we have interpreted the age-dependent rate as giving information on the ageing of 

every individual molecule. We would like to point out that an alternative interpretation based on 

frailty theory (Aalen, 1994) would give similar fitting quality. 

 

Δ-score calculations 

For proteins that decay exponentially, one can derive the relative protein abundance at any time 

point by drawing a straight line between time point 0h (100% protein left) and any other 

measurement. Making allowances for measurement noise and quantification errors, all other 

measurements should fall on this line. If a measurement does not fall on this line, the protein is 

non-exponentially degraded. We used this relationship to estimate the size and direction 

(increased or decreased stability with age of the molecule) of non-exponentiality of degradation 

for each protein. We used the median log “protein remaining [%]” at time point 8 h (tp8) after 

chase to calculate the expected relative protein abundance at time point 4h assuming 

exponential degradation. For this we solved the straight line equation (y = mx + c) for x = 4 h, 

where the intercept c is log(100%), and the slope m is calculated using the value at tp8: 

𝑦(4ℎ) = −
(log(100%) − tp8)

8h
∗ 4h + log⁡(100%) 

  

Finally, we calculated the distance from the measured median log “protein remaining [%]” at 

time point 4 h (tp4), to the expected value, y(4h): 

𝛥 − 𝑠𝑐𝑜𝑟𝑒 = ⁡𝑦(4ℎ) − 𝑡𝑝4 

This calculation was repeated for all proteins. The time points 4 and 8 h were selected because 

of the observation that most of the initial degradation of NED proteins had already happened by 

after 4 h chase. Thereby we expected to be able to catch age-dependent stabilization (or 

destabilization) by comparing these two time points. Also, few proteins (see supplemental Table 

1) had a half-life shorter than 2.5 h and could thereby theoretically not be detected at the 8 h 



36 
 

time point. In addition, these short lived proteins were almost exclusively exponentially 

degraded according to the AIC call. 

 

SILAC pulse-chase (confirmation experiment)  

To exclude issues related to using non-natural amino acids and to the enrichment process (e.g. 

background binders) we performed a pulse-chase experiment using only stable isotope labelled 

amino acids. Mouse fibroblasts were grown to 80 % confluency in 15 cm plates in Light SILAC 

DMEM. Cells were washed three times in PBS before being pulsed in Heavy SILAC DMEM for 

4 h (or as annotated in fig. S4). Cells were then washed in PBS before being trypsinated for 2 

min at 37 °C. Cells were resuspended in PBS before half of the cells were transferred to a 

10 cm plate containing Medium SILAC DMEM and the other half spun down and pellet then 

frozen. After the Medium chase (see fig. 4 and S4, for different chase length) cells were spun 

down and frozen. In addition, “label-swap” experiments were also performed in this fashion. 

However, in the label-swap experiments the cells were pulsed with Medium-heavy and chased 

in Heavy amino acids. Cell pellets were lyzed and proteins denatured in 0.2 % SDS, 0.1 M DTT 

and 50 mM ABC (pH 8) by boiling for 10 min at 95 °C. After cooling, Benzonase was added for 

10 min before cell lysates were spun down and supernatants were transferred to fresh tubes. 

Proteins were alkylated by adding iodoacetamide to a 0.25 M final concentration, in the dark, for 

20 min. Proteins were precipitated by Wessel-Flügge precipitation as described above. The 

retrieved protein pellet was resuspended in 6 M Urea, 2 M Thiourea in 10 mM Hepes (pH8). 

Proteins were digested with LysC before being diluted in ABC buffer and trypsinated overnight. 

The resulting peptide solution was desalted on StageTips before being eluted in buffer B as 

described above. The peptides were resolved on a 4 m long monolithic column (2 x 2 m column 

combined) using a 12 h gradient of increasing buffer B concentration and a flow rate of 500 

nl/min. Peptides were ionized by ESI and analyzed on a Q-exactive orbitrap all with previous 

settings. Resulting raw-files were analyzed with MaxQuant with the same parameter settings as 

above. Plotting and statistics were performed using R and figures were modified in Illustrator.  

 

35S cysteine and methionine pulse chase coupled with immunoprecipitation  

NIH 3T3 mouse fibroblast were grown in 15 cm plates as described above. Cells were washed 

twice in pre-warmed PBS before being starved in methionine starvation SILAC DMEM for 1 h. 
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Cells were then pulsed for 1 h in the same medium supplemented with radioactive 35S 

methionine and cysteine (Perkin Elmer) at a 125 µCi/mL final concentration. After the pulse cells 

were either washed twice in pre-warmed PBS before being chased in medium containing 10 fold 

cysteine and methionine or scraped in ice cold PBS, spun down and pellets frozen (0 h time 

point). After being chased, either for 4 or 8 h, cells were collected as the 0 h time point. Cell 

pellets were lyzed for 15 min in RIPA buffer (50 mM Tris (pH8), 150 mM NaCl, 0.1 % SDS, 

0.5 % sodium deoxycholate, mM EDTA, 1 % NP40) supplemented with benzonase and two fold 

protease inhibitors. Lysates were spun down at 15 0000 rcf for 5 min and supernatant was 

transferred to new tubes. Lysates were precleared for 30 min by incubation with protein-A 

sepharose beads (Biovision) at 4 °C while turning over head. Beads were spun down and 

supernatant was split into two fresh tubes (i.e. time point 0 h were split in two, time point 4 h 

was split in two and so forth). Polyclonal antibodies raised in rabbit against either VCP (LSBio, 

LS-C287469) or CCT3 (Proteintech, 10571-1-AP) were added overnight to one tube each. 

Thereby the VCP and CCT3 immunoprecipitations were performed on the same lysate this to 

limit differences in radioactive labeling. Two tube had no antibody added and was subsequently 

used as a bead control. In the morning, protein-A sepharose beads were added to each tube 

and incubated while turning head over heel at 4°C for 3 h. Afterwards the beads were washed 3 

times in lysis buffer. Supernatant was fully decanted and leftover liquid boiled off. 

Immunoprecipitated proteins were then eluted by cooking the beads in 1-fold LDS loading buffer 

with DTT. Beads were spun down and the same volume of supernatant was loaded onto a 4-

12 % gradient SDS-polyacrylamide gel (ThermoFisher) and separated using electrophoresis as 

described above. The proteins were then further transferred to a PVDF membrane (Merck 

Millipore) using a wet western blot contraption (Invitrogen) set to a constant current of 250 mA 

for 2 h. The radioactive signal from metabolically labelled proteins was detected by exposing a 

magnetic phosphor plate overnight and then measuring in a PhosphorImager as described 

above. As loading control the same membranes were also probed by the same antibodies as 

used for the IPs. Briefly the membranes were first blocked by incubating in 1 % milk powder in 

Tris-buffered saline (TBS) and then incubated with the protein specific antibody diluted 1:5000 

in 1 % milk in TBS overnight while rotating at 4 °C. Membranes were washed in TBS and 1% 

Tween before being incubated at RT for 1 h with protein-A conjugated to horseradish 

peroxidase (Merck Millipore). Membranes were washed again before chemiluminescence 

substrate (PerkinElmer) was added and x-ray films (Fujifilm) were exposed to the membranes 

and developed using an Optimax 2010 machine (Protec). Two biological replicates were 

performed. 
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Inhibitor treatments + controls 

Inhibitor treatment experiments were performed as the AHA p-c experiments but only with three 

time points (0, 4 and 8 h). In addition to pulsing the cells with 1 mM AHA different inhibitors or 

vector control dimethyl sulfoxide (DMSO, Biomol) were added. Proteasomes were blocked 

using 20 µM MG132 (Cayman chemical) and a robust inhibition of autophagy was secured by a 

combination of 250 nM Bafilomycin A1 (Invivogen) and 500 nM wortmannin (Calbiochem) both 

treatments were added only during the chase. 100 nM Actinomycin D (Sigma-Aldrich) was 

added both during the pulse and chase.  

Inhibition of autophagy by Bafilomycin A1/Wortmannin was monitored by in parallel taking 

samples for western blotting as previously described (Sury et al., 2015). In short, scraped cells 

were spun down and directly lyzed in LDS sample buffer supplemented with DTT. Samples 

were run on 4-12 % Bis-Tris gradient gels (NuPAGE, Invitrogen) before being blotted onto 

PVDF membrane (Immobilion-P, Millipore) using a wet blotting contraption (Invitrogen). The 

Autophagy blocked cells were probed against LC3 and afterwards the membrane was stripped 

at 37 °C for 15 min in stripping buffer (2 % SDS (Roth), 2 % β-mercaptoethanol in 65 mM Tris 

Base (pH 6.7, Roth)) before being re-blotted using an anti-β-actin antibody. 

Treated cells for mass spec analysis were scraped, lyzed, and had their AHA labeled proteins 

clicked to alkyne-agarose beads as described above. Proteins were reduced with DTT and 

alkylated before beads were washed all as in the main AHA p-c experiment. Proteins were 

digested “on bead” by LysC and then trypsinated overnight. Peptide solution were put on 

4 mm/1 ml C18 columns (Empore, 3 M) and washed in buffer A. Peptides were eluted in buffer 

B and vacuum dried.  

MG132 treated samples were separated using an online SCX/WAX approach. Samples were 

loaded on a column packed first with C18 material “trap” and then with a 2:1 mixture of WAX 3 

µm beads (PolyLC Inc. PolyWAX LP) and 3 µm SCX beads (PolyLC Inc. PolyWAX LP) 

(Motoyama et al., 2007). The peptides were subsequently eluted with increasing salt 

concentration (ammonium acetate in 4, 8, 16, 32, 64 and 500 mM steps) onto the C18 trap part 

of the pre-column. Each fraction eluted from the SAX/SCX material where then separated as 

normal on a 15 cm C18 column with 2 h gradients of increasing buffer B concentration with a 

250 nl/min flow rate. Bafilomycin A1/ Wortmannin treated samples were put on SCX tips and 
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washed in no salt buffer, as described above, to minimize polymer contamination. Samples 

were then eluted with 500 mM ammonium acetate before being desalted on stageTips (Kulak et 

al., 2014). Samples were eluted from stageTips by Buffer B, vacuum dried, re-suspended in 

Buffer A and then separated on a HPLC system using a 2 m column and an 8 h gradient as 

previously described (Hou et al., 2015). Actinomycin D samples were also put on SCX tips but 

further manually fractionated by eluting in steps by increasing salt concentration (8, 16, 32 and 

500 mM ammonium acetate) before being put back on stageTips (Kulak et al., 2014). Peptides 

eluted from stageTips were vacuum dried and resuspended in buffer A before being separated 

on a 15 cm C18 column as described above. In all three cases above, eluted peptides were 

ionized using an ESI source and analyzed on a Q-exactive with the above described settings. 

ESI and mass spectrometer setting were, for all samples, as described above. The resulting raw 

files were analyzed by MaxQuant with the same settings as the standard AHA p-c experiment.  

Timelines were reassembled from non-normalized protein ratios, resulting into three time points 

(0, 4 and 8 h) for each inhibitor treatment and the corresponding DMSO control. Proteins were 

filtered for being represented by at least two peptide identification events. Each time point was 

normalized to the geometric mean of the identified intersection of the LSD proteins that were 

identified in the mouse dataset used for the mathematical modeling and then values below 10% 

were removed. From this normalized dataset Δ-scores were calculated for each, treatment and 

control, as described above. The difference of the Δ-scores between treatment and DMSO 

control was compared for the three protein subsets identified as NED, ED and UN. Differences 

between distributions were tested using the Wilcoxon rank-sum test. The corresponding p-value 

is reported in the figure legend for each treatment. 

 

Degradation profile prediction from different protein features 

The following features were selected to test each for prediction power of protein degradation 

profiles. The “Part of a Complex” feature distinguished proteins that are part of a complex from 

proteins that are not part of a complex (Ori et al., 2016). Proteins were defined as being part of 

a complex, if they are listed in a published manually curated protein complex database 

(unfiltered version; Ori et al 2016). Protein Length refers to the protein sequence length and was 

taken from the UniProt fasta table (version 10.2011). “Protein abundances in steady state” refer 

to average protein copy numbers per cell (Schwannhäuser et al. 2011) mapped by Uniprot 

accessions and gene names if the Uniprot accession was not mapped. The feature “Low 
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Complexity Region” were obtained from the “mmusculus_gene_ensembl” dataset from the 

biomart database (status 14.10.2015). Listed lengths of Low Complexity regions were summed 

up per protein. Disordered, Helix and Beta Sheet fractions per protein were obtained by 

secondary structure prediction using the s2d method (Sormanni et al., 2015). All structural 

features (“Low complexity”, “Disorder”, “Helix” and “Beta Sheet”) were normalized to protein 

length. For each feature a ROC-curve was generated and the area under the curve calculated 

using the pracma R-package. The robustness of the calculated AUCs was tested by running 

200 bootstrap repetitions. The 90 % confidence intervals of the resulting AUCs are shown as 

error bars in the corresponding bar plot. Each feature was additionally randomized resulting in a 

real AUC and a random AUC population. Each feature prediction was tested for being absent or 

present by reversing the sorting vector. In each case the positive AUC was reported and labeled 

with “absence” or “presence” of the corresponding feature. 

 

Protein structural dataset 

Starting from the entire set of protein structures in the Protein Data Bank on 2016-02-24, we 

searched for all polypeptide chains with >70 % sequence identity to a human or mouse gene. 

For genes that map to multiple chains, we selected a single chain sorting by sequence identity, 

then number of unique subunits in the complex, and then the number of atoms present in the 

chain. Pairwise interfaces were calculated between all pairs of subunits using AREAIMOL (Winn 

et al., 2011). The normalized assembly order was calculated for all complexes, excluding those 

containing nucleic acid chains, by first predicting the (dis)assembly pathway as previously 

described using all the pairwise interfaces from each heteromeric complex (Marsh et al.) and 

implemented in the assembly-prediction package (Wells et al., 2016). For subunits with multiple 

copies within a single complex, the average assembly order of each subunit type was 

considered. The normalized assembly order was defined so that the first subunit to assemble 

has a value of 0, the last has a value of 1, and the average value for all unique subunits in a 

complex is equal to 0.5.  

 

Non-structural dataset 

To complement the analysis of protein complexes of known structure, we also performed 

coexpression analyses on the non-redundant “core” set of mammalian complexes from CORUM 



41 
 

(Ruepp et al., 2008) (downloaded 2015-10-20). As CORUM preferentially uses human 

complexes in its non-redundant set, homologous mouse versions of each complex were 

generated by replacing each subunit/gene with its mouse counterpart, provided sequence 

identity was at least 70 %. Sequence identities were calculated by collecting all mouse 

sequences for which NED/ED classifications were available and running BLAST on these 

against all genes in the CORUM core set. In cases where the identity of a subunit was 

ambiguous (as defined by CORUM), the first possible subunit for which homology data was 

available was selected. 

 

Coexpression analyses 

Coexpression data was downloaded from COXPRESdb (Okamura et al., 2015) (mouse dataset: 

Mmu.v13-01.G20959-S31479; human dataset: Hsa.v13-01.G20280-S73083). For each 

complex, the mean coexpression of each available subunit was calculated, using all other 

subunits in the complex. Cases where fewer than three unique subunits were present in the 

complex were discarded, due to calculations of average coexpression being superficially 

identical. 

 

Estimation of relative protein abundance after pulse (iBAQ)   

To estimate the protein abundance after the pulse (i.e. the relative amount of newly synthesized 

proteins) we used intensity based absolute quantification (iBAQ, (Schwanhäusser et al., 2011)). 

First, all the intensities reported directly after the pulse, i.e. the H-intensities, for each protein 

group were divided by the number of observable peptides to correct for observability biases. 

Second, all the corrected H-intensities were normalized by using the median H-intensities for 

the LSD-proteins (see normalization strategy above). This allowed the combination of 

experiments. Finally, we reported the median H-Intensity from all experiments as the relative 

abundance. The median was used to avoid counting highly abundant proteins which show up in 

all replicates multiple times. 

For a complex centered analysis of the relative protein abundances after pulse, identified 

proteins from the mouse dataset were mapped to a filtered version a protein complex database 

provided by (Ori et al., 2016)(see previous section) using gene names. Protein abundances 
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were normalized in a complex centered manner: First all proteins that mapped to a complex 

were extracted. Second, abundances of all proteins of a complex were normalized to the 

average abundance of each complex. Subsequent filtering was applied to complex-centered 

values. For each protein only the average value derived from the complex(es) with the highest 

number of subunits is reported. The resulting filtered complex-centered abundances were 

compared between the protein subsets ED, NED and UN. Only proteins from complexes with at 

least one ED or one NED subunit but with at least two different categories (ED, NED or UN) 

were considered for the analysis.  

 

Preparation of chromosome spreads and chromosome painting  

Cells were grown to 70-80 % confluency before treatment with 50 ng/ml colchicine for 3-5 h. 

Subsequently, cells were collected by trypsinization and centrifuged at 250rcf for 10min. Pellets 

were then resuspended in 75 mM KCl and incubated for 10-15 min at 37 °C. After centrifugation 

at 150 rcf for 10 min, cell pellets were resuspended in 3:1 methanol/acetic acid for fixation. 

Finally, cell pellets were washed several times in 3:1 methanol/acetic acid, spread on a wet 

glass slide and air-dried at 42 °C for 5 min. Each sample was labeled with probes for two 

different chromosomes. Probes (Chrombios GmbH, Raubling, Germany) for chromosomes 5 

and 11 were tagged with FITC and TAMRA, respectively. The chromosomes were labeled 

according to the manufacturer's instructions and counterstained with DAPI. Images were 

obtained by a fully automated Zeiss inverted microscope. 

 

Genomic DNA sequencing and copy number estimation of RPE-1 and RPE-1 trisomic cells 

DNA was isolated using the Blood and Cell Culture DNA kit (Qiagen) according to the 

manufacturer’s recommendations. 1μg genomic DNA was sheared following the SureSelectXT 

Target Enrichment System for Illumina Paired-End Multiplexed Sequencing Library Protocol 

(Agilent Technologies, Publication Number G7530-90000). Genomic DNA sequencing library 

was prepared with 100 ng sheared genomic DNA using TruSeq ChIP Library Prep Kit according 

to the manufacturer’s guidance (Illumina). The libraries were sequenced in 1x 100 nt manner on 

HiSeq 2000 platform with a depth of ~30 million reads per library (Illumina). Sequencing reads 

were aligned to the human reference genome (hg19) using Bowtie (version 2.1.0) with default 

parameters, and only uniquely mapped reads were kept for downstream analysis. With a sliding 
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window of size 100Kb and a step size of 50-Kb, mapped reads in each window were then 

counted and used for copy number estimation. With the assumption that most genomic regions 

for the cells were diploid, we took 𝐶𝑖 given by the following formula as the copy number 

estimates for genomic location at the ith window:  

𝐶𝑖 = 2 ×
𝑅𝑖

median
𝑗⁡∈⁡𝐼

⁡𝑅𝑗
 

where 𝑅𝑖 is the read counts of the ith window. To avoid underestimating copy numbers for 

regions with multi-aligned reads, we adjusted for mappability based on mfapping of simulated 

reads with uniform coverage across the genome. The original read counts were divided by the 

read counts in the same window obtained from the simulation data, and the adjusted read 

counts were instead used for copy number estimation.  

 

AHA pulse chase of SILAC labeled RPE-1 and RPE-1 trisomic cells  

RPE-1 and RPE-1 trisomic cells were grown, methionine starved, AHA pulsed, chased and 

lyzed as described for the mouse fibroblast. Experiments were started when cells reach ~30 % 

confluency and two 15 cm plates were used per time point. Click chemistry, denaturation, 

alkylation, washing and digestion were performed as described for the mouse cells. Peptides 

were stageTipped on 4 mm/1 ml C18 columns (3M). Peptides were eluted using 500 µl buffer B 

and dried in a speed-vac until a few µl liquid was left. For two of the samples Buffer A was 

added to 10 µl final volume. 5 µl of sample was loaded onto a 15 cm column and 5 µl onto a 2 m 

monolithic column using a HPLC system. The 15 cm column and 2 m monolithic column 

samples were analyzed on a Q-Exactive orbitrap system, as described above, deploying 4 and 

6h gradient of increasing Buffer B, respectively. For one sample the peptides were further SCX 

fractionated into 2 fractions 125 mM and 500 mM ammonium acetate as described above. 

These samples were analyzed using 4 h gradients of increasing Buffer B concentration over a 

15 cm column. The resulting raw files were analyzed using MaxQuant with the previously 

described parameter settings with the exception that Andromeda search engine was matching 

the MS/MS to the human Uniprot database (2014-10) and unmodified counterpart peptides were 

kept for quantification. 3 biological replicates were performed per cell line. 

Normalization, fitting of models, Δ-score and abundance after pulse calculations were 

performed as for the mouse fibroblasts. For all downstream analysis proteins derived from 
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genes located on autosomes were used except when from chromosome 10 (fully trisomic in 

both parental and trisomic cell line) and chromosome 12 (clonal expansion of trisomic cells 

among control cells).  

 

Relative protein levels at steady state in RPE-1 and RPE-1 trisomic cells 

Fully Heavy SILAC labeled RPE-1 and Light labeled RPE-1 trisomic cells were grown to 70 % 

confluency in 10 cm plates. Cells were scraped in ice cold PBS before being spun down at 

1000rcf and PBS decanted. Cell pellets were lyzed in 1.3 % SDS, 0.1 M DTT in 50 mM 

ammonium bicarbonate solution. Samples were heated to 95 °C for 10 min. After cooling the 

samples, Benzonase was added for another 10 min. The samples from the two cell lines were 

then mixed 1:1 and spun down at 20,000 rcf to clear cell debris. Proteins in supernatant were 

alkylated by the addition of 0.25 M iodoacetamide, final concentration, and left in the dark at 

room temperature for 20 min. After alkylation proteins were directly precipitated, to get rid of 

SDS, by Wessel-Flügge precipitation as described above. The upper water phase was 

discarded and more methanol was added to the precipitated proteins and the samples were 

spun down again. Supernatant was discarded and pellet air dried. The pellet was solubilized by 

shaking the sample in 6 M Urea/2 M thiourea in 10 mM Hepes (ph8). Proteins were digested “on 

pellet” by Lys-C for 3 h at room temperature before the sample was diluted in ABC buffer and 

Trypsin was added overnight. Peptides were acidified by triflouroacetic acid before being stored 

on stageTips. Peptides were prepared for HPLC as described above and analyzed using a 6 h 

gradient on a 15 cm column packed with C18 material as described above. The Q-exactive was 

run with standard setting and the raw files were analyzed as described for the AHA enrichment 

specificity experiment. MaxQuant output was filtered as described above but this time 

normalized SILAC ratios were used for downstream analysis. A label swap experiment was also 

performed in where RPE-1 cells were grown in light SILAC medium and RPE-1 trisomic cells 

were grown in heavy SILAC medium. The analysis used the average SILAC ratio for the two 

experiments. 

 

Bioinformatics of RPE-1 cells 

Δ-scores and abundances after pulse were calculated for the datasets of the RPE-1 and the 

RPE-1 trisomic cell line as described in the previous sections. For the conservation analysis 
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proteins identified in RPE-1 were mapped to proteins from the mouse data using always the first 

entry in the gene name column from both protein-groups tables (proteinGroups.txt, as provided 

by MaxQuant). Mapped proteins from mouse that fell into the categories ED, UN and NED were 

compared to the fraction of mapped proteins identified in RPE-1: RPE-1 proteins that mapped to 

the mouse dataset (all, mapped to mouse orthologues), RPE-1 proteins that mapped to the ED 

subset of mouse (ED in mouse), and RPE-1 proteins that mapped to the NED subset (NED in 

mouse). Enrichment of RPE-1 ED or NED definitions in the fraction ED or NED in mouse 

against the corresponding fraction of all mapped proteins was tested applying a hypergeometric 

test (phyper function as implemented in R setting lower.tail to False). Δ-scores of mapped RPE-

1 and Mouse Genes were compared and Pearson correlation of all available data points was 

calculated (using cor.test function as implemented in R). The corresponding p-value indicating 

the significance of the observed correlation coefficient is given in figure legend (Fig. 5). RPE-1 

and RPE-1 trisomic datasets were merged using the leading protein ID in each protein-group. 

Proteins were linked to chromosome positions using the human reference genome (hg19). 

Proteins were first mapped to chromosome positions based on uniprot IDs. Remaining 

unmapped proteins were mapped using gene name entries as provided in the uniprot fasta file. 

Proteins were further grouped into the categories disomic, trisomic or ambiguous. Disomic 

proteins included all proteins that mapped to disomic chromosomes as identified by genome 

sequencing (see previous section). Trisomic regions included proteins mapping to chromosome 

5 and chromosome 11 downstream from position 62 650 000. Chromosome 12 and 10 starting 

from nucleotide position 62 500 000 were considered to be ambiguous since they show partial 

aneuploidy already in the RPE-1 cell line. Only autosomes were considered for the subsequent 

analysis. Distributions of the Δ-scores and steady-state protein levels were compared between 

proteins from disomic and trisomic regions. P-values were derived from a one-sided Wilcoxon 

rank-sum test (wilcox.test as implemented in R). Steady state protein levels were further split 

into two subsets: proteins in a complex (listed in the manually curated protein complex database 

from (Ori et al., 2016)) and proteins not in a complex (not listed in the protein complex 

database). 

 

Ribosomal Profiling Data analysis 

The datasets for Human (SRA061778; HEK293 cells no treatment;(Liu et al., 2013)), Zebrafish 

(GSE46512; 28hours post-fertilization; (Chew et al., 2013)) and Worm (GSE67387; wildtype L4 
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stage; (Nedialkova and Leidel, 2015)) were downloaded as precompiled RPKM tables from 

RPFDB (Xie et al., 2016) If available, for the subsequent analysis CDS-RPKM values were 

used. For the worm dataset Gene-RPKM values were used. Datasets including ribosomal 

profiling data for mouse were obtained from (Subtelny et al., 2014) (Fig. 5) and Shalgi et al. 

2013 (Shalgi et al., 2013) (Fig. 6). RPKM values with the same gene name were summed up 

and median was taken in log2 space across available replicates. Ribosomal datasets were 

mapped to degradation profile definitions (ED, NED or UN) from either the human or mouse 

dataset using official gene names. Mappings of orthologues genes between human and worm 

were obtained from “http://www.ensembl.org/biomart/martview”. Subsequently, the assembled 

data table was complex centered as described above using the filtered version of the protein 

complex database from (Ori et al., 2016). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS  

The type of statistical test (e.g. Wilcoxon rank-sum or hypergeometric test) is annotated in the 

Figure legend and/or in the Methods and Resources segment specific to the analysis. In 

addition, statistical parameters such as the value of n, mean/median, SEM, SD and significance 

level are reported in the Figures and/or in the Figure Legends. An alpha of 0.05 was set for 

significance in all analyses. Higher p-values are sometimes displayed in the figures but are not 

referred to as significant. When * are used to signify the significance level the key is reported in 

the respective Figure legend. Statistical analyses were performed using MATLAB or R as 

described in Methods and Resources for each individual analysis. 

 

DATA AND SOFTWARE AVAILABILITY  

Data Resources  

Raw data files for the DNA sequencing of the RPE-1 and RPE-1 trisomic cells have been 
deposited in the NCBI BioProject under accession number PRJNA339199.  

Raw data files for the Proteomic analysis have been deposited in the PRIDE database under 
accession numbers TBA (human) and TBA (mouse).  
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Figure Legends 

 

Figure 1 I Global quantification of protein degradation kinetics by AHA pulse-chase (AHA p-c) 

A) Exponential decay can be recognized as a straight line (in a semi log plot) indicating that the 

degradation rate is constant, i.e. young and old molecules have the same degradation probability per 

unit time. B) Experimental setup for global pulse-chase experiments. SILAC labeled cells are pulse-

labeled with azidohomoalanine (AHA) and either directly harvested (time point 0 h) or chased in 

medium without AHA (cold chase). Samples are combined, AHA containing proteins are enriched, 

digested and analysed by LC-MS/MS. C) Measured MS1 spectra for three peptides representing the 

major types of decay profiles detected. Filamin alpha (Flna, ASGPGLNTTGVPASLPVEFTIDAK) shows slow 

exponential degradation, cathepsin L1 (Ctsl1, NLDHGVLLVGYGYEGTDSNK) shows fast exponential 

degradation, basigin (Bsg, VLQEDTLPDLHTK) shows non-exponential degradation. D) Decay profiles of 

individual proteins based on the median of three biological replicates (grey traces). Note that due to the 

experimental design not all proteins were detected at all time point. Increases in protein levels over 

time are theoretically impossible and probably reflect measurement noise. Highlighted profiles depict 

proteins shown in C) and are based on all three replicates (mean +/- sd). Outliers (> 130% protein left) 

were removed. 
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Figure 2 | Many proteins are degraded non-exponentially 

A) Graphical representation of the two Markov models applied. The 1-state model and 2-state model 

reflect exponential degradation and non-exponential degradation, respectively. B) Fitting both models 

to the exemplary profiles from Fig. 1 D. For Flna and Ctsl1 both models have residual sum of squares 

(RSS) of similar size. The Akaike information criterion (AIC) therefore recommends the simpler 1-state 

model. The profile of Bsg is better explained by the 2-state model. C) Histogram of all probabilities for 

the 2-state model for all proteins that passed our quality criteria. D) All proteins with a 2-state 

probability > 0.8 had a larger initial (kA) than subsequent degradation rate (kB). E) The delta score (Δ-

score) as a measure for the extent of non-exponential degradation. For each profile, a straight line is 

drawn between the 0 and 8 h time point (in semi log plot). The Δ-score corresponds to the distance of 

the measurement at 4 h from this line. Positive and negative Δ-scores indicate age-dependent 

stabilization and destabilization, respectively. F) Fractions of exponentially degraded (ED), non-

exponentially degraded (NED) and undefined (UN) proteins defined by their AIC probabilities and Δ-

scores.  
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Figure 3 | Validation of AHA p-c data 

A) Experimental design for direct validation of non-exponential decay. Light (L) cells are pulsed with 

Heavy (H) SILAC medium for 4 h and split into two populations. The first population is harvested 

immediately while the second is chased for 8 h in Medium-heavy SILAC medium (M chase). If new 

proteins are less stable than old proteins their H/L ratio is expected to decrease during the chase. Two 

example spectra from an ED (B) and a NED protein (C) confirm this expectation. D) Proteins in the SILAC 

p-c experiment were classified according to their degradation profile. Only NED proteins show 

significantly (alpha = 0.05) reduced H/L ratios after the chase compared to all proteins. *** = p-value < 

0.0001 from a one-sided Wilcoxon rank-sum test. E) Density distributions of ranked SILAC ratios for NED 

and ED proteins averaged across all four experiments (3 D and Fig S4 F-H). NED proteins were assigned a 

validation score (0 = low validation score; 5 = high validation score) that scales relative to the median of 

the ED protein distribution. F) Counts of NED proteins for the different validation score bins.  
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Figure 4 | NED is decreased by proteasome inhibition. 

A) To quantify the impact of inhibitors on non-exponential degradation the Δ-score in treated and 

control cells is compared. B-C) Distributions of net Δ-scores for ED, UN and NED proteins displayed as 

boxplots. The proteasome inhibitor MG132 significantly reduced Δ-scores of NED proteins (one-sided 

Wilcoxon rank-sum test; *** = p < 0.0001) while the autophagy inhibitors wortmannin and bafilomycin A 

had no significant impact (alpha = 0.05). Numbers of proteins in each group are depicted. Classification 

of proteins is based on the original experiment (Figure 2 F). D) We estimated the effect of MG132 on 

protein on general degradation by plotting “% protein remaining” for all proteins with or without 

treatment. MG132 stabilized the majority of the measured proteins. E) To control for inhibition of  

lysosomal degradation samples acquired in parallel to the MS experiment were analyzed by western blot 

and probed against the autophagy marker LC3-II and for β-actin. “Autophagy” in the plot refers to the 

inhibitor combo.  
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Figure 5 | NED and protein complexes 

A) NED proteins are significantly overrepresented in heteromeric protein complexes (Fisher’s exact test, 

heteromeric vs monomeric or homomeric subunits). Numbers within bars represent raw subunit counts. 

The trend holds when ribosomal proteins are excluded (Fig. S6 C). B) NED proteins tend to form larger 

interfaces in complexes than ED proteins. Subunits were binned by the number of unique subunits per 

complex to control for the fact that NED proteins are overrepresented in larger complexes. P-values 

were calculated using Wilcoxon rank-sum tests, comparing NED to ED. Subunit counts are given along 

the bottom. C) NED subunits of large complexes (>5 unique subunits) tend to assemble earlier than ED 

subunits. Normalized assembly scores of 0-to-1 indicate the first-to-last steps of a given (dis)assembly 

pathway. P-values were calculated using Wilcoxon rank-sum tests. Raw subunit counts are given within 

each box. The difference in assembly order was not significant for smaller complexes. D) NED proteins 

show stronger coexpression (mRNA level). For each subunit, the average coexpression correlation 

coefficient is calculated with all other subunits within the same complex. P-value is calculated with the 

Wilcoxon rank-sum test comparing NED to ED. E) A simple model can explain non-exponential 

degradation of subunits of a heteromeric complex: NED proteins (turquoise) are synthesized in super-

stoichiometric amounts relative to ED proteins (red). Only a fraction of the NED protein molecules is 

stabilized by complex formation while the excess is degraded. F) NED proteins tend to be produced in 

super-stoichiometric amounts. Protein abundances after the pulse (t = 0 h) were normalized in a 

complex centered manner. G) Complex-centered analysis of ribosome profiling data supports super-

stoichiometric production of NED proteins. H) Inhibition of rRNA synthesis with actinomycin D 

selectively increased Δ-scores of ribosomal proteins. See Fig. 4 A for experimental design. P-values in F-H 

are based on one-sided Wilcoxon rank-sum tests. 
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Figure 6 | NED is evolutionarily conserved 

A) Relative fractions of NED (turquoise), ED (red) and undefined (grey) proteins in the diploid human 

epithelial cell line RPE-1. We mapped human proteins to their mouse orthologs and grouped them 

according to their degradation profile in mouse fibroblasts. Human proteins with ED mouse orthologs 

are enriched in ED proteins. Similarly, human proteins with NED mouse orthologs are enriched in NED 

proteins. P-values are based on a hypergeometric test. B) Orthologous human and mouse proteins show 

significantly correlated Δ-scores. Pearson’s correlation coefficient (R) is derived from all plotted Δ-score 

pairs. C) NED subunits of protein complexes are synthesized in super-stoichiometric amounts relative to 

other subunits in human (left). This is even the case when the mouse definitions (for ED, UN and NED) 

are used on the human dataset (right). D) Analysis of ribosome profiling data from several species 

confirms that the super-stoichiometric synthesis of NED proteins is evolutionarily conserved. Depicted p-

values are based on one-sided Wilcoxon rank-sum tests. 

 

Figure 7 | NED, aneuploidy and attenuation 

A) A model depicting the expected impact of gene amplification on protein synthesis and degradation. In 

normal (that is, disomic) cells NED proteins are over-synthesized relative to ED proteins in the same 

complex. Degradation of the excess molecules gives rise to their NED profile. Genomic amplification of 

NED proteins further increases over-production and thus initial degradation. B) Log2 fold changes of 

protein abundances after pulse in RPE-1 cells and RPE-1 cells carrying extra copies of specific 

chromosomes (sorted by chromosome and genomic position). The data was divided into disomic (black), 

trisomic (orange) and ambiguous regions (grey) based on genome sequencing data (Fig. S8). Regions 

with significantly different protein abundance in comparison to the disomic cells are marked with 

asterisks (one-sided Wilcoxon rank-sum; ***: p < 0.0001). C) NED proteins show increased initial 
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degradation (Δ-scores) when the corresponding genes are in trisomic regions. Degradation of ED 

proteins is not affected. D-F) NED predicts protein level attenuation. We compared steady-state protein 

levels in RPE-1 and RPE-1 trisomic cells using standard SILAC. Boxplots show log2 fold changes for ED 

and NED proteins in trisomic regions compared to all proteins in disomic regions. This analysis is shown 

for all proteins (D), proteins that are part of complexes (E) and proteins that are not part of complexes 

(F). The number of analyzable protein pairs is displayed below each boxplot. P-values were computed 

using one-sided Wilcoxon rank-sum tests and are shown for significantly different distributions (alpha = 

0.05). 
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Supplemental Figure Legends 

Figure S1. Related to Figure 1 

Establishing AHA pulse-chase 

A) Enrichment specificity of AHA labeled proteins. SILAC labeled heavy mouse fibroblasts were labeled 

for 3 h with AHA. The cells were lyzed and mixed 1:1 with Light unlabeled proteins. The AHA labeled 

proteins were enriched and the samples were analyzed using LC-MS/MS. In theory, only heavy labeled 

proteins should be enriched. B) The majority of proteins show up only in the heavy form (infinite ratio 

(Inf), n=3034) with few exceptions that were exclusively identified in the light form (-Inf, n=47). Light 

proteins included proteins with very few peptides identified and extracellular proteins (e.g. serum 

albumin) probably representing exogenous contaminants. A number of abundant proteins (n=1556) 

showed up in both channels. C) Comparison of SILAC ratios between the experiment in B) and two label-

swap experiments show that they are strongly negatively correlated. The median SILAC ratio was >11 

(excluding Inf values) for the three biological replicates (inversed ratios were used for the label-swap 

experiments). Thus, enrichment is overall highly specific. D) AHA labeling has no apparent impact on 

protein degradation. NIH 3T3 mouse fibroblasts were starved for methionine and cysteine for 45 min 

before being pulsed with 35S cysteine in combination with either methionine or azidohomoalanine for 

1 h. Cells were then washed before being chased in either excess of cysteine (10 fold normal 

concentration) or cycloheximide (50 µM). Proteins were resolved on a SDS-PAGE. E) Radioactivity was 

measured by a phosphorImager and total protein was assessed by coomassie blue staining. 

Quantification of protein degradation using F) Cysteine chase (n=3) and G) Cycloheximide (n=3). Error 

bars: SE, n.s.: not significant based on two sided t-test (alpha 0.05). H) AHA does not induce premature 

ribosomal fall-off. All proteins in the mouse Uniprot database were split in half resulting in a C-terminal 

and N-terminal part of each protein. All peptides detected in one AHA p-c experiment were matched 
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back to the new database and sorted in the two categories N or C-terminal (peptides matching to the 

middle were excluded). Plotted is the distribution of heavy intensity (~abundance after the pulse) for the 

detected peptides. If AHA labeling would induce premature Ribosomal fall-off we expected to see a high 

N to C-terminal ratio in the number of detected peptides and a higher abundance of N-terminal 

peptides.    
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Figure S2. Related to Figure 1  

Normalization strategy 

The raw data required normalization due to input differences (caused by pipetting errors, cell density 

variation, and so forth). Plot A) displays the non-normalized raw data from one biological replicate. For 

normalization an assumption of non-changing data points over time or conditions are required (e.g. 

median normalization). In our case we look for very stable proteins. We defined the most stable proteins 

over all biological replicates as proteins with the consistently lowest (H/L or H/M) ratios at all time 

points (LSD proteins, see Material and Methods). Example LSD proteins for mouse are shown in the left 

grey arrow. Each time point was then independently normalized by setting the geometric means for the 

LSD proteins (red points in B)) to 100 % (i.e. no degradation). The resulting shift in the data can be seen 

in C) with new median values for the LSD proteins as red dots.  

 

  



61 
 

Figure S3. Related to Figure 1 and 2  

AHA pulse-chase is reproducible over biological replicates.  

The reproducibility of the mouse NIH 3T3 AHA p-c data was evaluated at each of the three different 

filtering steps A): i) 1 % FDR filtering on PSM and protein level; SILAC Count > 1 and 10 % Cutoff 

(subfigures B, C and D). ii) Proteins were filtered to have more than four data points and an RSS smaller 

0.05 (subfigures E, F and G). iii) Proteins were required to have a Δ-score based on the 4 and 8 h time 

points (subfigures H, I and J). The overlap of proteins across the three experiments is shown as weighted 

Venn diagrams (B, E and H). The coefficient of variation (CV) was calculated for each time point from the 

intersecting proteins across the experiments (C, F and I). The corresponding number of proteins with a 

CV is given in each plot. Within the outermost grey area in the plot 90 % of the decay profiles reside. The 

second area contains 70 % of decay profiles and so forth. Available data points per protein and time 

point are shown in D, G and J. 
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Figure S4. Related to Figure 3. 

Validation experiments 

A-D) Comparison of half-lives measured by AHA p-c to published half-lives measured by dynamic SILAC 

(Schwanhäusser et. al., 2011). A) We initially assumed exponential degradation and calculated protein 

half-lives from the exponential fit (“exponential half-life”). For ED proteins this resulted in good 

agreement with the dynamic SILAC data. This is reassuring, especially since dynamic SILAC does not 

involve artificial amino acids and the way in which half-lives are computed is different. B) In contrast, 

NED proteins had overall shorter half-lives in AHA p-c data when we assumed exponential degradation. 

This is expected since the exponential fit does not take into account that these proteins become 

stabilized at later time points.  C) We therefore used our Markov chain-based model to compute “steady 

state half-lives” (Deneke et al., 2013). This half-life corresponds to the time it takes for half of the 

protein molecules present at steady state to be degraded (see Materials and Methods). D) Importantly, 

this led to better overall agreement with the dynamic SILAC data. Proteins with half-lives > 300 h were 

excluded in A-D because they cannot be accurately quantified. E) Radioactive pulse-chase experiments 

coupled to immunoprecipitation (IP). Mouse fibroblasts were pulsed for 1 h with 35S cysteine and 

methionine and then either directly collected (0 h time point) or chased for 4 or 8 h in medium 

containing excess unlabeled methionine and cysteine. The cells were then lysed and VCP and Cct3 were 

immunoprecipitated from the same lysate. Eluted proteins were analyzed by western blotting and the 

membranes were probed for VCP or Cct3 as loading control (“Western blot” in figure). The amount of 

newly synthesized proteins surviving the chase were detected using a phosphorImager 

(“PhosphorImager”). The ED protein VCP was found to be very stable consistent with the half-life of 

>100 h reported by the AHA p-c experiment. In contrast, the NED protein CCT3 had decreased 

considerably after 4 h chase but then stayed stable until the 8 h time point. The figure shows one 
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representative experiment out of two. F-H) SILAC pulse-chase experiments confirm NED assignments. 

Confirmation experiments as shown in Figure 3. Differences from the experimental procedure in the 

main figure are highlighted in red before each corresponding plot. F) A label swap experiment in where 

the Heavy medium used for the pulse was swapped with the Medium-heavy used for the pulse. G) The 

chase time was limited to 4h. H) Also with 4 h chase but with the same label swap as in F). *** = p-value 

< 0.0001 from a one sided Wilcoxon rank-sum test. Stars are displayed on top for significantly different 

distributions (alpha = 0.05).  
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Figure S5. Related to Figure 5 

Characteristics of NED and ED proteins 

A) Prediction of ED and NED based on different features. Protein features were tested to predict either 

exponential (ED) or non-exponential degradation (NED) in mouse by calculating the area under the 

curve (AUC) of a receiver operating characteristic (ROC) curve. Error bars were derived from 200 

bootstrap repetitions and indicate the 90 % confidence interval of the corresponding calculated AUCs. 

Features were additionally categorized as being present (blue) or absent (grey) in the tested protein 

fraction. For example, the bar for “protein length” is colored grey for NED proteins, indicating that NED 

proteins tend to be shorter than ED and undefined proteins. B) NED proteins are more likely to belong 

to multiprotein complexes. Fraction of proteins listed in a manually curated protein complex database 

(CORUM). Fractions are shown for all, exponentially degraded (ED), non-exponentially degraded (NED) 

and undefined (UN) proteins. The p-value is derived from a hypergeometric test for enrichment against 

all proteins. C) Due to the very large size of ribosomes, they can significantly skew small datasets. Here, 

we repeated the analysis shown in Fig. 5 A after excluding ribosomal proteins. The observed tendency of 

NED proteins to form heteromeric complexes is still apparent after excluding ribosomal proteins. D) 

Coexpression analyses repeated using CORUM complexes. In order to confirm that the observations 

displayed in Fig. 5 D are not an artifact of the structural data, we replicated the procedure using data 

from the “core” (i.e. non-redundant) set of CORUM complexes (Ruepp et al., 2008). To maximize 

available data, non-mouse protein complex subunits were mapped to mouse genes wherever sequence 

identity was at least 70% (see Methods). 
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Figure S6. Related to Figure 5 

The second degradation rate of NED proteins is similar to the exponential degradation rate of ED 

proteins in the same complex  

A) NED proteins have two degradation rates (see also Fig. 2 A and Supplemental Table 1): The initial one 

(kA) is in our model related to the free subunit or subunits residing in partially assembled protein 

complexes. The second degradation rate (kB) is associated with subunits in the fully assembled complex. 

ED proteins only have a single degradation rate which is equivalent to the degradation rate of the fully 

assembled complex. We plotted degradation rates A and B for NED proteins and the single ED 

degradation rate for selected complexes (B-H). In all cases, degradation rate kB of NED proteins is lower 

and more similar than kA to the ED degradation rates of proteins in the same complex.  
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Figure S7. Controls for Figure 6 and 7 

Genomic characteristics of RPE-1 and RPE-1 trisomic cells 

A-B) Low coverage whole genome sequencing of RPE-1 and RPE-1 trisomic cells. Gene copy number 

estimates based on sequencing of genomic DNA from RPE-1 parental and RPE-1 trisomic cells. Copy 

number estimates are based on mappability corrected read counts (see Materials and Methods) and 

ordered over the chromosomes. A) RPE-1 parental cell-line is trisomic for part of chromosome 10 and 

displays clonal expansion of a population of cells also trisomic for chromosome 12. B) The trisomic RPE-1 

cells are fully trisomic for chromosome 5, 10 and 12 and a region of chromosome 11. For the 

downstream analysis only chromosome 5 and part of 11 where used while chromosomes 10 and 12 

where ignored. C-D) Chromosome painting of parental and Trisomic RPE-1 cells. Chromosome paintings 

labeling chromosome 11 (magenta) and 5 (green). C) RPE-1 parental cell line is disomic for chromosome 

5 and 11. D) RPE-1 trisomic cells are trisomic for chromosome 5 and part of 11. The trisomic part of 

chromosome 11 has fused to an unidentified chromosome. 
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