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ABSTRACT 

Activation of the thick ascending limb (TAL) Na+-K+-2Cl--cotransporter (NKCC2) by the antidiuretic 

hormone arginine-vasopressin (AVP) is an essential mechanism of renal urine concentration and 

contributes to extracellular fluid and electrolyte homeostasis.  AVP effects in the kidney are modulated by 

locally and/or by systemically produced epoxyeicosatrienoic acid derivates (EET). The relation between 

AVP and EET metabolism has not been determined. Here we show that chronic treatment of AVP-

deficient Brattleboro rats with the AVP V2 receptor analog desmopressin (dDAVP; 5ng/h, 3d) significantly 

lowered renal EET levels (-56 ± 3% for 5,6-EET, -50 ± 3.4% for 11,12-EET, and -60 ± 3.7% for 14,15-

EET). The abundance of the principal EET-degrading enzyme soluble epoxide hydrolase (sEH) was 

increased at the mRNA (+160 ± 37%) and protein levels (+120 ± 26%). Immunohistochemistry revealed 

dDAVP-mediated induction of sEH in connecting tubules and cortical and medullary collecting ducts, 

suggesting a role of these segments in the regulation of local interstitial EET signals. Incubation of murine 

kidney cell suspensions with 1 µM 14,15-EET for 30 min reduced phosphorylation of NKCC2 at the AVP-

sensitive threonine residues T96 and T101 (-66 ± 5%; p<0.05) while 14,15-DHET had no effect. 

Concomitantly, isolated perfused cTAL pretreated with 14,15–EET showed a 30% lower transport current 
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under high and a 70% lower transport current under low symetric chloride concentrations. In sum, we 

have shown that activation of AVP signaling stimulates renal sEH biosynthesis and enzyme activity. The 

resulting reduction of EET tissue levels may be instrumental for increased NKCC2 transport activity during 

AVP-induced antidiuresis. 
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INTRODUCTION   

Water conservation by the mammalian kidney is achieved by the tightly controlled, coordinate action of 

epithelial and vascular components. The hypothalamic antidiuretic hormone (arginine-vasopressin, AVP) 

plays a dominant role herein. It stimulates luminal insertion of water channels along the connecting tubule 

and collecting duct epithelia, and of urea transporters into medullary portion of the collecting duct (37). 

The thick ascending limb (TAL) is sensitive to AVP as well, since abundance, phosphorylation, and 

surface expression of the furosemide sensitive Na+-K+-2Cl--cotransporter (NKCC2) are stimulated by the 

hormone (37). At the vascular level, AVP causes vasoconstriction of preglomerular arterioles and 

descending vasa recta and thereby reduces medullary blood flow. The combination of an augmented 

solute transport activity and a reduced perfusion facilitates efficient countercurrent multiplication but also 

results in a marked hypoxia of key medullary structures (17) which may promote the development of renal 

disease (5). The renal effects of AVP are modulated by locally produced arachidonic acid derivates such 

as 20-hydroxyeicosatetraenoic acid (20-HETE), epoxyeicosatrienoic acids (EET), and prostaglandin E2 

(PGE2) which inhibit TAL transport activity (1, 15, 26, 31, 57) and increase medullary perfusion (4, 74). 

While the regulation of 20-HETE and PGE2 during AVP-induced antidiuresis has been studied in 

considerable detail (59, 73, 77), less is known regarding the mechanisms which determine synthesis and 

metabolism of EET in this setting. EET exist as four regioisomers, 5,6-EET, 8,9-EET, 11,12-EET, and 

14,15-EET which are synthesized by the cytochrome p450 (CYP450) monooxygenases (18, 57). CYP450 

isoforms 2C9/10, 2C11, 2C23, 2J3, and 2J4 have all been shown to contribute to renal EET synthesis (18, 

19, 34). In rats, 2C23 is considered the principal renal isoform to generate EET in rat kidney (34). EET are 

metabolically degraded mainly by soluble epoxide hydrolase (sEH) which hydrolyses EET to their 

corresponding, less active dihydroxyeicosatrienoic acid isomers (DHET) (31, 57). The preferred substrates 

for sEH are 14,15-EET, 11,12-EET, and 8,9-EET whereas the affinity of the enzyme towards 5,6-EET is 

low (30). The kidney shows substantial sEH activity, but the site of its synthesis and regulation within the 

renal parenchyma has not been univocally clarified (19, 33, 38, 48, 75). Earlier, microarray-based gene 

expression studies have provided evidence for AVP-dependent activation of sEH in the kidney (17, 51), 

prompting us to study the effects of AVP on renal medullary EET metabolism in greater detail.  

In the present study, we found that sEH is abundantly expressed in the segments of human and rat 

nephrons and collecting duct system. Chronic AVP treatment induced sEH biosynthesis in AVP-deficient 

Brattleboro rats, which was associated with a reduction of renal EET levels. Functional studies in isolated 
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TAL segments demonstrated an inhibitory effect of 14,15-EET on NKCC2 phosphorylation and transport 

activity. Induction of sEH by AVP may therefore be an essential mechanism for the maintenance of 

sustained antidiuresis.  

 

MATERIALS AND METHODS 

Animal studies and tissue preservation. Animal studies were performed according to NIH 

guidelines after approval by the Berlin council on animal care (permission numbers G006-02/05, 

G0285/10, and O0124/96). For localization studies adult Sprague Dawley (SD) rats (n = 3) were 

perfusion-fixed via the abdominal aorta using a fixative containing 3% paraformaldehyde (Merck, 

Darmstadt, Germany) dissolved in PBS as previously described (52). Kidneys were harvested and 

processed for cryostat and paraffin sectioning using established methodology (51). For Western blot 

analysis of zonal sEH distribution additional SD rats (n = 3) were killed by cervical dislocation. Kidneys 

were carefully removed and dissected into cortex, outer medulla and inner medulla using sterile razor 

blades and a stereotactic microscope. Samples were subsequently snap frozen in liquid nitrogen, and 

stored at -80°C until further use. Human kidney samples (n = 3) were obtained from the healthy parts of 

tumor nephrectomy specimen after written consent of the patients. Tissue blocks were immersion-fixed for 

12 h using 3% paraformaldehyde in PBS and subsequently processed for paraffin embedding (46). 

Detailed protocols for treatment of Brattleboro rats with 1-desamino-8-D-Arg vasopressin (dDAVP) have 

been published before (51). Briefly, Brattleboro rats aged 2-3 month (n = 26) were treated with normal 

saline as vehicle or dDAVP (n = 13 each; 5 ng/h for 3 days; Sigma Aldrich, Munich, Germany) via 

subcutaneous infusion using osmotic minipumps (ALZET osmotic minipump model 2001, Charles River, 

Sulzfeld, Germany). At the end of the treatment period animals for microarray (n = 3 per group) and 

biochemical studies (n = 5 per group) were sacrificed by cervical dislocation. Kidneys were carefully 

removed and processed at 4 °C. Samples were snap frozen in liquid nitrogen, and stored at -80 °C until 

further use. Animals for morphological studies (n = 5 per group) were perfusion fixed as detailed above. 

sEH deficient mice were originally obtained from Boehringer Ingelheim Pharmaceutical Inc. (Ridgefieldt, 

CT, USA) and bred in the animal facility of the Max Delbrück Center for Molecular Medicine in Berlin. A 

detailed description for the establishment of gene deletion and genotyping has been published (41, 62). 

Animals were backcrossed into FVB/N background for at least 6 generations (28). At three month of age 

kidneys of male knockout and wild type mice (n = 4 for each genotype) were harvested for biochemical 

analysis or fixed overnight using 3% paraformaldehyde in PBS and processed for histological studies. 

Microdissection of murine TAL segments was performed as previously described (9) using a total of 6 

male C57/Bl6 mice (Charles River, Sulzfeld, Germany).   

  

Microarray studies. Gene expression profiling studies were conducted in the microarray facility at 

the Zentrum für Medizinische Forschung of the University Mannheim (Mannheim, Germany) as previously 

described (17, 51). Affymetrix rat genome 230 2.0 arrays and a custom CDF version 9 annotation with 

Unigene based gene definitions 
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(http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download_v9.asp) were 

used for the analysis. Raw and normalized data were deposited in the Gene Expression Omnibus 

database (http://www.ncbi.nlm.nih.gov/geo/; GEO accession number: GSE34225).   

 

Quantification of renal outer medullary lipid levels. Free tissue lipid levels were determined by mass 

spectrometry in kidney samples of dDAVP treated Brattleboro rats and controls. Samples were powdered 

in liquid nitrogen, dissolved in a 50/50 v/v mixture of water/and methanol supplemented with 0,01% 

butylhydroxytoluol, mixed with 10 µL internal standard solution (0,5 µg/mL), andbuffered at pH 6 with 2 mL 

SPE-buffer (0.1 mol/L aqueous sodium acetat solution, pH 6). Solid-Phase-Extraction was performed 

using a Bond-Elut-Certify-II-Column (Phenomenex, Torrance, USA). Eicosanoids were eluted with 2 ml n-

hexan/ethylacetat (25/75 v/v) with 1% acetic acid. The solvent was evaporated with a gentle stream of N2 

at 40°C. Residues were resuspended in 100 µL methanol/water mixture and processed for measureing. 

Liquid chromatography-mass spectrometry (LC-MS/MS) was performed at the mass spectrometry facility 

of Lipidomix GmbH as previously described (Lipidomix GmbH, Berlin, Germany) (2). Free tissue levels of 

EET isomers and of the linoleic acid epoxides 9,10-EPOME and 12,13-EPOME and their respective diols 

9,10-DIHOME and 12,13-DIHOME were determined in parallel. Since the formation of these diols is also 

catalyzed by sEH the ratio of DIHOME and EPOME isomers can be utilized as measure for sEH tissue 

activity (20, 68).  

 

Real time polymerase chain reaction (PCR). mRNA was isolated from whole kidney homogenates 

using Roti-Aqua phenol-chloroform extraction kit according to the manufacturer’s protocol (Carl Roth, 

Karlsruhe, Germany). After digestion of genomic DNA by DNAse 1 treatment (Qiagen, Hilden, Germany) 

cDNA was generated by reverse transcription using the Applied Biosystems cDNA synthesis kit (Applied 

Biosystems, Darmstadt, Germany). TaqMan quantitative RT-PCR for sEH was performed using the 

Applied Biosystems probe Mm00514706 and the 7500 Fast Real-Time PCR system (Applied Biosystems) 

following the manufacturer's instructions. The mRNA levels of GAPDH were determined in parallel and 

served as loading control (catalogue number 4352338E, Applied Biosystems). Expression levels were 

calculated using the 2–ΔΔCT method and expressed as % of control (40). 

 

Primary antibodies. For detection of sEH we used an affinity purified rabbit antibody against 

human sEH (1:500, HPA023094, Atlas Antibodies, Stockholm, Sweden). Antibodies against total and 

phospho-(p)-T96/T101-NKCC2 were generated in our laboratory and have been described before (46). 

Antibodies for cyclooxygenase 2 (COX-2; sc-1746) and aquaporin 2 (AQP2; sc-9882) were obtained from 

Santa Cruz Biotechnology (Dallas, Texas, USA). Antibody against the Na+-Cl--cotransporter NCC was 

provided by D. Ellison (OHSU, Portland, USA) and served as a marker for the distal convoluted tubule 

(51). Antibody for the proximal tubule marker megalin was a kind gift of T. Willnow (MDC, Berlin, 

Germany) and has been described before (3). Antibody against mouse alpha-smooth muscle actin was 

from DAKO (Hamburg, Germany); antibody for β-actin was from Sigma-Aldrich.    
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Immunoblotting. Samples for Western blotting were prepared as previously described (71). Briefly, 

tissues were ground in liquid nitrogen using sterile mortar and pestle and subsequently dissolved in 

homogenization buffer containing 250 mM sucrose, 10 mM triethanolamine, and protease inhibitors 

(cOmplete protease inhibitor cocktail, Roche Diagnostics, Indianapolis, USA). Nuclei were removed by 

centrifugation (1000 x g for 10 min). Protein concentration of post nuclear homogenates was determined 

using bicinchoninic acid protein assay following the manufacturer`s instructions (Thermo Fisher Scientific, 

Bonn, Germany). Samples were subsequently separated by SDS polyacrylamide gel electrophoresis in a 

10% gel (50 µg protein/lane) and electrophoretically transferred to nitrocellulose membranes. Primary 

antibodies were applied after blocking of nonspecific protein binding sites with 5% non-fat dry milk in PBS. 

Membranes were incubated for 1 h at room temperature followed by an overnight-incubation at 4° C. 

Bound antibody was detected using the appropriate HRP-conjugated secondary antibodies and 

chemiluminescence. Developed X-ray films were scanned and densitometrically evaluated using the 

Alpha Imager software (Cell Biosciences, Santa Clara, USA). Expression levels were normalized to the 

expression of the housekeeping gene -actin. 

 

Immunostaining. Immunofluorescence and immunoperoxidase staining were carried out as 

previously described (51). Briefly, 4 µm paraffin sections were deparaffinized, rehydrated and subjected to 

antigen retrieval by boiling in 0.1 M sodium citrate buffer using a pressure cooker. Non-specific binding 

sites were blocked by incubation with 5% dry milk in PBS. Renal localization of sEH was studied by 

immunofluorescence staining on 4 µm paraffin sections of human and rat kidneys using the rabbit anti 

sEH antibody in a 1:100 dilution. Immunoreactive nephron segments were characterized by double 

labeling with the established segment-specific antibodies to NKCC2 (1:5000 dilution) for TAL, COX-2 

(1:100 dilution) for macula densa, NCC (1:100 dilution) for distal convoluted tubule, and AQP2 (1:100 

dilution) for connecting tubule and collecting duct, respectively.  Bound antibodies were detected with the 

appropriate Alexa488 or Cy3-labeled secondary antibodies (Dianova, Hamburg, Germany). Stained 

sections were examined by confocal microscopy using a Zeiss LSM Exciter confocal microscope and ZEN 

2008 software (Carl Zeiss, Jena, Germany). Sections for immunoperoxidase staining were prepared as 

detailed above. Tissue peroxidases were blocked with 3% hydrogen peroxide in methanol prior to 

application of the primary antibodies. Signal was developed using HRP-labelled donkey anti rabbit 

secondary antibody (Dianova) and 3,3′-diaminobenzidine containing 0.3% hydrogen peroxide (Sigma-

Aldrich); samples were processed  synchronously with standardized incubation times to ensure 

comparability of the measurements.  

     

Validation of sEH antibody. Antibody-specificity was verified by immunoblotting in sEH knockout 

tissue and by peptide blockade in rat kidney sections. To this end we performed Western blot on total 

kidney homogenates from sEH deficient mice and their respective controls. Peptide blockade studies were 

conducted using the immunizing peptide (APrEST76223, Atlas antibodies, Stockholm, Sweden). sEH 
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antibody was diluted in 5% nonfat dry milk in PBS and incubated at 37° C for 30 minutes with different 

amounts of blocking peptide prior to application to rat kidney sections. Western blotting and 

immunostainings were performed as described above.  

 

Renal tubule perfusion. Freshly isolated cTAL segments of 10 male C57/Bl6 mice (Charles River, 

Sulzfeld, Germany)were incubated with either 0.34% ethanol (control) or with 1 µM 14,15-EET (Cayman 

Chemicals, Ann Arbor, Michigan, USA) in 0.32% ethanol or 1 µM 14,15 -DHET (Cayman Chemicals, Ann 

Arbor, Michigan, USA) in 0.34% ethanol for 30-40 min at 30° C in incubation solution (140 mmol/l NaCl, 

0.4 mmol/l KH2PO4, 1.6 mmol/l K2HPO4, 1 mmol/l MgCl2, 10 mmol/l Na-acetate, 1 mmol/l -ketogluterate, 

1.3 mmol/l Ca-gluconate, 3.75 mg/ml glycine, 0.48 mg/ml trypsin inhibitor, 0.25 mg/ml DNAse I, and 5 

mg/ml albumin, pH7.4). All chemicals were obtained from Merck (Darmstadt, Germany) unless indicated 

otherwise. Preincubated cTALs were then transferred into the bath on a heated microscope stage. The 

bath was heated to 37°C and continuous bath perfusion at 3-5 ml/min with control solution (140 mmol/l 

NaCl, 0.4 mmol/l KH2PO4, 1.6 mmol/l K2HPO4, 1 mmol/l MgCl2, 5 mmol/l glucose, 1.3 mmol/l Ca-

gluconate, pH7.4) was obtained by gravity perfusion. Tubules were held and perfused by a concentric 

glass pipette system. The perfusion pipette was double-barreled, and barrel one was used for voltage 

measurement and perfusion (perfusion rate 10-20 nl/min; 7.6 ± 0.3 µm inner diameter) with control 

solution. Barrel 2 was used for constant current injection (13 nA) and perfusion with low Cl- solution (28 

mmol/l NaCl, 0.4 mmol/l KH2PO4, 1.6 mmol/l K2HPO4, 1 mmol/l MgCl2, 5 mmol/l glucose, 1.3 mmol/l Ca-

gluconate, 51 mmol/l mannitol, 62 mmol/l NaSO4, pH7.4). After an equilibration period under symmetric 

control conditions, first the basolateral, then the luminal solution was changed to low Cl-. Cable equations 

were used to calculate transepithelial resistance Rte as described (21). Equivalent short circuit current I’sc 

was calculated from Rte and Vte according to Ohms law, for both conditions respectively. The percentage 

of I’sc under low Cl- in relation to the I’sc under high Cl- (Vmax) was calculated as the measure of Cl- affinity 

of the transporter (9). The effects of the EET isomers on NKCC2 phosphorylation were determined using 

mouse kidney cell suspensions. To this end kidneys of adult male C57/Bl6N mice were flushed with 

incubation solution to remove the blood. Kidneys were subsequently incubated for 10 min in incubation 

solution containing 1mg/ml collagenase 2 (Sigma-Aldrich) for collagenase digestion. After complete 

digestion the cells were pelleted by centrifugation at 1000g for 10 min, collagenase solution was discarded 

and the pellet resuspended in fresh incubation solution containing 100 nM dDAVP to induce NKCC2 

phosphorylation. Aliquots of the resulting cell suspension were treated for 30 min at 37°C with 5,6-EET, 

8,9-EET, 11,12-EET, 14,15-EET and 14,15-DHET (1µM final concentration; Cayman Chemicals) or with 

ethanol as vehicle. After the treatment cells were pelleted at 1000g for 10 min and prepared for Western 

blot analysis as described above.  

 

Statistical analysis. All values are given as means ± SEM. Statistical analysis was performed 

using unpaired Student's t-test or ANOVA with post hoc Tukey´s test. Null hypothesis was excluded when 

P was < 0.05.  



 7

 

Results 

 Effect of dDAVP on medullary expression of EET-metabolizing enzymes. Screening of Affymetrix 

microarray results from kidney extracts of dDAVP or vehicle treated Brattleboro rats revealed constant 

mRNA levels for the CYP monooxygenases in CYP2C11, CYP2C23, CYP2J3, and Cyp2J10 (Table 1). 

Abundance of CYP2J4 mRNA was reduced by 20% relative to the vehicle treated controls (p < .05) but 

subsequent real time PCR verification studies in a separate set of animals (n = 5 per group) failed to 

confirm differential regulation (data not shown). mRNA levels for sEH  were significantly induced (+145% 

relative to controls; p < 0.05) and in the real time PCR verification studies (+160 ± 37%, p < 0.05).    

 

Effect of dDAVP on renal free EET tissue levels. Mass spectrometry analysis of renal lipid levels 

in dDAVP-treated Brattleboro rats revealed a reduced abundance of 5,6-EET  (12.8 ± 3.2 ng/g vs. 35.7 ± 

9.5 ng/g; p < .05),  11,12-EET (16.7 ± 3.3 ng/g vs. 38.4 ± 9.7 ng/g; p < 0.05), and 14,15-EET (11.2 ± 3 

ng/g vs. 34.7 ± 9.2 ng/g; p < 0.05) relative to controls. Levels of the 8,9-isomer showed a strong trend 

towards reduced levels (17.4 ± 4 ng/g vs. 44 ± 13.4 ng/g; p = 0.08) but failed to reach the level of 

statistical significance. Values are given as ng EET/g wet tissue weight in dDAVP and vehicle treated 

animals with n = 7 to 8 animals per group (Fig. 1). It must be noted that 5,6-EET rapidly forms a lactone in 

aqueous solutions which may differ from the parent molecule in its biological activity. During the tissue 

processing for our mass spectrometry assay this lactone is converted back to 5,6-EET. Thus, the 

measured levels for the 5,6-EET regioisomer may be higher than the biologically active levels in the 

tissue.  

We also determined the levels of the linoleic acid epoxides 9,10-EPOME (69 ± 14 ng/g vs. 254 ± 

60 ng/g; p < 0.05) and 12,13-EPOME (36 ± 11 ng/g vs. 166 ± 44 ng/g; p < 0.05) as well as their respective 

diols 9,10-DIHOME (52 ± 8.8 ng/g vs. 47 ± 8.7 ng/g; p = 0.7 n.s.) and 12,13-DIHOME (85 ± 25 ng/g vs. 56 

± 14 ng/g; p = 0.4 n.s.) in dDAVP-treated Brattleboro rats and controls. The ratios for 9,10-DIHOME and 

9,10-EPOME (0.85 vs. 0.23; n = 7 to 8 animals per group; p < 0.05) and 12,13-DIHOME and 12,13-

EPOME (2.54 vs. 0.43; n = 7 to 8 animals per group; p < 0.01) were significantly increased in the dDAVP-

treated animals thus demonstrating increased sEH enzyme activity (Fig. 2). 

 

Characterization of sEH antibody. Specificity of the sEH antibody was verified by peptide blockade and by 

immunoblotting on kidney samples of sEH deficient mice. Preincubation of sEH antibody with the 

immunizing peptide caused a dose-dependent decrease in signal intensity in rat kidney sections. Blockade 

was maximal at ten-fold excess of the blocking peptide (Fig. 3A). Western blot analysis of kidney 

homogenates from wild type mice revealed the presence of a dominant sEH-immunoreactive band at 63 

kDa which was absent in the homogenates of the sEH deficient mice. An additional band was detected at 

70 kDa. However, this band was also present in the sEH-deficient mice and was therefore considered 

unspecific (Fig. 3B).  
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Renal distribution of sEH. Zonal distribution of sEH was analyzed on rat kidney homogenates isolated 

from cortex and outer and inner medulla. Distribution of NKCC2 was determined in parallel and showed 

abundant signal in the outer medulla, weaker signal in the cortex and absence of signal in the inner 

medulla thus confirming the adequate separation of the kidney zones. Western blot for sEH revealed a 

dominant immunoreactive band at approximately 63 kDa which was present in all kidney zones. Samples 

from the inner medulla contained additional sEH-immunoreactive products at 50 and 48 kDa which 

probably represent splice variants of the enzyme (Fig. 3C) (27).  

Immunofluorescence labeling of rat and human kidney sections confirmed abundant expression of 

immunoreactive protein in all kidney zones (Figures 3-6). In the cortex strong cytosolic sEH signal was 

found in profiles of the macula densa as indicated by the coexpression COX-2 (Fig. 4A-C). Coexpression 

of sEH and COX-2 was further detected in a subset of cells in the cortical TAL (Fig. 4D-F) whereas the 

remaining TAL was devoid of staining.  Principal cells of the connecting tubule and the cortical collecting 

duct were identified by their expression of AQP2 and showed abundant sEH signal (Fig. 4G-I). Triple 

labeling with the Na+-Cl--cotransporter NCC demonstrated the complete absence of sEH from the distal 

convoluted tubule (Fig. 4I). Profiles of the proximal tubule displayed subapical signal with intermediate 

intensity which was localized directly below the megalin immunoreactive brush border membrane (Fig. 4J-

L). Signal intensity increased towards the end of the S3 segment and extended into the thin descending 

limb of the loop of Henle (Fig. 5A-C). Profiles of the thin ascending limb of the loop of Henle stained 

positive as well (Fig. 5D-F). Strong staining for sEH in the outer medulla was further detected in the 

collecting ducts which were typically in close proximity with NKCC2 expressing profiles of the thick 

ascending limb thus suggesting functional interaction (Fig. 5G-I). Staining in the inner medulla was 

localized to tDLH, tALH, and to the principal cells of the inner medullary collecting duct as indicated by the 

coexpression of AQP2 (Fig. 5J-L). Since immunohistochemistry does not allow the distinction between the 

full-length protein and the shorter products, the observed signals in the inner medulla reflect the sum of 

the full-length protein and the shorter variants. 

The renal vasculature, as identified by the expression of alpha smooth muscle actin in myocytes 

and pericytes of the vascular wall, was devoid of sEH staining (Fig. 6). Studies in human kidney samples 

confirmed the expression in the macula densa and in the collecting duct using the sEH antibody validated 

in rodent tissue together with NKCC2 or AQP2 co-staining (Fig. 7). 

 

Effect of chronic dDAVP treatment on renal sEH expression. The effects of a chronic activation of 

the urine concentrating mechanism on renal sEH expression were studied in dDAVP-treated Brattleboro 

rats. Functional data for these animals demonstrating augmented urine concentration and induced levels 

of NKCC2 and aquaporin 2 have been reported before (17, 51). Immnuohistochemistry revealed icreased 

sEH protein levels in the cortex and in the outer medulla of dDAVP-treated animals. Here sEH signal was 

strongly increased in connecting tubules and in the cortical and outer medullary collecting ducts. Protein 

levels in the inner medulla remained unchanged (Fig. 8A). Western blot analysis of total kidney 

homogenates confirmed increased levels of the 63 kDa (+65 ± 7% compared to controls; p < 0.05) and the 
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50 kDa (+65 ± 7% compared to controls; p < 0.05) variant of the protein in the dDAVP treated animals 

(Figure 8B-C).  

 

Effect of EET regioisomers on TAL transport activity and NKCC2 phosphorylation. The acute 

effects of the different EET regioisomers on the phosphorylation of NKCC2 were determined in murine 

kidney cell suspensions pre-stimulated with 100 nM dDAVP. Incubation of these cell suspensions with the 

individual EET regioisomers resulted in a significant reduction of pNKCC2 abundance for 5,6-EET, 8,9-

EET and 14,15-EET when compared to the vehicle-treated controls (-35 ± 14%, -53 ± 8%, and -66 ± 5%, 

respectively; p < 0.05). In contrast, 11,12-EET had no effect (+18 ± 15%, p = 0.5) (Fig. 9). To corroborate 

these results we studied the effects of the 14,15-EET regioisomer in greater detail and also included the 

inactive metabolite 14,15-DHET. Phosphorylation of NKCC2 functionally changes the transport current by 

changing NKCC2 membrane trafficking as well as by changing its Cl- affinity, rate-limiting in the cortical 

TAL with already dilute luminal fluid (9, 22). To  investigate the effect of 14,15-EET on TAL tubular 

transport we therefore measured the equivalent short circuit current I’sc under two Cl- concentrations, at 

147 mmol/l to  as assess maximal transport velocity (“Vmax”) of the transporter and at 30 mmol/l, a 

concentration close to the described EC50 of NKCC2 for Cl- (22). Freshly isolated cTAL were incubated 

with either vehicle (control), 1µmol/l 14,15 –EET or 1 µmol/l 14,15-DHET for 30-40 min. After this 

preincubation period isolated perfused cTALs of the three groups, Control, 14,15-EET and 14,15-DHET, 

showed the typical lumen positive transport I’sc. Pretreatment with 14,15-EET reduced I’sc to 70% of the 

control I’sc under high Cl- concentration and to approx. 30% under the low Cl- concentration, respectively 

(Fig.10 A). To address the question if 14,15-EET only reduces the total amount of NKCC2 in the plasma 

membrane, thereby shifting the curve in the scheme (Fig. 10 B) from 1 to 2, or also decreases its Cl- 

affinity (curve 3 in the scheme) we calculated the percentage of I’sc (low Cl-) of the respective “Vmax” (147 

Cl-) values (Fig. 10 B). 14,15-EET treatment led to a 55% reduction indicating a markedly reduced Cl- 

affinity.  In contrast, pretreatment with 14,15-DHET did not induce a change in any of the parameters. 

Treatment of murine kidney cell suspensions with100 nM dDAVP and 14,15-EET at concentrations of 0.1 

or 1 µM resulted in a dose-dependent reduction of pNKCC2 levels when compared to cell suspensions 

treated with 100 nM dDAVP and ethanol as vehicle (control).  Treatment with 1 µM 14,15-DHET had no 

effect on the NKCC2 phosphorylation (Fig. 10D). 

 

   Effect of sEH gene disruption on NKCC2 phosphorylation. Analysis of outer medullary pNKCC2 

abundance revealed greatly reduced levels in the sEH-deficient mice relative to the wild type controls 

(Figure 11) whereas total NKCC2 abundance was unchanged (data not shown). 

 

 

DISCUSSION 

Aim of the present study was to characterize the effects of AVP on the abundance and metabolism of EET 

isomers in the kidney. We have demonstrated markedly reduced tissue levels of EET isomers along with 
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an increased abundance of the principal EET-metabolizing enzyme sEH in connecting tubules and 

collecting ducts of AVP-treated Brattleboro rat kidneys as compared to vehicle treated controls. EET 

isomers and AVP have been shown to exert opposing effects on essential renal sodium transporters. In 

CNT and CD, AVP activated the amiloride-sensitive epithelial sodium channel ENaC (5, 6), whereas 

14,15-EET acted as potent inhibitor of ENaC transport activity (13). In the TAL, AVP caused activation of 

NKCC2-dependent ion transport in part by increasing its phosphorylation (46). In the present study we 

found a pronounced inhibitory effect of all EET regioisomers with the exception of 11,12-EET on NKCC2 

phosphorylation. Parallel microperfusion studies on murine cortical TAL segments demonstrated an 

inhibitory effect of 14,15-EETon the chloride sensitivity of NKCC2 and overall TAL transport activity.  In 

line with this, sEH-deficient mice, which display elevated tissue levels of EETs and 20-HETE (41, 62), 

showed markedly reduced phosphorylation of NKCC2. These findings agree with data by He et al. on the 

inhibitory effects of 14,15-EET on NKCC2 transport activity in cultured murine macula densa cells (26). By 

contrast, Grider et al. found no effect of 10-8 M 5,6-EET on transport activity in isolated rat TAL segments 

(23). However, the 5,6-EET concentration used in that study was well below the free tissue concentrations 

observed in our study and may therefore have been insufficient to inhibit NKCC2-dependent transport. 

Opposing effects of AVP and EETs have further been described for the renal vasculature. Here, AVP 

causes vasoconstriction either directly by activating vascular V1 receptors or indirectly by its effects on 

epithelial V2 receptors (8, 45, 67), whereas EETs may function as vasodilating mediators in afferent 

arterioles and interlobular arteries (Review in (30)). The observed reduction of renal EET levels in 

response to AVP may therefore be instrumental for sodium retention and increase in renovascular 

resistance during AVP-mediated urine concentration.  

Cellular sources and regulation of renal EET synthesis during antidiuresis have not been clarified 

satisfactorily in previous work. The first rate-limiting step during the formation of EETs is the release of 

arachidonic acid from membrane phospholipids which is typically catalyzed by a phospholipase A2 (PLA2) 

isoenzyme. The identity of the PLA2 isoenzyme involved in the synthesis of EETs has not been 

elucidated. However, in a previous study we have shown that the calcium-independent isoform of PLA2 

(iPLA2β) is abundantly expressed in the connecting tubule and medullary collecting duct, and that chronic 

stimulation with dDAVP led to a reduction of iPLA2β biosynthesis, with the assumed consequence of 

reduced AA release (51). Since both, connecting tubule and collecting duct have been identified as 

important sites for intrarenal EET production (65), reduced iPLA2 levels at these sites may likely have 

contributed to the reduced abundance of EETs observed in the present study. Alternative pathways for 

arachidonic acid release have been described but their relevance for renal EET synthesis remains to be 

determined (16, 36). The next step in the biosynthesis of EETs is catalyzed by a CYP monooxygenase 

isoenzyme, however, based on the results of microarray studies CYP monooxygenase abundance was 

not affected by AVP. This finding argues against a relevant role of CYP monooxygenases as rate limiting 

enzymes in EET metabolism under this condition. Here we have, however, identified an additional 

mechanism for the regulation of EET levels in response to AVP, which centrally involves the function of 

sEH.  
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So far, ample evidence has linked sEH to the pathophysiology of cardiovascular and renal disease, and 

inhibitors of sEH have been shown to exert antihypertensive and renoprotective effects (33, 34, 38, 44, 53, 

58). In spite of extensive studies performed on the renal expression of sEH, however, there is still no 

consensus regarding the intrarenal localization of the enzyme. Earlier reports range from an exclusively 

vascular localization (75) over interstitial (53) to preferentially glomerular (38) or tubular expression (33). In 

our study we found widespread distribution of the protein with expression in proximal tubules, ascending 

and descending thin limbs of the loop of Henle, the macula densa and in CNT and CD whereas glomeruli, 

medullary TAL and DCT, and vascular structures were devoid of staining.  Little is currently known 

regarding the function of sEH in individual nephron segments. In the proximal tubule, 5,6-EET and 14,15-

EET haves been shown to inhibit sodium transport (29, 39, 42, 64).Expression of sEH in the apical 

membrane of proximal tubules may therefore serve to deactivate EETs in the tubular fluid to avoid 

uncontrolled inhibition of transport. Another important finding of our study is the abundant expression of 

sEH in macula densa and cortical TAL and its colocalization with COX-2 at these sites. COX-2-derived 

prostaglandins cause vasodilation of the afferent arteriole and thereby play an important role for the 

maintenance of glomerular filtration during impaired renal perfusion (24). However, COX-2 is also capable 

of oxidizing 5,6-EET, and the resulting metabolites have been shown to cause vasoconstriction of the 

preglomerular vasculature (31). sEH activity in the macula densa and the cortical TAL may therefore 

reduce local EET-levels and may thus prevent the formation of vasoconstrictive metabolites. Notably, we 

found high levels of sEH also in the inner medulla, where we and others had previously detected abundant 

COX-2 expression (12, 70, 73). Again, sEH may serve to prevent the formation of EET-metabolites with 

unwanted properties at this site.    

The dDAVP-treated Brattleboro rats revealed elevated sEH levels in CNT and CD which corresponds to 

the established localization of the AVP V2 receptor (46, 50, 60) and suggests a functional link between 

AVP-signaling and sEH activation. Although a mechanism for this link has so far not been explored, the 

analysis of the sEH promotor sequence revealed the presence of several putative cAMP-response 

elements in our hands. AVP-dependent induction of sEH biosynthesis may therefore be mediated via the 

AVP V2 receptor-dependent activation of adenylyl cyclase VI (56). Other mediators which have been 

shown to regulate sEH biosynthesis and may interfere with AVP signaling include angiotensin II (32, 69, 

72, 78), steroid hormones (43, 55) and PPAR gamma agonists (25, 47).  

The potential biological relevance of an AVP-dependent activation of sEH is illustrated by observations in 

several animal models for renal and cardiovascular disease. Along this line, spontaneously hypertensive 

rats displayed increased renal sEH activity compared to their normotensive Wistar Kyoto counterparts (76) 

along with elevated plasma levels of AVP (11, 14) and an increased abundance of renal AVP receptors 

(66). Hypertension in these animals could be effectively reduced by treatment with antagonists for AVP 

(63) or sEH (35). Parallel protective effects of antagonists for AVP  and sEH have also been described for 

DOCA-salt-induced hypertension (10, 49, 54), systolic heart failure (44), or diabetic nephropathy (7). 

Based on our findings we thus suggest that the detrimental effects of AVP may in part be mediated by its 
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effect on sEH synthesis and the resulting accelerated degradation of vasodilatory and transport-inhibiting 

EET.  

In summary, we have shown that activation of AVP signaling causes upregulation of renal sEH 

biosynthesis and enzyme activity. The resulting reduction of EET tissue levels may facilitate increased 

transport activity and renal vasoconstriction to promote antidiuresis, but it may as well render the kidney 

susceptible to insult. Further characterization of the AVP-sEH-EET axis may therefore provide new targets 

for renoprotective therapeutic strategies. 
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FIGURE LEGENDS 

 

Table 1. Microarray analysis of dDAVP effects on outer medullary mRNA levels of soluble epoxide 

hydrolase and cytochrome p450 monooxygenases. Analysis of published microarray data of kidney 

extracts from dDAVP-treated Brattleboro rats shows strong induction of sEH mRNA levels as compared to 

vehicle-treated controls, whereas the mRNA abundance of the principal cytochrome p450 

monooxygenases, Cyp2c11, Cyp2c23, Cyp2j3, and Cyp2j10 are unaltered. Cyp2j4 mRNA shows a 

modest decrease which, however, could not be reproduced by alternative technology. Data are derived 

from (51) and presented as x-fold of vehicle-treated controls; * p < 0.05; n = 3 per group.   

 

Figure 1. Effect of dDAVP treatment on outer medullary free EET levels in Brattleboro rats. Quantification 

of outer medullary free EET concentrations reveals significantly lower levels of 5,6-EET,  11,12-EET, and 

14,15-EET upon 5ng/h dDAVP for 3 days as compared to vehicle treated controls. 8,9-EET reduction 

failed to be significant (p = 0.08). Data are the mean ± SEM; * p < 0.05; n = 7 to 8 per group. 

 

Figure 2. Effect of dDAVP treatment on outer medullary levels of linoleic acid derivates in Brattleboro rats. 

Quantification of outer medullary levels of epoxide (EPOME)- and dihydroxy (DIHOME)-derivatives of 

linoleic acid reveals an increased DIHOME/EPOME ratio; this suggests increased activity of sEH (61). * p 

< 0.05; ** p < 0.01; n = 7 to 8 per group. 
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Figure 3. Verification of anti-sEH antibody and distribution of sEH protein. A) Representative micrographs 

documenting labeling of rat kidney sections with rabbit anti sEH antibody (I) or with rabbit anti sEH 

antibody following preincubation with the immunizing peptide (II). Abundant signal for sEH is present in the 

macula densa, proximal tubule and collecting duct profiles (I).  Preincubation of sEH antibody with the 

immunizing peptide results in a dose-dependent reduction of immunofluorescence signal. Blockade was 

maximal at ten-fold excess of the peptide (II). Immunofluorescence staining; bar indicates 20 µm. B) 

Western blot analysis of  kidney homogenates of wild type (lanes 1-2) and sEH deficient mice (sEH -/-; 

lanes 3-4) showing a dominant band at 63 kDa in the wild type animals whereas no product is present in 

the sEH -/- kidneys, thus confirming the specificity of the antibody. C) Western blot analysis of the zonal 

distribution of sEH reveals a dominant immunoreactive band at approximately 63 kDa which is present in 

all kidney zones. Samples from the inner medulla contain additional immunoreactive products at 

approximately 50 and 48 kDa which probably represent splice variants of sEH (27). Western blot for 

NKCC2 shows abundant signal in the outer medulla, weaker signal in the cortex and absence of signal in 

the inner medulla thus confirming the adequate separation of the kidney zones. -actin serves as loading 

control. 

 

Figure 4. Localization of sEH protein in Sprague Dawley rat kidney. Representative micrographs 

documenting double labeling of rat kidney sections with rabbit anti sEH antibody (A,D,G,J) and 

Cyclooxygenase 2 (COX-2; B,E) as a marker for the macula densa segment, the Na+-Cl--cotransporter 

NCC as a marker for the distal convoluted tubule (DCT; magenta in I), aquaporin 2 (AQP2) as a marker 

for the principal cells of the connecting tubule (CNT; H), and megalin as a marker for the proximal tubule 

(K). In the merged color images (C,F,I,L), red signal indicates sEH, and green signals mark COX-2 (C,F), 

AQP2 (I), and megalin (L), respectively. Magenta signal in (I) marks NCC. Macula densa (between 

flanking lines in (C)) shows strong signal for sEH and COX-2 (A-C). sEH and COX-2 are also coexpressed 

in a subset of TAL cells distant to the juxtaglomerular apparatus (JGA; D-F). Abundant signal for sEH is 

present in the AQP2 immunoreactive CNT principal cells (G-I). DCT profiles are negative for sEH (G-I). 

Proximal convoluted tubule shows subapical sEH signal beneath megalin staining (J-L). 

Immunofluorescence staining; bars 20 µm; blue nuclei (Dapi); (G), glomerulus in C; (*), TAL in F. Dashed 

line in I marks the transition from DCT (+) to CNT (#).  

 

Figure 5. Localization of sEH protein in Sprague Dawley rat kidney (continued). Representative 

micrographs documenting double labeling of rat kidney sections with rabbit anti sEH antibody (A,D,G,J) 

and megalin (B) as a marker for the proximal tubule (PT), Na-K-2Cl-cotransporter NKCC2 (E,H) as a 

marker for the thick ascending limb (TAL), and aquaporin 2 (AQP2; K) as a marker for the medullary 

collecting duct. In the merged color images (C,F,I,L), red signal indicates sEH, and green signals mark 

megalin (C), NKCC2 (F,I), and AQP2 (L), respectively. PT sEH signal is localized subapically (A-C). Signal 

is stronger within terminal S3 and ensuing descending thin limb (DTL) portions (arrows in C) and 
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continues to ascending thin limb (ATL; + in F) until its transition to the negative TAL (* in F,I). Abundant 

sEH signal is present in the principal cells of the collecting duct in the outer (G-I) and inner medulla (J-L). 

Double labeling with NKCC2 shows the close local association between sEH expressing collecting ducts 

(# in I) and profiles of the TAL in the outer medulla (G-I). In the inner medulla sEH is abundantly 

expressed in DTL, ATL and collecting ducts, with partial overlap to AQP2 in the latter (J-L). 

Immunofluorescence staining; bars 20 µm; blue nuclei (Dapi). The dashed line in F marks the transition 

from ATL to TAL.  

 

Figure 6. Localization of sEH protein in the renal vaculature. Representative micrographs documenting 

double labeling of rat kidney sections with rabbit anti sEH antibody (A,D,G,J) and alpha smooth muscle 

actin (B,E,H,K; -sma) as a marker for the vascular wall. In the merged color images (C,F,I,L), red signal 

indicates sEH and green signals mark -sma. There is complete separation of the two signals, 

demonstrating absence of sEH from vascular smooth muscle and endothelial cells of afferent arterioles 

(A-C), arcuate vessels (D-F) and vasa recta of outer (G-I) and inner medulla (J-L). Immunofluorescence 

staining; bars 20 µm; blue nuclei (Dapi); (G), glomerulus, and (*), afferent arteriole in C; (+), lumen of an 

arcuate vein, and (§), lumen of an arcuate artery in F.    

 

Figure 7. Localization of sEH protein in the human kidney. Double labeling of human kidney sections with 

rabbit anti sEH antibody (A,D,G) and antibodies against NKCC2 (B,E) or aquaporin 2 (AQP2; H). In the 

merged color images (C,F,I), red signal indicates sEH, and green signals mark NKCC2 (C,F) and AQP2 

(I). Ample sEH protein is expressed in the macula densa (between flanking lines in (C) whereas the cells 

of the surrounding TAL are negative. Strong staining is also present in outer and inner medullary collecting 

duct profiles. Immunofluorescence staining; bars 20 µm; (G), glomerulus in C; (*), TAL in F; #, collecting 

ducts in F and I. 

 

Figure 8. Effect of chronic vasopressin V2 receptor activation on sEH protein expression in Brattleboro 

rats. A) Representative high power micrographs showing sEH signal in the cortex (I,II), outer medulla 

(III,IV) and inner medulla of Brattleboro rats after vehicle (I,III,V; control) or dDAVP treatment (II,IV,VI; 

dDAVP). Treated animals show a stronger accumulation of immunoreactive sEH in the cortex and outer 

medulla compared to controls. Inner medullary sEH signals are not different. Immunoperoxidase staining; 

bars 100 µm; n = 8 per group. B) Western blot of kidney homogenates from Brattleboro rats treated with 

vehicle or dDAVP showing increased signal intensity for the 63 and 50 kDa sEH variants ; -actin served 

as loading control. C) Densitometric analysis of the signal confirms increased total abundance of sEH in 

the treated animals. Data are means ± SEM; * p < 0.05; n = 8 per group. 

 

Figure 9. Effect of EET regioisomers on NKCC2 phosphorylation. A) Western blots of murine kidney cell 

suspensions treated with 100 nM dDAVP as control (-) or with 100 nM dDAVP and 1 µM 5,6-EET, 8,9-

EET, 11,12-EET or 14,15-EET (+) for 30 min. Bands show lower levels of phosphorylated NKCC2 
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(pNKCC2) after treatment with 5,6-EET, 8,9-EET and 14,15-EET; total NKCC2 abundance was 

determined in parallel and  serves as loading control. B) Densitometric analysis of the signal intensity and 

normalization to total NKCC2 levels confirms reduced abundance of pNKCC2 after treatment with 5,6-

EET, 8,9-EET, and 14,15-EET. No effect is detectable following treatment with 11,12-EET. Data are 

means ± SEM; ** p < 0.01; n = 8-10 per group. Samples were prepared from a total of 6 mice. 

 

Figure 10. Effects of 14,15-EET on TAL transport activity and NKCC2 phosphorylation. A) Summarized 

data of the equivalent short-circuit current I’sc of isolated perfused cTAL  pretreated with vehicle (control; 

empty bars), 1 µM 14,15-EET (black bars) or 1 µM 14,15–DHET (grey bars) under two symmetric Cl- 

concentrations, 30 mmol/l Cl- (30) and 147 mmol/l Cl- (147). B) Simplified scheme to illustrate enzyme 

kinetic like properties of NKCC2 (curve 1) with maximal transport rate (Vmax, dashed line). Reduced 

number of NKCC2 in the membrane reduces Vmax with unchanged EC 50 (curve 2). Changes in Cl- affinity 

of NKCC2 lead to an additional shift of EC 50 to higher Cl- concentrations (curve 3).  

C) I’sc at low chloride concentration expressed as percentage of the respective Vmax values; the 55% 

reduction after 14,15–EET pretreatment shows a markedly reduced Cl- affinity. Treatment with 14,15-

DHET has no detectable effect on I’sc. Ectrophysiological data are means ± SEM, n=8,9,8; * P < 0.05 

control vs. 14,15–EET; # P < 0.05 14,15-EET vs.14,15–DHET. D) Western blot of dDAVP-stimulated 

murine kidney cell suspensions showing a dose-dependent reduction of phosphorylated NKCC2 

(pNKCC2) after treatment with 0.1 µM and 1 µM 14,15-EET as compared to the vehicle treated control. 

Treatment of dDAVP-stimulated kidney cell suspensions with 14,15-DHET has no effect. Total NKCC2 

abundance was determined in parallel and serves as loading control. Representative example of n = 9 for 

vehicle-, EET-, and DHET, respectively. Samples were prepared from a total of 6 mice. 

 

Figure 11. Effect of sEH deficiency on outer medullary levels of phosphorylated NKCC2 (pNKCC2). 

Representative low (I,II) and high (III,IV) power micrographs showing reduced levels of immunoreactive 

pNKCC2 in the outer medulla of sEH deficient mice (II,IV; sEH -/-) compared to wild type controls (I,II). 

Immunoperoxidase staining; bars 200 µm for I, II, and 20 µm for III, IV. n = 4 per group. 
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Table 1 

Gene Title 
Gene 

Symbol 

mRNA 

Accession 
Probe Set ID 

x-fold of 

control 
p 

epoxide hydrolase 2, 

cytoplasmic 
EPHX2 NM_022936 Rn.54495_at 2.45 0.04* 

cytochrome P450, family 2, 

subfamily c, polypeptide 11 
Cyp2c11 NM_019184 1387328_at 1.3 0.68 

cytochrome P450, family 2, 

subfamily c, polypeptide 23 
Cyp2c23 NM_031839 1367988_at 0.97 0.52 

cytochrome P450, family 2, 

subfamily j, polypeptide 3 
Cyp2j3 NM_175766 1370706_a_at 0.99 0.8 

cytochrome P450, family 2, 

subfamily j, polypeptide 4 
Cyp2j4 NM_023025 Rn.44992_at 0.78 0.003* 

cytochrome P450, family 2, 

subfamily j, polypeptide 10 
Cyp2j10 NM_001134980 Rn.34638_at 0.95 0.26 



0

10

20

30

40

50

60

70

5,6-EET 8,9-EET 11,12-EET 14,15-EET

n
g

/g
 t

is
s

u
e

 

EET concentration 

control

dDAVP

Figure 1 

* * 
* 



Figure 2 

12,13-DIHOME 

12,13-EPOME 

9,11-DIHOME 

9,11-EPOME 



        control 

sEH 

ß-actin 

sEH -/- 

C 

B 

control blockade 

A 

             CTX       OM        IM  

NKCC2 

ß-actin 

63 kDa - 

50 kDa - 
sEH 

I II 

Figure 3 



Figure 4 

G H I 

sEH AQP2 merge 

+ 

+ 

# 

sEH megalin merge 

J K L 

c
o

rt
ic

a
l 
la

b
y
ri

n
th

 
tr

a
n

s
it

io
n

 D
C

T
-C

N
T

 

D E F 

sEH merge COX-2 

c
o

rt
ic

a
l 
T
A

L
 

J
G

A
 

A B C 

* 
* 

# 

G 

sEH merge COX-2 



Figure 5 

D E F 

* 

+ 

+ 

* * 

sEH NKCC2 

merge 

G H I 

* 

* 

* 

* * 

* 

* 

* 

* 

* 

# 

sEH NKCC2 merge 

o
u

te
r 

m
e
d

u
ll

a
 

tr
a
n

s
it

io
n

 A
T

L
-T

A
L

 

K L J 

sEH merge AQP2 

in
n

e
r 

m
e
d

u
ll
a

 

sEH megalin merge 

B C A 

tr
a
n

s
it

io
n

 P
T
-D

T
L

 



Figure 6 

A B C 

G H I 

D E F 

J K L 

sEH a-sma merge 

sEH a-sma merge 

sEH a-sma merge 

sEH a-sma merge 

G 

* 

§ 

+ 

v
a
s
 a

ff
e
re

n
s
 

in
n

e
r 

m
e
d

u
ll
a

 
o

u
te

r 
m

e
d

u
ll

a
 

a
rc

u
a
te

 v
e
s
s
e
ls

 

v
a
s
c
u

la
r 

b
u

n
d

le
 



D E F 

A B C 

Figure 7 

G H I 

* 
* 

* 
* 

* 

* 
* 

* 

* * 

* 

* 

G 

# 

# 

# 

# 

sEH NKCC2 

sEH NKCC2 

sEH AQP2 

merge 

merge 

merge 



Figure 8 

control dDAVP 

I II 

III IV 

c
o

rt
e
x
 

o
u

te
r 

m
e
d

u
ll

a
 

in
n

e
r 

m
e
d

u
ll
a

 

A 

C 

          control          dDAVP 

b-actin 

63 kDa - 
50 kDa - 

sEH 

B 

V VI 

0

2

4

6

8

10

50 kDa 63 kDa

s
E

H
 x

-f
o

ld
 o

f 
c
o

n
tr

o
l 

Protein abundance 

* 

* 



Figure 9 

A 

EET     -     +     -     +    -      +     -    +   

pNKCC2 

NKCC2 

** 
** 

** 

B 



Figure 10 

A 

D 

# 

* 

# 

* 

# 

* 

C 

B 



control sEH -/- 

Figure 11 

I II 

III IV 


	16034-cover
	Vasopressin lowers renal epoxyeicosatrienoic acid levels by activating soluble epoxide hydrolase
	ABSTRACT
	INTRODUCTION
	MATERIALS AND METHODS
	Results
	DISCUSSION
	ACKNOWLEDGEMENTS
	References
	FIGURE LEGENDS
	Table 1
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11



