
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
in the Helmholtz Association  
 
http://edoc.mdc-berlin.de/15882 
 
 
 
 
 
SNX27 and SORLA interact to reduce amyloidogenic subcellular 
distribution and processing of amyloid precursor protein 
 
Huang, T.Y., Zhao, Y., Li, X., Wang, X., Tseng, I.C., Thompson, R., Tu, S., Willnow, T.E., Zhang, 
Y.W., Xu, H. 
 
 
 
 
 
This is the original version of the work, which was first published in: 
 
Journal of Neuroscience 
2016 JUL 27 ; 36(30): 7996-8011 
doi: 10.1523/JNEUROSCI.0206-16.2016 
 
Publisher: Society for Neuroscience 
 
 
 
 
 
As stated by the publishers policy on copyright: “Copyright of all material published in The Journal 
of Neuroscience remains with the authors. The authors grant the Society for Neuroscience an 
exclusive license to publish their work for the first 6 months. After 6 months the work becomes 
available to the public to copy, distribute, or display under a Creative Commons Attribution 4.0 
International (CC BY 4.0) license.” 
 
 
 
 
 
 
 
 
 
 

Copyright © 2016, the authors. This work is licensed under a Creative 
Commons Attribution 4.0 International License. To view a copy of this license, 

visit http://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 
1866, Mountain View, CA 94042, USA. 

http://creativecommons.org/licenses/by/4.0/
http://edoc.mdc-berlin.de/15882
http://edoc.mdc-berlin.de/15882
http://dx.doi.org/10.1523/JNEUROSCI.0206-16.2016
http://www.sfn.org/
http://www.jneurosci.org/site/misc/ifa_policies.xhtml#copyright
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Neurobiology of Disease

SNX27 and SORLA Interact to Reduce Amyloidogenic
Subcellular Distribution and Processing of Amyloid
Precursor Protein
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Thomas E. Willnow,2 Yun-wu Zhang,1 and Huaxi Xu1
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China

Proteolytic generation of amyloidogenic amyloid � (A�) fragments from the amyloid precursor protein (APP) significantly contributes
to Alzheimer’s disease (AD). Although amyloidogenic APP proteolysis can be affected by trafficking through genetically associated AD
components such as SORLA, how SORLA functionally interacts with other trafficking components is yet unclear. Here, we report that
SNX27, an endosomal trafficking/recycling factor and a negative regulator of the �-secretase complex, binds to the SORLA cytosolic tail
to form a ternary complex with APP. SNX27 enhances cell surface SORLA and APP levels in human cell lines and mouse primary neurons,
and depletion of SNX27 or SORLA reduces APP endosome-to-cell surface recycling kinetics. SNX27 overexpression enhances the gener-
ation of cell surface APP cleavage products such as soluble alpha-APP C-terminal fragment (CTF�) in a SORLA-dependent manner.
SORLA-mediated A� reduction is attenuated by downregulation of SNX27. This indicates that an SNX27/SORLA complex functionally
interacts to limit APP distribution to amyloidogenic compartments, forming a non-amyloidogenic shunt to promote APP recycling to the
cell surface.

Key words: Alzheimer’s disease; APP; endosome recycling; protein trafficking; SNX27; SORLA

Introduction
Alzheimer’s disease (AD) is a prominent neuropathological dis-
order linked to the appearance of extracellular amyloid � (A�)

peptide aggregates, in which soluble A� multimers enact neuro-
toxic effects during neurodegenerative onset (Tu et al., 2014).
Although familial AD cases are rare, the prevalence of AD-
associated familially linked alleles found in the A�-derived
amyloid precursor protein (APP) and presenilin (PS)1/PS2
�-secretase APP cleavage components further demonstrates the
importance of A� and APP processing in AD neuropathology
(Zhang et al., 2011).

APP is a single-pass transmembrane component that shuttles
between Golgi, cell surface, and endosomal/lysosomal compart-
ments (Thinakaran and Koo, 2008; Jiang et al., 2014; Wang et al.,
2014a). The route by which APP is trafficked determines whether
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Significance Statement

Many genes have been identified as risk factors for Alzheimer’s disease (AD), and a large proportion of these genes function to
limit production or toxicity of the AD-associated amyloid � (A�) peptide. Whether and how these genes precisely operate to limit
AD onset remains an important question. We identify binding and trafficking interactions between two of these factors, SORLA
and SNX27, and demonstrate that SNX27 can direct trafficking of SORLA and the A� precursor APP to the cell surface to limit the
production of A�. Diversion APP to the cell surface through modulation of this molecular complex may represent a complimen-
tary strategy for future development in AD treatment.
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APP is proteolytically processed into neurotoxic A� peptides
through the amyloidogenic pathway or nontoxic APP products
such as soluble APP� (sAPP�) and CTF� (alpha-APP C-terminal
fragment) through the non-amyloidogenic pathway. Amyloido-
genic and non-amyloidogenic processing is mutually exclusive;
APP cleavage by non-amyloidogenic �-secretases precludes the
availability of the rate-limiting �-secretase (BACE1) amyloido-
genic cleavage site. Interestingly, non-amyloidogenic cleavage of
APP by �-secretases occurs primarily at the cell surface, whereas
amyloidogenic cleavage by BACE1 and the �-secretase complex
requires acidified trans-Golgi and endosomal environments (Xu
et al., 1997; Jiang et al., 2014). This suggests that intracellular APP
trafficking components also likely influence amyloidogenic APP
processing.

In support of this notion, APP trafficking components such as
SORLA (sortilin-related receptor with A-type repeats) have been
found to be linked to AD (Pottier et al., 2012). Originally identi-
fied as a component reduced in AD brain (Scherzer et al., 2004),
SORLA deletion has been shown to aggravate A� plaque forma-
tion in AD mouse models (Andersen et al., 2005; Rohe et al.,
2008), whereas murine SORLA overexpression was shown to re-
verse A� generation (Caglayan et al., 2014). As an APP trafficking
component, SORLA may act as a retention factor to sequester
APP at the Golgi away from amyloidogenic processing at the
endosome (Andersen et al., 2005; Rogaeva et al., 2007; Fjorback et
al., 2012). However, the presence of SORLA at the cell surface and
endosomal compartments (Andersen et al., 2005; Offe et al.,
2006; Herskowitz et al., 2012) suggests that SORLA may likely
have additional roles in mediating endosome-to-cell surface
trafficking. Indeed, if mechanisms for SORLA-mediated APP
endosome-to-cell surface recycling could be enhanced and re-
stored in SORLA-attenuated AD patients, this may attenuate A�
neurotoxicity associated with age onset.

SNX27 is a trafficking component required in driving
endosome-to-cell surface transport of various endosomal targets
through cargo-selective interactions with its N-terminal PDZ do-
main. Proteomic analysis of cell surface components with siRNA-
mediated SNX27 depletion suggests that SNX27 may be required
for APP trafficking, possibly through an intermediary trafficking
component, because no binding interactions were detected be-
tween APP and SNX27 in vivo (Steinberg et al., 2013). Although a
role for SNX27 in reducing amyloidogenic A� generation
through interactions with PS1/�-secretase has also been impli-
cated (Wang et al., 2014b), whether and how SNX27 can exert
cytoprotective effects through its ability to influence APP traf-
ficking remains elusive.

Here, we describe a mechanism for SORLA endosome-to-
plasma membrane recycling, which concurrently results in
increased surface APP distribution and concomitant non-
amyloidogenic �-secretase cleavage. Through an interaction
screen to detect binding interactions between the cytosolic
SORLA tail region and retromer complex components, we ob-
serve strong interactions between the SNX27 PDZ domain and
the SORLA tail. We find that overexpression of SNX27 can en-
hance surface distribution of both SORLA and APP in cultured
cells and neurons, whereas SNX27 depletion in cell lines and
haploinsufficiency in primary neurons reduces cell surface
SORLA and APP levels. SNX27 overexpression was also found to
elevate sAPP� generation in cultured cells. Likewise, SORLA
overexpression in cultured cells was found to attenuate A� levels
in a SNX27-dependent manner. Together, these results indicate
that SNX27 and SORLA interact and provide an endosomal

shunt mechanism to shift the endosomal APP trafficking milieu
in favor of non-amyloidogenic processing at the cell surface.

Materials and Methods
Cell culture and transfection. HEK293T and HEK293 cells stably express-
ing the Swedish APP KM670/671NL variant (HEKswAPP) were cultured
in DMEM supplemented with 10% FBS. Turbofect transfection reagent
(Life Technologies) was used for transient transfection of all cell lines
described according to specifications from the manufacture supplier.
RNAi MAX (Life Technologies) was used for transfection of siRNA oli-
gonucleotides. siRNA targeting sequences to cognate human targets for
cell line transfection were 5�-taccagatggaacaacggtta for SNX27 and 5�-
ctgggatttatcggagcaata for SORLA, all transfected at a final concentration
of 10 nM and purchased from Qiagen. An AllStars siRNA oligo was trans-
fected as a negative control (Qiagen).

Primary neuronal culture. Pregnant female mice were collected from
timed matings, and embryos were harvested from SNX27�/�het/wild-
type (WT) matings at E15–E17. Primary cortical neurons were obtained
by microdissection of the cerebral cortex from embryos using a stereo-
microscope and dispersed by digestion in trypsin and DNAseI for 30 min
at 37°C, followed by trituration in DMEM. Embryonic tissue was also
collected at harvesting and processed for genotype analysis using the
MyTaq DNA extraction and PCR genotyping system (Bioline), in which
WT and SNX27�/� het neurons from individual embryos were main-
tained separately. Neurons were plated and maintained on poly-D-lysine-
coated coverslips or culture dishes in Neurobasal medium supplemented
with B27, glutamine, and penicillin/streptomycin, whereby media was
changed every 3 d, when half of the media was replaced.

Antibodies and plasmid constructs. GST-fusion constructs were ex-
pressed in HEK293T cells using the pRK5mGST vector, in which full-
length SNX27 and various domain deletions were cloned downstream
in-frame of the N-terminal GST tag. The SORLA cytosolic tail (amino
acids 2159-2214) region and deletions (tail�2159-2177 comprising
amino acids 2160-2214, tail-2182, amino acids 2159-2182, tail-2198, and
amino acids 2159-2198), VPS26, VPS29, and VPS35 were also cloned
into pRK5mGST for expression in HEK293T cells for interaction studies.
Full-length pRK5mGST SNX27 H114A was generated by PCR-mediated
site-directed mutagenesis, using a pRK5mGST SNX27 template. Myc-
tagged retromer expression vectors were generous gifts from Dr. Wanjin
Hong (Institute of Molecular and Cell Biology, Singapore): pDmyc–
VPS26 and VPS35, and pCIneo myc–SNX27, SNX1, SNX2, SNX5, and
SNX6. pCDNA3 SORLA was obtained as a kind gift from Dr. James Lah
(Emory University, Atlanta, GA). Vectors to express recombinant GST
and His6 proteins included pGEX4T3–SORLA tail in which SORLA
cDNA sequences corresponding to amino acids 2159-2214 were PCR
amplified and cloned using BamHI/EcoRI sites; likewise, pTRChis6A
SNX27, pTRChis6A SNX27 PDZ, and pTRChis6A VPS26 were PCR am-
plified and cloned in-frame downstream of the his6 tag. Coexpression of
SNX27 and GFP was mediated by transfection of pIRES2 GFP–SNX27, in
which SNX27 was cloned using BamHI/XhoI sites into BglII/SalI vector
sites. Lentiviruses for SNX27 transduction were generated by the SBP-
MDI viral vector core facility using a pCDH513 SNX27 vector, in which
SNX27 was cloned into pCDH513 using NheI/BamHI sites.

pRK5mGST–SNX27 PDZ constructs were generated by sequence
alignment of SNX27, NHERF2, and SHANK2 PDZ domains, in which
conserved amino acids within the secondary �-strand and H114A
�-helix residues were mutated by site-directed mutagenesis. Because all
residues conferred charged or bulky structural elements except for the
terminal L130 residue within the terminal �-strand, we switched the
hydrophobic L130 residue to Q.

pCDNA3 SORLA–mCherry was cloned by generating an XbaI at the 3�
end to replace the SORLA stop codon, in which mCherry was cloned
downstream of the SORLA ORF using XbaI sites. A pCDNA3 GFP–
SNX27 expression construct used to detect overlapping SNX27/SORLA
localizing interactions in HEK293T cells was generated by cloning the
SNX27 ORF downstream of an N-terminal GFP tag. GFP-tagged GLUR1
and SORLA cytosolic tail constructs were cloned into pCDNA3 GFP with
a six glycine linker, in which cDNA sequences corresponding to the
GLUR1 (amino acids 831-906) and SORLA (amino acids 2159-2214) tail
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sequences were cloned in-frame downstream. A pCDNA3–FLAG SNX27
vector construct was generated by cloning SNX27 in-frame downstream
of pCDNA3–FLAG.

Antibodies detecting human and mouse SNX27 were generous gifts
from Drs. Wanjin Hong and Paul Slesinger (Mount Sinai Hospital, New
York, NY). SORLA (LR11) and EEA1 (BD Biosciences), BIP, �-adaptin,
and GST polyclonal (Santa Cruz Biotechnology), FLAG M2 (Stratagene),
GFP monoclonal (Genetex), TGN38 and Y188 C-terminal APP rabbit
monoclonal (Abcam), actin (Sigma), Xpress (Life Technologies), Lamp1
(Ly1C6; Enzo Diagnostics), and TnfR (Life Technologies) antibodies
were all purchased from commercial sources. The 9E10 monoclonal an-
tibody to detect the myc epitope was generated in-house. The B436
monoclonal antibody targeting the human extracellular A� transmem-
brane proximal region has been described previously (Eggert et al., 2009)
and was used to detect A�, sAPP�, and surface APP by immunofluores-
cence. The 22C11 monoclonal antibody for APP detection was purified
in-house.

Recombinant protein purification. GST, GST-SORLA tail, and his6 –
SNX27, SNX27 PDZ, and VPS26 were expressed from pGEX4T3 and
pTRChis6 A vectors described above and purified by glutathione
Sepharose/Ni-NTA agarose affinity purification methods described pre-
viously (Huang et al., 2013). BL21 pGEX4T3 or pTRChis6 transformants
were grown to exponential phase and induced with 1 mM isopropyl-�-
D-thiogalactopyranoside and cultured for an additional 3–5 h. Bacteria
were pelleted in lysis buffer and lysed by sonication in 10 mg/ml lysozyme
in the presence of protease inhibitors (complete; Roche). After clearing
lysates by spinning at 10,000 � g for 10 min, GST proteins were precip-
itated using glutathione Sepharose, whereas his6-tagged constructs were
precipitated with Ni-NTA agarose in the presence of 10 mM imidazole.

Glutathione beads were washed in 10 mM Tris-HCl, pH 8, and 0.5 M

NaCl, whereas Ni-NTA beads were washed in the same buffer containing
20 mM imidazole. GST proteins were eluted with 30 mM reduced gluta-
thione in 0.3 M Tris-HCl, and his6 proteins were eluted in 0.3 M imidazole
in 10 mM Tris-HCl, pH 8, and 0.5 M NaCl. Eluted proteins were then
dialyzed in 1� PBS with 5% glycerol and 0.3 mM DTT overnight and
frozen at �80°C. The Xpress antibody was used to detect the Xpress
epitope downstream of the his6 tag in the pTRChis6A vector by
immunoblot.

Recombinant in vitro, semi-in vitro, and in vivo GST pull-down
assays. To assay binding interactions between recombinant GST–
SORLA tail and his6 purified SNX27/VPS26 constructs, recombinant
purified GST or GST–SORLA tail were incubated with recombinant
his6 proteins for 2 h at 4°C rocking in the presence of glutathione
Sepharose, precipitated, and washed three times at room temperature
15 min each in lysis buffer containing 0.5 M NaCl. GST and his6
components were then immunoblotted for GST or Xpress bound/
coprecipitated by immunoblotting.

Semi-in vitro binding interactions required reimmobilizing recom-
binant purified GST or GST–SORLA tail constructs on glutathione, in
which beads were washed and individually incubated with HEK293T
lysates expressing myc-tagged constructs comprising the core retro-
mer complex (Vps26, Vps35, Snx27, Snx1, Snx2, Snx5, and Snx6).
After incubation with the immobilized GST constructs, myc-tagged
constructs were coprecipitated, washed in lysis buffer, and visualized
by immunoblotting.

In vivo GST pull-down interactions involved transfection of HEK293T
cells with pRK5mGST vectors expressing retromer components or GST-
tagged SNX27 truncation fragments as described above. For detection of
semi-endogenous interactions, pRK5mGST vectors expressing SNX27,
SNX27 truncations, or other tagged retromer components were trans-
fected in HEK293T and cultured overnight, and lysates were generated,
in which GST constructs were precipitated using glutathione agarose.
Beads were consequently washed, and endogenous SORLA or APP inter-
actions coprecipitated with the GST precipitates were detected by immu-
noblotting. In our PDZ mutagenesis screen for mutations attenuating
SNX27 PDZ/SORLA interactions, pRK5mGST PDZ constructs were
transfected in HEKswAPP cells and precipitated for endogenous SORLA
or APP with glutathione Sepharose as above. We note in our pull-down

assays that L130Q and L130A mutations have equivalent effects on atten-
uating SORLA/APP interaction (data not shown).

Coimmunoprecipitation assays. SORLA complexes were immunopre-
cipitated from mouse brain lysates in lysis buffer using 2 �g of SORLA
monoclonal antibody (BD Biosciences), and immune complexes were
precipitated with Protein G and washed five times in lysis buffer before
immunoblotting.

Cell surface biotinylation. Cell surface biotinylation using EZ-link
Sulfo-NHS-LC biotin in HEKswAPP and primary neurons was per-
formed as described previously (Wang et al., 2013). Briefly, cells or neu-
rons were washed in cold 1� PBS supplemented with 1 mM MgCl2 and
1.3 mM CaCl2 (1� PBS/CM) and incubated with 500 �g/ml biotin label-
ing reagent in 1� PBS/CM at 4°C with agitation. Labeling was repeated
and quenched with 7.5 �g/ml glycine in 1� PBS/CM. Cells were washed,
lysed in lysis buffer, and incubated overnight with streptavidin agarose at
4°C with agitation. Streptavidin agarose beads were then washed and
boiled in Laemmli buffer, and biotin-labeled precipitates were visualized
and quantified by immunoblotting.

Kinetic endocytosis and endosome to surface recycling assays. Measure-
ment of cell surface internalization and endosome-to-cell surface recy-
cling of SORLA and APP was determined in transfected HEKswAPP cells
as described previously (Wang et al., 2013).

Sucrose density fractionation. For sucrose density subcellular fraction-
ation, cells were lysed using a steel ball-bearing chamber and subjected to
ultracentrifugation as described previously (Zhang et al., 2005). Briefly,
cells were washed in 1� PBS and resuspended in 0.25 M sucrose, 10 mM

Tris-HCl, pH 7.4, and 1 mM MgAc2 and passed 15–20 times in a steel
ball-bearing chamber. Lysates were cleared at 800 � g for 5 min and
loaded onto a discontinuous sucrose gradient comprising 1.5 ml of 2 M, 4
ml of 1.3 M, 3 ml of 1.16 M, and 2 ml of 0.8 M sucrose in 10 mM Tris-HCl,
pH 7.4, and 1 mM MgAc2. Gradients were spun for 2.5 h at 100,000 � g,
and 1 ml fractions were collected and subjected to TCA precipitation
overnight at 4°C, washed in acetone, and subjected to immunoblot
analysis.

Mouse lines and hippocampal fractionation analysis. TG2576 mouse lines
expressing the Swedish APP695 KM670/671NL allele were purchased from
Taconic and maintained in-house. Mouse lines overexpressing SORLA at
the Rosa26 locus were described previously (Caglayan et al., 2014); SORLA–
Rosa26 and SNX27�/� lines were crossed with TG2576 transgenics (TGs) to
generate SORLA–Rosa26/TG2576 and SNX27�/�/TG2576 lines. Triple
TG2576/SORLA–Rosa26/SNX27�/� TG mouse lines were generated by
crossing TG2576/SORLA–Rosa26-positive animals with SNX27�/� or
TG2576/SNX27�/� animals with SORLA–Rosa26 TGs. Genotyped TG2576
TGs from these triple crosses were selected for analysis, in which SNX27 WT
and SNX27�/� animals were compared in SORLA–Rosa26 WT and TG
(overexpression) backgrounds.

TG2576 mice from these triple TG crosses were killed at 8 weeks of
age, whereby the hippocampus was dissected and frozen at �80°C.
Hippocampal tissue was processed for biochemical synaptic/PSD-
enrichment analysis as described previously (Wang et al., 2013). Briefly,
hippocampal tissue was homogenized using a Dounce homogenizer in
fractionation buffer (0.32 M sucrose and 25 mM HEPES, pH 7.4 in pro-
tease and phosphatase inhibitors), and nuclei and debris was cleared by
centrifugation (500 � g, 10 min). Membranes were separated by centrif-
ugation at 10,000 � g for 12 min, and membranes were washed twice in
25 mM HEPES, pH 7.4, and 150 mM NaCl and solubilized in 25 mM

HEPES, pH 7.4, and 150 mM NaCl buffer with 1% Triton X-100 with
phosphatase/protease inhibitors. PSD-enriched fractions were precipi-
tated by centrifugation at 10,000 � g for 20 min, washed in 25 mM

HEPES, pH 7.4, and 150 mM NaCl, and solubilized in 25 mM HEPES, pH
7.4, 150 mM NaCl, and 1% Triton X-100. A total of six mice (n � 6) for
each genotype (n � 24, total) were dissected, and hippocampal tissues
were processed for fractionation.

All procedures involving animals were performed under the guidelines
of Xiamen University and Sanford-Burnham Medical Research Institute
Institutional Animal Care and Use Committee.

Microscope image sample preparation and acquisition. All images were
acquired using an inverted Zeiss Axio Observer Z1 fluorescence micros-
copy system, in which acquisition and processing of images used Slide-
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book 5.5 software. Cultured HEKswAPP and primary neurons described
above were seeded and manipulated on poly-D-lysine-coated glass cov-
erslips and fixed in 4% paraformaldehyde (PFA). After permeabilization
in 0.5% Triton X-100 in 1� PBS, coverslips were washed and blocked in
3% BSA and subsequently stained in primary and fluorescent secondary
antibodies before mounting in Prolong Gold antifade on glass slides.

For cell surface detection of APP in HEKswAPP cells, cells were al-
lowed to cool to 4°C in cold 1� DMEM and labeled with B436 antibody
for 15 min at 4°C. Cells were then washed with cold PBS and fixed in 4%
PFA, followed by blocking, fluorescent secondary antibody labeling, and
mounting. APP fluorescence images by surface labeling using the B436
antibody were acquired using matched exposure settings, and threshold
levels for fluorescence channels were adjusted equivalently. The APP
fluorescence channel was extracted, and fluorescence intensity of the
acquired images were measured using NIH ImageJ.

Statistical analyses. All statistical analyses used in this study determined
the significant differences between two groups using nonpaired t tests
with equal variance from a minimum of three experiments unless stated
differently.

Results
SNX27 interacts with the SORLA cytosolic tail
The retromer complex has been previously described to selectively
bind and direct cargo from endosomal compartments. Because traf-
ficking mechanisms for SORLA selection and subsequent distribu-
tion from the endosome has yet to be described, we determined
whether individual components of the retromer complex could in-
teract with the SORLA cytosolic tail region. Using a semi-in vitro
interaction assay with a recombinant purified GST–SORLA tail fu-
sion peptide immobilized on glutathione beads, we find that SNX27
selectively precipitated with the SORLA cytosolic tail with little in-
teraction observed from other components of the retromer complex
(Fig. 1A).

To confirm these interactions, we expressed GST fusions with
members of the core retromer components in HEK293T cells and
assayed for coprecipitation with endogenous SORLA. We simi-
larly observed selective interactions between SNX27 and endog-
enous SORLA, with relatively no interaction observed with
other retromer components (Fig. 1B). Because SNX27 interac-
tions with endogenous SORLA appeared to be somewhat weak,
we also assayed for SNX27/SORLA interactions with SORLA co-
overexpression (Fig. 1C). We found that SORLA/SNX27 interac-
tions were indeed markedly improved with SORLA/GST–SNX27
co-overexpression and subsequent precipitation of GST–SNX27
complexes (Fig. 1C). Because SNX27 has been previously cha-
racterized to bind various endosomal trafficking components
through selective interactions with modular PDZ, PX, RA, and
FERM domains (Cullen, 2008), we expressed individual GST-
fused SNX27 domain modules in HEK293T cells and assayed for
interactions with endogenous SORLA (Fig. 1D). We observed
strong interactions with full-length SNX27 and the N-terminal
SNX27 PDZ domain with endogenous SORLA (Fig. 1D), in
which relatively little interaction was observed in constructs lack-
ing this domain. Using recombinant purified components, we
next determined whether interactions between the SORLA tail
and SNX27 were direct. We found that full-length SNX27 or the
SNX27 PDZ domain coprecipitated with the SORLA cytosolic
tail (Fig. 1E). These results suggest that SNX27/SORLA tail inter-
actions may be direct. As interactions between SORLA and
VPS26 were previously described (Fjorback et al., 2012), we also
could reiterate VPS26/SORLA tail interactions in vivo (Fig. 1F)
but not in vitro (Fig. 1E), suggesting that VPS26 may require
complexes formed in vivo for SORLA tail interactions.

SORLA interactions with VPS26 were previously reported to
require a FANSHY motif within amino acids 2159 –2180 within

the SORLA tail (Fjorback et al., 2012); we find by deletion and
subsequent GST pull-down analysis that deletion of the mem-
brane proximal 2159-2177 region of the SORLA tail attenuated
its interaction with both VPS26 and SNX27 in cells coexpressing
GST–SNX27 or GST–VPS26 and GFP–SORLA tail constructs
(Fig. 1F). Because we were able to reconstitute SORLA tail/
SNX27 interactions in vitro using recombinant proteins (Fig. 1E),
we determined the effects of deletion of GGA (amino acids 2208-
2214), acidic (amino acids 2190-2198), and membrane proximal
(amino acids 2159-2177) regions in the SORLA tail region for
interactions with endogenous SNX27 (Fig. 1G). Likewise, dele-
tion of this 2159-2177 region in GST–SORLA tail construct ab-
rogated its interaction with endogenous SNX27, whereas
deletion of 2182-2214 (acidic and GGA) or 2198-2214 (GGA)
regions had no effect on their interactions (Fig. 1G). Together,
this indicates that SNX27/SORLA interaction likely requires the
presence of a membrane proximal region within the SORLA tail.

Extensive evidence suggests that the SNX27 PDZ domain
comprises an important cargo selection module required for en-
dosomal sorting. Because SORLA lacks a canonical C-terminal
X-S/T-X-� PDZ interaction motif, we were interested in deter-
mining whether PDZ mutations that abrogate PDZ/PDZ-motif
interactions could affect SORLA tail interactions (Lauffer et al.,
2010). We found that, although the H114A mutation within an
�-helical PDZ-motif-binding interface of SNX27 disrupted its
interactions with a PDZ-motif substrate GLUR1 tail (Wang et al.,
2013), this mutation had relatively little effect on SORLA
tail interactions (Fig. 1H). Quantification and comparison of
GLUR1 and SORLA tail interactions with SNX27 suggest that
SORLA tail/SNX27 interactions in vivo are weak compared with
GLUR1 tail/SNX27 binding (Fig. 1H, top graph); however,
GLUR1 tail interactions with WT SNX27 are fivefold higher com-
pared with H114A, in which little or no change is observed be-
tween WT/H114A SNX27 and SORLA tail (Fig. 1H, middle and
bottom graphs). Together, these results indicate a direct interac-
tion between a membrane proximal region of the SORLA cyto-
solic tail and the SNX27 PDZ domain, which may occur through
a different binding mechanism previously described for PDZ/
PDZ C-terminal motifs.

SNX27 and SORLA are components that have been previously
observed to localize in part to endosomal compartments (Lauffer
et al., 2010; Herskowitz et al., 2012). Given their ability to interact
physically, we were interested in determining whether SNX27
and SORLA interactions could be reiterated by localization over-
lap. mCherry-tagged SORLA and GFP-tagged SNX27 appeared
to colocalize at punctate subcellular foci as previously described,
and, although no specific overlap was observed with GFP alone,
we observed an overlap between SORLA and SNX27 puncta in
HEK293 cells stably transfected with the Swedish K595N/M596L
variant (HEKswAPP) and primary cortical neurons (Fig. 2A,B).
Although overexpressed SORLA and SNX27 may not reconsti-
tute true intracellular distribution profiles of these components,
colocalizing overlap between SORLA and SNX27 further support
binding interactions between these two components.

SNX27 is important for SORLA and APP cell
surface distribution
As a key trafficking component in mediating the intracellular
distribution of APP, SORLA has been shown previously to inter-
act with APP. Therefore, we determined whether endogenous
SNX27 could interact with APP and SORLA in vivo by coimmu-
noprecipitation. Using a SORLA antibody, we found that SORLA
could coimmunoprecipitate with both APP and SNX27 from
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Figure 1. The SNX27 PDZ domain interacts with the cytosolic SORLA tail. A, Probing interactions between the retromer complex and the SORLA cytosolic tail. HEK293T lysates expressing different
myc-tagged retromer components were incubated with recombinant purified GST fusions of the SORLA cytosolic tail immobilized on glutathione Sepharose. Unbound components were washed
from precipitates, and bound components were detected by myc immunoblots. B, The SNX27 retromer component interacts with endogenous SORLA with a comparatively high affinity. GST-fusion
constructs comprising various retromer complex components were expressed in HEK293T cells, and glutathione precipitates were probed for endogenous SORLA by immunoblotting. C, GST,
GST–SNX27, and control or SORLA vector constructs were coexpressed by transfection in HEKswAPP cells as indicated, and GST-tagged complexes were precipitated and immunoblotted as in B. D,
The SNX27 PDZ domain binds to the SORLA cytosolic tail. GST–SNX27 constructs comprising various SNX27 domains were assayed for coprecipitation with endogenous SORLA in HEK293T cells, in
which glutathione precipitates were probed by immunoblotting. E, Reconstitution of SNX27 PDZ domain/SORLA tail interactions in vitro. Recombinant his6 –Xpress SNX27, SNX27 PDZ, or VPS26
constructs were incubated with a recombinant purified GST–SORLA tail peptide immobilized to glutathione Sepharose. Bound his6/Xpress-tagged precipitates were detected by Xpress immuno-
blotting. F, G, SNX27/SORLA tail interactions require residues 2159-2177 in the SORLA tail region. F, GST-tagged VPS26 or SNX27 was coexpressed with a GFP-tagged construct comprising the SORLA
tail or SORLA tail lacking a region containing the FANSHY motif (amino acids 2159-2177) in HEK293T, and glutathione precipitates were analyzed by immunoblot. G, GST-tagged SORLA tail deletion
constructs were expressed in HEK293T cells, and glutathione precipitates were probed for endogenous SNX27 by immunoblotting. H, Vectors expressing GFP-tagged GLUR1 or SORLA cytosolic tail
fragments were cotransfected with GST-tagged SNX27 or H114A SNX27 constructs in HEK293T cells, and glutathione Sepharose precipitates from lysates were probed for GFP and GST constructs.
Quantification of GFP-tail coprecipitation in the adjacent graphs: bound/input in relation to GLUR1-tail precipitation (GLUR1-tail set to 1.0, top), bound/input of H114A constructs compared with WT
for GLUR1 and SORLA tails (WT set to 1.0, middle), and fold increase in GFP-tail binding ratios, WT/H114A for GLUR1 and SORLA tails (bottom).
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mouse brain lysates (Fig. 3A). Similar to SORLA, SNX27 copre-
cipitates with both endogenous SORLA and APP in a manner
dependent on the N-terminal PDZ domain as determined by
deletion and GST pull-down analysis (Fig. 3B). These results in-
dicate that SNX27, SORLA, and APP can form a ternary complex.

SNX27 is an endosomal trafficking component that mediates
cell surface distribution of numerous transmembrane cargo. We

then determined whether reductions in SNX27 levels could influ-
ence cell surface SORLA and APP distribution. We found that
SNX27 siRNA treatment in HEKswAPP cells led to a reduction in
surface SORLA and APP levels (Fig. 3C, left panels). Similarly, we
also found that SNX27 haploinsufficiency in dissociated primary
neuronal cultures also caused reductions in SORLA and APP cell
surface distribution with little influence on surface transferrin

Figure 2. SORLA and SNX27 localization overlap in cells and neurons. A, B, SORLA and SNX27 localization overlap as observed by cotransfection of plasmids expressing either GFP or GFP–SNX27
with SORLA–mCherry in HEKswAPP (A) or rat cortical neurons (B). Scale bar, 5 �m.

Figure 3. SNX27 interacts with SORLA and APP to maintain surface SORLA/APP levels. A, B, SORLA, APP, and SNX27 form a multimeric complex. A, Precipitation of an endogenous SORLA complex
from mouse brain. Cleared mouse brain lysates were incubated with control or SORLA antibodies as indicated, and immune complexes were precipitated with Protein G. Precipitates were then
analyzed by immunoblotting. B, The SNX27 PDZ domain associates with SORLA and APP. GST-tagged SNX27 deletion constructs were expressed in HEK293T cells, and glutathione Sepharose
precipitates were analyzed for endogenous SORLA and APP by immunoblotting. C, SNX27 reduction or haploinsufficiency attenuates surface SORLA/APP levels. HEKswAPP cells were transfected with
control or SNX27 siRNA, surface labeled with biotin, precipitated with streptavidin agarose, and immunoblotted for surface SORLA/APP. Primary cortical SNX27 WT or �/� neurons were surface
labeled with biotin at DIV7, precipitated with streptavidin agarose, and immunoblotted for SORLA, APP, or TfnR. Values were depicted as mean 	 SE from at least three experiments, where t test
equal variance p values were **p 
 0.003. D, Surface labeling APP (left panels), HEKswAPP cells were surface labeled with the B436 antibody (to recognize APP, green) and costained with phalloidin
(to visualize F-actin, red). Effect of SNX27 depletion on surface APP (right panels), HEKswAPP cells transfected with control or SNX27 siRNA were surface labeled with the B436 antibody (green) and
costained for F-actin (red). Fluorescence intensity of surface APP under normalized image acquisition conditions were quantified using NIH ImageJ to depict an average normalized value 	 SE from
four experiments (*p 
 0.03). Scale bar, 10 �m.
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receptor (TfnR) distribution (Fig. 3C, right panels). Using an
APP antibody targeting the extracellular surface proximal to the
A� transmembrane region (B436), we found that APP surface
labeling in HEKswAPP cells observed under steady-state condi-
tions were reduced with SNX27 siRNA treatment (Fig. 3D).
These results demonstrate that reductions in SNX27 levels can
also attenuate cell surface SORLA and APP distribution.

We also determined whether SNX27 overexpression could en-
hance surface APP and SORLA distribution. We found that over-
expression of SNX27 could enhance both surface SORLA (Fig.
4A,C, left panels) and surface APP (Fig. 4B,C, left panels) levels
in HEKswAPP cells, in which relatively little or no effect was
observed with overexpression of other retromer components
(Fig. 4A,B). Furthermore, SNX27 overexpression was observed
to enhance surface SORLA and APP distribution, with relatively
little effect on surface TfnR distribution in cortical neurons trans-
duced with SNX27 lentiviral constructs (Fig. 4C, right panels). In
support of our biotin surface labeling results, we also observed an
increase in cell surface APP levels by anti-APP antibody surface
labeling and immunofluorescence (Fig. 4D).

Together, these results strongly indicate that SNX27 mediates
cell surface distribution of SORLA and APP.

SNX27 and SORLA mediate endosome-to-cell surface
APP recycling
Using a cleavable disulfide biotin cell surface labeling method
described previously (Wang et al., 2013), we labeled cell surface

components in HEKswAPP cells and tracked the internalization
and resurfacing kinetics of SORLA and APP. Surface-labeled
SORLA and APP both achieved peak internalization at 15 min
and consequently sorted back to the cell surface within 30 – 60
min (Fig. 5A). We note that, although APP almost entirely recy-
cled to the cell surface 60 min after internalization, much of
SORLA was retained internally. This might suggest that SORLA
may be trafficked to other intracellular sites such as the Golgi
after internalization, whereas APP is efficiently recycled to the cell
surface. We also tracked APP endosome-to-cell surface traffick-
ing using this method and observed redistribution of internalized
APP to the cell surface between 30 and 60 min (Fig. 5B).

We then determined the individual effects of siRNA-
mediated SNX27 and SORLA depletion on APP internaliza-
tion and endosome-to-cell surface recycling kinetics. We
found no significant difference in APP internalization in
HEKswAPP cells transfected with control, SNX27, and SORLA
siRNA (Fig. 5C). However, we observed slower endosome-to-
cell surface redistribution of APP in both SNX27 and SORLA
siRNA-transfected cells (Fig. 5D). These results suggest that
SNX27 and SORLA may both be required for efficient APP
endosome-to-cell surface recycling. Because a role for SNX27-
mediated endosome-to-cell surface distribution has been es-
tablished for numerous plasma membrane components,
including GLUR1, GIRK, �AR, and GLUT1 (Lunn et al., 2007;
Temkin et al., 2011; Steinberg et al., 2013; Wang et al., 2013),

Figure 4. SNX27 overexpression can enhance SORLA and APP surface distribution. Overexpression of the SNX27 retromer component specifically promotes surface SORLA and APP distribution.
A, myc-tagged retromer components were coexpressed with SORLA in HEK293T cells, and surface SORLA was assayed by surface biotinylation. B, myc-tagged retromer components were expressed
in HEK293 cells stably expressing swAPP, and surface APP was assayed by surface biotinylation. C, HEKswAPP cells were transfected with control or FLAG–SNX27 vectors and analyzed for cell surface
protein levels 72 h after transfection by surface biotinylation. Primary cortical neurons were transduced with control or lentiviruses expressing human SNX27 for 4 d at DIV17, in which neurons were
biotin surface labeled and cell surface streptavidin precipitates were analyzed by immunoblotting. Graphs represent surface SORLA, APP, or TfnR normalized to total cellular levels (mean 	 SE from
a minimum of 3 experiments), *p 
 0.05, **p 
 0.003. D, HEKswAPP cells were transfected with control or SNX27-expressing plasmid vectors (with GFP expression from a downstream IRES
element) and surface labeled for APP using B436 as described above.
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this suggests that SNX27 may also mediate endosome-to-cell
surface recycling of a SORLA/APP complex.

Using sucrose gradient fractionation, we found that relatively
little SORLA and APP distributed to endosome-enriched frac-
tions under steady-state conditions in HEKswAPP cells (Fig. 6).
However, SORLA and APP distribution to endosomal fractions
were enhanced with SNX27 siRNA transfection, and a similar
redistribution of APP to endosome-enriched fractions was ob-
served with SORLA siRNA transfection (Fig. 6A,B). In good
agreement with APP distribution as observed by fractionation,
we found that intracellular APP primarily localized at non-
endosomal compartments by immunofluorescence in cultured
HEKswAPP cells and neurons (Fig. 7A,B, top panels). Rather,
localization of APP in cortical neurons was observed to have
greater overlap with Golgi markers such as TGN38 under
steady-state conditions (Fig. 7C, bottom panels). This suggests
that endosomal clearance mechanisms may normally limit APP
distribution to endosomes. In support of this notion, we also
found that SNX27 siRNA transfection in HEKswAPP cells re-
sulted in an increased overlap in APP and SORLA localization
with endosomal markers such as EEA1 (Fig. 7C,D).

Because efficient recycling of endosomal to the cell surface could
bypass trafficking of internalized components to late endosomal/
lysosomal compartments, we also determined whether SNX27 and
SORLA depletion could influence APP localization at lysosomes.
Although we observed poor overlap between LAMP1 and APP in
control siRNA-transfected HEKswAPP cells, we observed increased
LAMP1/APP overlap in both SNX27 and SORLA siRNA-transfected
cells (Fig. 8). These results further indicate that APP and SORLA are
components that are essentially absent from endosomes/lysosomes,
presumably because of efficient SNX27-mediated recycling to the

cell surface. As such, impairment of endosome-to-cell surface clear-
ance machinery can induce SORLA and APP accumulation in endo-
somes, which can enhance subsequent passage of APP to late
endosomes/lysosomes.

Together, these results indicate that SNX27 and SORLA are
trafficking components that can affect endosome-to-cell surface
APP recycling and redistribution.

SNX27 and SORLA interact to mediate non-amyloidogenic
APP processing
Our results so far indicate that SNX27 interacts with a SORLA/
APP complex and that SNX27 and SORLA can influence
endosome-to-cell surface APP trafficking. Both SNX27 and
SORLA have been characterized previously as neuroprotective
components that are required to limit amyloidogenic process-
ing of APP to A�. The results here suggest that SNX27 and
SORLA may function cooperatively as a protective shunt
mechanism to redistribute APP from the endosome to the cell
surface. Because amyloidogenic APP processing at acidified
endosomes and non-amyloidogenic APP cleavage at the cell
surface occurs in a mutually exclusive manner, our results so
far suggest that SNX27 may enhance SORLA/APP surface dis-
tribution to promote non-amyloidogenic APP processing. In
support of this notion, SNX27 overexpression in HEKswAPP
cells produces a striking increase in sAPP� levels, indicating
an enhancement in cell surface-dependent �-secretase cleav-
age (Fig. 9A). We also observed an accumulation of CTF� with
SNX27 overexpression, which may be produced in combina-
tion with increased �-secretase cleavage and SNX27-
dependent inhibition of the �-secretase complex described
previously (Fig. 9A; Wang et al., 2014b).

Figure 5. SNX27 and SORLA influence APP recycling kinetics after internalization. A, HEKswAPP cells were surface biotinylated with NHS-S-S-biotin, and surface labeled components were allowed
to internalize and resurface for the time indicated. Surface components were cleaved with reduced glutathione, and biotinylated (internalized components) were precipitated using streptavidin
agarose. Note that SORLA and APP achieved maximal internalization between 15 and 30 min. B, Surface biotinylated components were internalized for 20 min in HEKswAPP cells in which remaining
surface label was cleaved with reduced glutathione. The biotinylated surface label was allowed to resurface for the time indicated, and recycled surface components were analyzed by immuno-
blotting as indicated. C, HEKswAPP cells were transfected with the siRNAs as indicated and internalized for the time indicated, whereby surface components were cleaved with reduced glutathione.
A non-internalized/non-cleaved input control sample is included for the indicated treatments. D, HEKswAPP cells were transfected with the siRNAs indicated, and APP recycling to the cell surface was
assayed as in B. All graphs depict mean 	 SE from a minimum of three independent experiments, *p 
 0.05, **p 
 0.01.
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Figure 6. SNX27 and SORLA depletion can influence subcellular APP distribution. A, HEKswAPP cells were transfected with control, SNX27, or SORLA siRNAs, harvested and subjected
to sucrose density fractionation as described in Materials and Methods, and immunoblotted for the components indicated. Untreated cells were surface biotinylated, and sucrose density
fractions were probed with streptavidin–HRP to detect cell surface cell surface components as indicated. B, Lysates from the input from A were probed for SORLA and SNX27 depletion
by immunoblotting.
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Given that SNX27 affects cargo distribution to numerous tar-
gets through its PDZ domain, we questioned whether attenuating
SNX27/SORLA interactions through mutation of the PDZ do-
main could affect SORLA/APP surface distribution and conse-
quent APP processing. To this end, we individually introduced
mutations into residues conserved between SNX27, SHANK2,
and NHERF2 PDZ regions within each secondary structural ele-
ment in a GST–SNX27 expression construct and assayed for in-
teractions with APP and SORLA in HEKswAPP cells (Fig. 9B).
We found that SORLA/SNX27 interactions were influenced most
dramatically by mutation of an L130 residue within the terminal
� strand within the PDZ domain (Fig. 9B). Integrating this mu-
tation into a FLAG–SNX27 overexpression construct, we found
that SNX27 overexpression could enhance SORLA/APP surface
distribution and sAPP� generation, whereas overexpression of
the SORLA-refractory L130Q mutation had markedly reduced
effects on surface SORLA/APP distribution and sAPP� produc-

tion (Fig. 9C). This provides an additional indication that
SNX27-mediated surface SORLA/APP distribution and sAPP�
generation is dependent on SNX27/SORLA interactions.

We next determined the effects of modulating SORLA lev-
els on APP processing. We observed a decrease in sAPP� with
SORLA overexpression and increased sAPP� accumulation
with SORLA depletion (Fig. 9 D, E). Similarly, dramatic in-
creases in sAPP� were observed with SORLA deletion in
mouse knock-out models (Rohe et al., 2008). Because our
results suggest that surface SORLA/APP levels and APP cleav-
age may be dependent on SNX27, we assayed whether SNX27-
mediated elevation of sAPP� levels was sensitive to reductions
in SORLA by siRNA transfection. We observed an attenuated
SNX27-dependent increase in both CTF� and sAPP� levels
with SORLA siRNA transfection, indicating that SNX27-
dependent enhancement of non-amyloidogenic APP process-
ing is SORLA dependent (Fig. 9 F, G). This suggests that

Figure 7. SNX27 depletion enhances APP and SORLA distribution to endosomal compartments. A, HEKswAPP cells were stained for APP (green) and EEA1 (red) as indicated. Note the limited
colocalizing overlap between EEA1 and APP under steady-state conditions (scale bar, 10 �m). B, APP localization in cortical neurons. Cortical neurons were stained for APP (green) with EEA1 (red;
top row; scale bar, 10 �m) or TGN38 (red; bottom row; scale bar, 5 �m) as indicated at DIV7. Note the limited colocalizing overlap between EEA1 and APP in neurons under steady-state conditions.
C, HEKswAPP cells transfected with control or SNX27 siRNA were processed for immunocytochemistry to detect APP (green) and EEA1 (red) colocalizing overlap. D, HEKswAPP cells transfected with
control or SNX27 siRNA as above were subsequently transfected with plasmid vectors expressing SORLA–mCherry; cells were fixed and stained for EEA1 to determine SORLA/endosome overlap. Scale
bars: C, D, 5 �m.
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interfering with SORLA-dependent endosome-to-cell surface
trafficking mechanisms may also abrogate non-amyloidogenic
APP processing.

SORLA expression has been reported previously to reduce A�
production in both cultured cells and mouse models (Andersen
et al., 2005; Caglayan et al., 2014). Because these results so far
suggest that suppression of amyloidogenic APP processing by
SNX27 and SORLA may be interdependent, we determined
whether reductions in A� production through SORLA overex-
pression could be influenced by SNX27 reduction. As expected,
we observed reductions in A� production with SORLA overex-
pression and elevated A� levels with SNX27 siRNA transfection
(Fig. 9H). Strikingly we found that SORLA overexpression no
longer attenuated A� production when SNX27 was downregu-
lated, strongly indicating that non-amyloidogenic APP process-
ing by SORLA is primarily dependent on SNX27. Together, these
results suggest that SNX27/SORLA interactions can form a
shunt mechanism to promote surface APP distribution and non-
amyloidogenic processing.

SNX27 facilitates SORLA and APP distribution to
PSD-enriched membranes
Having established that SNX27 mediates SORLA and APP distri-
bution to the cell surface and because SORLA-mediated reduc-
tions in A� production are dependent on SNX27 in HEKswAPP
cell lines (Fig. 9H), we determined whether SNX27 had similar
effects on SORLA/APP membrane distribution in TG2576 mouse
lines expressing the human Swedish APP variant. To this end, we
combined TG2576, SORLA–Rosa26, and SNX27 deletion alleles
through consecutive mating of TG2576 in combination with
SORLA–Rosa26 and SNX27�/� animals and screened for
TG2576 SNX27 WT and SNX27�/� progeny in SORLA–Rosa26
WT and TG overexpression backgrounds. TG2576 mice were
killed at 8 weeks of age, and hippocampal tissue was processed for
membrane/PSD enrichment and assayed for APP/SORLA distri-
bution by immunoblotting.

We observed that SORLA and APP appeared in cytosolic and
membrane fractions and were relatively less abundant in PSD-
enriched fractions (Fig. 10A). Our fractionation protocol parti-

tioned presynaptic markers such as synaptophysin (SVP38) to
Triton X-100-soluble (TX-sol) membrane fractions and PSD
markers such as PSD95 to Triton X-100-insoluble PSD-
enrichment fractions (Fig. 10A). Although we observe mild
elevations in SORLA in total lysates from our mixed SORLA–
Rosa26 background (
50%), we find that SORLA enrichment is
nearly threefold in PSD fractions (Fig. 10B,C). We find that
SNX27 haploinsufficiency in SORLA–Rosa26 TG mouse lines
had a significant effect on reducing SORLA and APP levels in
PSD-enriched fractions, in which SNX27�/� had less of an effect
in reducing SORLA and APP in TX-sol membrane fractions (Fig.
10B,C). Because our results in cells and dissociated neurons in-
dicate that SNX27 can enhance SORLA and APP distribution to
the cell surface, these results give an additional indication that
SNX27 can mediate distribution of SORLA and APP to PSD-
associated membranes in vivo.

Discussion
The distribution of the amyloid precursor component APP to the
cell surface or endosomal compartments is critical in determin-
ing its eventual processing through non-amyloidgenic or amy-
oidogenic pathways. Because proteolytic cleavage through these
pathways occur in a mutually exclusive manner, enhanced distri-
bution in favor of either pathway may ultimately influence pro-
teotoxic A� generation and eventual AD pathophysiology (Fig.
10D). Here, we describe physical and functional interactions be-
tween the APP trafficking component SORLA and SNX27, which
has essential functions in diverting internalized transmembrane
endosomal components back to the cell surface (Fig. 10D).
Although previous evidence has indicated that SORLA has a pre-
dominant role in trafficking APP to the Golgi (Andersen et al.,
2005; Rogaeva et al., 2007; Fjorback et al., 2012), whether SORLA
could also mediate endosome-to-cell surface APP recycling has
been essentially unexplored.

Proteomic analysis of cell surface components reduced with
SNX27 siRNA downregulation previously implicated APP as a
potential SNX27 trafficking target (Steinberg et al., 2013). How-
ever, failure to detect APP in the SNX27 interactome might sug-
gest that a bridging component may be required to direct APP

Figure 8. SNX27 or SORLA siRNA transfection promotes APP accumulation in lysosomal compartments. HEKswAPP cells were transfected for the siRNAs as indicated and costained for APP (green)
and LAMP1 (red). Scale bar, 5 �m.
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Figure 9. SNX27 and SORLA interdependently promote non-amyloidogenic APP cleavage. A, HEKswAPP cells transfected with control or FLAG–SNX27 vectors were allowed to secrete soluble APP species for
the time indicated, and sAPP� was detected by immunoblotting with the B436 antibody. Lysates were also generated, and APP or CTFs were quantified by immunoblotting as indicated. B, GST–SNX27 PDZ
constructs were transfected and expressed in HEKswAPP cells and precipitated with glutathione Sepharose. SORLA and APP coprecipitation was visualized by immunoblotting; L130Q PDZ constructs demon-
strated marked attenuation in SORLA/APP coprecipitation. C, Empty vector, FLAG–SNX27, or L130Q constructs were transfected in HEKswAPP cells, and media were conditioned for sAPP� secretion as in A or
labeled for surface components. Surface SORLA/APP levels were precipitated with streptavidin agarose and visualized by immunoblotting; quantified surface SORLA/APP levels normalized against inputs are
shown in the adjacent graphs. D, HEKswAPP cells were transfected with control or SORLA-overexpression vectors and immunoblotted for the components indicated. sAPP� was also detected in conditioned
media from transfected cells. E, HEKswAPP cells transfected with control or SORLA siRNA were immunoblotted for the components indicated, in which media conditioned for 5 h was collected for sAPP�
immunoblotting. F, HEKswAPP cells were transfected with control or SORLA siRNAs as indicated and retransfected with control or FLAG–SNX27 vectors as indicated 24 h later. Cells were incubated for an
additional 48 h and immunoblotted for the components as indicated. To quantify CTF� cleavage, band intensity for the four treatments were quantified, and the fold CTF� increase with SNX27 overexpression
was compared between control and SORLA siRNA transfections as indicated. G, HEKswAPP cells were transfected with control or SORLA siRNA oligos and control/FLAG–SNX27 vectors as in F, and conditioned
media was analyzed for sAPP� secretion by immunoblot. sAPP� intensity was normalized relative to control siRNA/vector control transfected cells, and relative fold increases with SNX27 overexpression were
compared between control and SORLA siRNA samples. H, Control or SNX27 siRNA-transfected cells were retransfected with control or SORLA overexpression vectors, and conditioned media was TCA precipitated
and immunoblotted for A�. All graphs depict mean 	 SE from at least three experiments, *p 
 0.05, **p 
 0.01, ***p 
 0.005.
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Figure 10. Model for enhanced non-amyloidogenic APP recycling to the cell surface through SNX27/SORLA interactions. A–C, SNX27 haploinsufficiency affects SORLA/APP distribution to
hippocampal PSD membranes in vivo in a SORLA–Rosa26 background. A, TG2576 mouse hippocampus was homogenized and subjected to membrane fractionation as described in Materials and
Methods. Equal protein quantities were loaded for each fraction, and components were immunoblotted as indicated. B, Hippocampal tissue from TG2576 mice were dissected, homogenized, and
subjected to fractionation as in A. Total, cytosolic, TX-sol, and PSD-enriched fractions were generated and immunoblotted for various components as indicated. C, Hippocampal tissue from six mice
of each genotype were immunoblotted for SORLA and APP from various fractions, in which SORLA and APP were subjected to densitometric quantification. SORLA/APP from cytosolic fractions were
normalized to �-tubulin, whereas TX-sol and PSD-enriched fractions were normalized to SVP38 (synaptophysin) and PSD95, respectively. All values were normalized to averages from SNX27/
SORLA–Rosa26 WT values set to 1.0. Significance values were determined by nonpaired Student’s t tests (*p 
 0.03, **p 
 0.01). D, Model for enhanced non-amyloidogenic APP recycling to the
cell surface through SNX27/SORLA interactions. Left, Amyloidogenic liberation of the A� region (red) is derived from full-length APP through sequential cleavage by BACE1 and the �-secretase
complex; non-amyloidogenic cleavage by �-secretases (blue) at the cell surface precludes A� generation. Right, Model for an SNX27/SORLA shunt to limit amyloidogenic A� generation. SNX27
interactions with the SORLA cytosolic tail at early endosomes can enhance cell surface APP recycling, thereby enhancing cell surface cleavage products such as sAPP�/CTF� (blue) and attenuating
amyloidogenic cleavage of �� (red).
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trafficking in vivo (Steinberg et al., 2013). Our results implicate
SORLA as a likely candidate by which SNX27 diverts APP from
the endosome to the cell surface (Fig. 10D). Although both
SORLA and SNX27 have been characterized previously as traf-
ficking components that reduce the amyloidogenic production of
A�, whether these two components worked interdependently to
attenuate A� levels was unknown. Importantly, our results show
that modulation of these two components can coordinately in-
fluence non-amyloidogenic sAPP� production and reductions in
A� generation. However, we note that, under steady-state condi-
tions, APP is primarily absent from cell surface and endosome
compartments and may therefore be predominantly affected by
Golgi sorting signals. In agreement with this, our results indicate
that modulation of SNX27 levels has only modest effects in
influencing A� generation (Wang et al., 2014b), suggesting that
endosomal trafficking pathways normally compete with APP
Golgi retention/retromer recycling pathways under steady-state
conditions.

SORLA has been reported to reduce A� accumulation
through several mechanisms, such as diverting APP traffic from
the endosome to the Golgi (Fjorback et al., 2012), inhibiting
BACE1/APP interactions (Spoelgen et al., 2006), inhibiting APP
oligomerization (Schmidt et al., 2012), and diverting A� traffic to
lysosomes (Caglayan et al., 2014). Interestingly, SNX27 may sim-
ilarly have a pluralistic role in limiting A� generation in part
through inhibiting the �-secretase complex as reported previ-
ously (Wang et al., 2014b) and in part through SORLA/APP traf-
ficking mechanisms described here. A� reductions with SNX27
overexpression is typically modest (�10 –20%; Wang et al.,
2014b), and we also observed SNX27-mediated reduction in A�
levels with SORLA siRNA transfection (�15%; our unpublished
results). Together, this suggests that SNX27-dependent A� re-
duction can occur through the inhibition of �-secretase in the
absence of SORLA and that its ability to limit A� generation is not
confined to its SORLA/APP trafficking function. Furthermore,
we also observe that perturbations in SNX27 or SORLA in our
experiments fail to mediate any dramatic changes in APP levels
in HEKswAPP cells and in primary neurons. This indicates
that, although we describe changes in �, �, and �-secretase-
dependent APP cleavage products with SNX27 and SORLA
perturbations, both cells and primary neurons maintain a rel-
atively stable APP pool.

Synaptic loss has been linked to cognitive decline in AD, and it
has been postulated that oligomeric A� species is a key underly-
ing component in driving pathophysiological synaptotoxicity
(Tu et al., 2014). This may suggest that site-specific A� genera-
tion at synaptic sites may have exaggerated effects on synaptic
structure and function in AD brain. SNX27 has been observed
previously to be enriched at postsynaptic densities (Hussain et al.,
2014), which may affect synaptic AMPAR recycling to the cell
surface at synaptic sites (Wang et al., 2013; Hussain et al., 2014).
We find that a portion of SORLA and APP partition to PSD-
enriched fractions, and SNX27 haploinsufficiency can attenu-
ate SORLA/APP distribution to PSD-enriched preparations in
SORLA–Rosa26 TG mice. Because oligomeric A� has been cor-
related previously with synaptotoxicity in mouse models (Koffie
et al., 2009), the possibility that SNX27 may regulate APP traf-
ficking and processing at postsynaptic densities indicates that
SNX27/SORLA-mediated APP surface redistribution may have
site-specific effects at synaptic junctions.

SNX27 has been described previously to bind and function
coordinately with members of the core retromer complex, par-
ticularly VPS26 (Steinberg et al., 2013). Interestingly, dysfunc-

tion in members of the core retromer complex has also been
described in AD. Depleted levels of VPS26 and VPS35 have been
observed in AD patient brain (Small et al., 2005), and VPS26,
VPS35, and SNX27 haploinsufficiency mouse models have been
observed to exacerbate AD phenotypes (Muhammad et al., 2008;
Wen et al., 2011; Wang et al., 2014b). Previous studies have also
implicated VPS26 to bind the SORLA tail FANSHY region, in
which mutation of the interaction site redistributes SORLA to
non-Golgi sites, suggesting that VPS26 may also have a role in
endosome to Golgi retrieval (Fjorback et al., 2012). Moreover,
chemical chaperones that stabilize the retromer complex are
found to redistribute APP from endosomes to attenuate amy-
loidogenic APP processing (Mecozzi et al., 2014). Unlike other
members of the retromer complex, SNX27 is primarily involved
in promoting endosome-to-cell surface recycling rather than
endosome-to-Golgi shuttling mediated by the classical retromer
complex (Cullen and Korswagen, 2012). At this point, it is un-
clear why APP shuttling has diverged two differing sorting path-
ways from the endosome. However, because both cell surface and
Golgi sorting can divert APP from accumulation and amyloido-
genic cleavage at lysosomes, both sorting pathways will be of
future interest in developing anti-amyloidogenic drug targeting
strategies.

Among genetic AD risk factors identified so far, a large number of
risk components such as SORLA are found to vary frequently in the
general population but demonstrate low penetrance in triggering
AD onset. In addition to SORLA, a significant proportion of these
frequently-varied/low-risk components comprise endocytic and in-
tracellular trafficking components, including PICALM, BIN1, and
CD2AP (Harold et al., 2009; Hollingworth et al., 2011). Together
with the observation that retromer trafficking component deficiency
can also aggravate AD phenotypes, this suggests that, although intra-
cellular trafficking may not be a primary driver in AD onset, dys-
function of cellular trafficking mechanisms may alter the
intracellular distribution of APP or its associated processing compo-
nents in favor of amyloidogenesis. Because directly altering or inhib-
iting amyloidogenic processing components such as �-secretase
have failed to be clinically effective in treating AD, targeting AD-
associated trafficking components such as SORLA/SNX27 may
prove to be a good alternative in ameliorating AD outcome.

The involvement of SNX27 in AD pathogenesis is particularly
interesting; although its abundance was not altered in AD, SNX27
was previously observed to disrupt and attenuate �-secretase ac-
tivity (Wang et al., 2013, 2014b). Furthermore, SNX27 levels were
observed previously to be reduced in Down’s syndrome through
a C/EBP-dependent mechanism to induce AMPA receptor traf-
ficking dysfunction and synaptic impairment (Wang et al., 2013).
Because the repertoire of SNX27 targets is immense with a diverse
subset of membrane proteins now to include SORLA, it is not
surprising that SNX27 function is essential to proper physiolog-
ical neuronal function.

SNX27 belongs to a large family of Sorting Nexin family of PX
domain components, of which there are at least 33 members (Cul-
len, 2008). Because these components are defined by PX domains
that primarily binds phosphatidylinositol-3,4,5-triphosphate
(PIP3), a large number of these components may intuitively have
some functional role within endosomal compartments. Given that
endosomes are aberrantly enlarged in AD and endosome-enriched
PIP3 levels are reduced in human AD and AD mouse models
(Cataldo et al., 2000; Nixon, 2005; Morel et al., 2013), it will also be
interesting whether any of the other Sorting Nexin family members
are involved in trafficking amyloidogenic components from the en-
dosome and whether this activity involves SNX27 and SORLA.
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In summary, we present evidence for an endosomal sorting
system for APP redistribution from endosomes to the cell surface
involving SNX27 and SORLA trafficking components.
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