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Abstract

Summary: MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction

with novel features for taxonomic and functional abundance profiling. The automated generation

and efficient annotation of non-redundant reference catalogs by propagating pre-computed assign-

ments from 18 databases covering various functional categories allows for fast and comprehensive

functional characterization of metagenomes.

Availability and Implementation: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for

64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE

queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de.

Contact: bork@embl.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics has enabled large-scale studies investigating the

structure, function and diversity of microbial communities. The

computational analysis of samples, often totaling many gigabases of

sequence data, usually involves mapping reads to taxonomic and

functional reference databases (which may require the de novo as-

sembly of predicted genes), and subsequent abundance profiling.

Whereas taxonomic profiling methodology has matured recently

(Segata et al., 2013; Sunagawa et al., 2013), functional profiling still

remains challenging due to the difficulties in assigning functions to

millions of reads from metagenomes. Moreover, current metage-

nomic pipelines (Abubucker et al., 2012; Bose et al., 2015; Edwards

et al., 2012; Glass et al., 2010; Huson et al., 2011; Lingner et al.,

2011; Markowitz et al., 2008; Meinicke, 2015; Glass et al., 2010;

Huson et al., 2011; Lingner et al., 2011; Abubucker et al., 2012;

Edwards et al., 2012; Bose et al., 2015; Silva et al., 2015) for func-

tional annotation and/or profiling mainly implement metabolic

pathway or protein domain databases (Segata et al., 2013) such as

KEGG (Kanehisa et al., 2014), SEED (Overbeek et al., 2014) or

Pfam (Finn et al., 2014). Here, we present metagenomic analysis

toolkit version 2 (MOCAT2), which was developed to enable func-

tional profiling of metagenomes based on a much wider range and

diversity of functional gene annotations. Its features are compared

to existing tools in Supplementary Table S1.

2 The MOCAT2 pipeline

The metagenomic analysis toolkit (MOCAT) (Kultima et al., 2012)

proceeds through the following steps: raw sequence reads are
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quality-filtered and subsequently assembled into longer contigs, on

which open reading frames are predicted (Fig. 1).

Its main extensions in MOCAT2 enable comprehensive functional

profiling, in addition to the eggNOG database, by integrating 18

publicly available resources that cover diverse functional properties

(Table 1). The databases were selected to include large, widely used

protein databases, as well as ones targeting specific functional catego-

ries (Supplementary Text). Each database has been filtered for rele-

vance, for example from the eukaryote-centered database DrugBank

only the genes with bacterial homologs were extracted.

To avoid the computational burden of mapping reads to multiple

databases, predicted genes are first clustered using CD-HIT (Huang

et al., 2010) into a non-redundant gene set, called a reference gene

catalog (Qin et al., 2010). Next, this gene catalog is mapped to the

eggNOG database with wide taxonomic coverage of orthologous

groups, to which sequence annotations from other databases have been

pre-computed so that functional information from multiple databases

can be transferred efficiently to the catalog. This indirect annotation

methodology not only provides a 10-fold speed up compared to dir-

ectly mapping to each database separately, but also enables annota-

tions of short genes, which would otherwise be missed (Supplementary

Figure Fig. S1). For computational efficiency MOCAT2 uses

DIAMOND (Buchfink et al., 2014) in the annotation step. Combined,

these features yield a more than 1400-fold annotation speedup over a

conventional BLAST-based annotation pipeline (Supplementary Text).

Users can either create and annotate their own gene catalogs de novo,

or use pre-computed and pre-annotated reference gene catalogs for the

human gut and skin, mouse gut, or the ocean (Li et al., 2014; Oh et al.,

2014; Sunagawa et al., 2015; Xiao et al., 2015).

Finally, to quantify functional composition, reads from each

sample are mapped to the annotated gene catalog and summarized

over the respective annotation categories (Fig. 1).

Table 1. Databases from which functional properties are obtained

Proteins Coverage Precision Recall Reference

Protein domains and families

eggNOG 7 449 593 100 100 100 Huerta-Cepas et al. (2015)

Pfam 16 230* 87 90 94 Finn et al. (2014)

Superfamily 15 438* 93 89 94 Gough et al. (2001)

(Metabolic) pathways

KEGG 7 423 864 98 93 93 Kanehisa et al. (2014)

MetaCyc 388 782 100 89 94 Caspi et al. (2014)

SEED 4 247 700 99 94 94 Overbeek et al. (2014)

Antibiotic resistance

ARDB 25 360 89 99 88 Liu and Pop (2009)

CARD 2 820 100 81 93 McArthur et al. (2013)

Resfams 123* 80 94 94 Gibson et al. (2014)

Virulence factors

MvirDB 29 357 100 95 93 Zhou et al. (2007)

PATRIC 2 194 475 93 93 93 Mao et al. (2015)

vFam 29 655 35 99 86 Skewes-Cox et al. (2014)

VFDB 1 627 380 86 89 91 Chen et al. (2012)

Victors 3 329 893 91 92 94 Mao et al. (2015)

Complex carbohydrate metabolism

dbCAN 333* 76 99 99 Yin et al. (2012)

Bacterial drug targets and exotoxins

DBETH 228 100 99 86 Chakraborty et al. (2012)

DrugBank 3 899 99 88 94 Knox et al. (2011)

Mobile genetic elements

ICEberg 13 984 98 79 91 Bi et al. (2012)

Prophages 119 183 95 88 91 Waller et al. (2014)

Coverage of each database in percent, e.g., of the 18 202 orthologous groups in KEGG (KO), 17 773 (98%) are covered and thus propagated by the eggNOG

database. Coverage, precision and recall are given as percentages.

*Number of hidden Markov models (HMMs), whereby one HMM can hit several proteins and several HMMs can map to one protein.

Fig. 1. The MOCAT2 pipeline. Read quality control, assembly and gene predic-

tion represent the original MOCAT pipeline (dark green box). Blue path: Genes

are clustered into reference gene catalogs, which are functionally annotated.

Orange path: To quantify functional composition, reads are mapped to the

annotated gene catalog and summarized over the respective annotation cate-

gories. Taxonomic profiles (mOTU, specI and NCBI) are generated by map-

ping reads to mOTU and reference marker gene (RefMG) catalogs
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MOCAT2 now also offers several approaches for taxonomic

profiling, all of which are based on mapping reads to a benchmarked

set of single copy marker genes (Fig. 1). Taxonomic abundance esti-

mates are calculated not only for different NCBI taxonomic levels,

but also for species clusters defined based on molecular sequence

identity (specI; Mende et al., 2013) and species that currently lack

sequenced reference genomes based on metagenomic operational

taxonomic units (mOTU; Sunagawa et al., 2013).

3 Annotation and profiling benchmarks

As complex functional annotation based on 18 databases via indir-

ect propagation of eggNOG annotations is conceptually new, we

benchmarked the (indirect) MOCAT2 annotations and functional

profiles (Supplementary Table S2 and Supplementary Text).

First, we compared the indirect annotations to the direct ones

(generated using the annotation tool of each individual database or

recommended pipeline and cutoffs) for >65 million genes from five

diverse datasets (precision and recall are listed in Table 1).

Next, using data from (Zeller et al., 2014) we compared the dir-

ect annotations to ones produced by COGNIZER and UProC (Bose

et al., 2015; Meinicke et al., 2015), two recently developed annota-

tion tools integrating multiple databases. In our tests, MOCAT2 an-

notations were either similar to, or more accurate, than those of

COGNIZER and UProC (Supplementary Table S3).

Finally, the functional abundance profiles obtained using the in-

direct MOCAT2 annotations were very similar to those obtained

using the direct method (Spearman¼0.95; n¼1300).

4 Conclusions

MOCAT2 is a software pipeline for metagenomics using state of the

art assembly, annotation as well as taxonomic and functional profil-

ing approaches in this fast moving field. Generating and annotating

gene catalogs with precomputed assignments to a large selection of

functional databases allows for comprehensive and efficient func-

tional profiling of complex microbial communities. MOCAT2 thus

enables such analysis at an extent far beyond what other tools cur-

rently offer and is scalable to the anticipated deluge of metagenomic

data from diverse sources.
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