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Introduction

The neural regulation of circulatory function is mainly 
accomplished through the interplay of the sympathetic and 
vagal outflows.1 This interaction can be explored by 
assessing cardiovascular rhythmicity with appropriate 
spectral methodologies.2 Spectral analysis of cardiovascu-
lar signal variability, and in particular of RR period (heart 
rate variability, HRV), is a widely used procedure to inves-
tigate autonomic cardiovascular control and/or target  
function impairment.1–3 The oscillatory pattern which 
characterizes the spectral profile of heart rate (HR) and 
arterial pressure short-term variability consists of two 
major components, at low (LF, 0.04–0.15 Hz) and high 
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(HF, synchronous with respiratory rate) frequency, respec-
tively, related to vasomotor and respiratory activity. With 
this procedure the state of sympathovagal balance modu-
lating sinus node pacemaker activity can be quantified in a 
variety of physiological and pathophysiological condi-
tions.4 Changes in sympathovagal balance can be often 
detected in basal conditions; however, a reduced respon-
siveness to an excitatory stimulus is the most common fea-
ture that characterizes numerous pathophysiological states.

Some cardiovascular control systems affect blood pres-
sure more rapidly and others more slowly. Thus, identify-
ing the frequency components of blood pressure variability 
(BPV) by power spectral analysis can potentially provide 
important information on individual blood pressure con-
trol mechanisms.5 In conclusion, power spectral analysis is 
a powerful diagnostic tool that allows identification of 
pathophysiological mechanisms contributing to cardiovas-
cular diseases, such as hypertension, heart failure, and 
stroke, because it can separate slow from fast cardiovascu-
lar control mechanisms.

The novel axis of renin–angiotensin system (RAS), 
angiotensin-converting enzyme 2 (ACE2)/angiotensin 
(Ang)-(1–7)/Mas appears to play an important role in the 
cardiovascular system by influencing peripheral and cen-
tral mechanisms involved in the control of vascular 
tonus,6,7 and cardiac function.8

The expression of Mas and Ang-(1–7)-forming enzymes 
in blood vessels and the development of endothelial dys-
function in Mas-KO mice illustrates the importance of the 
local ACE2/Ang-(1–7)/Mas axis in blood vessels.9,10 On 
the other hand, ACE2, Mas, and Ang-(1–7) are present in 
different cardiovascular-related areas of the brain includ-
ing rostral ventrolateral medulla (RVLM), caudal ventro-
lateral medulla (CVLM), nucleus of tractus solitarius 
(NTS), and hypothalamus.6,11,12

In these areas, especially in the brain stem, the ACE2/
Ang-(1–7)/Mas axis could modulate the HR and blood 
pressure variabilities which are important predictors of 
cardiovascular risk and provide information about the 
autonomic modulation of cardiovascular system.2 In this 
study we investigated the effect of genetic deletion of Mas, 
a major component of the ACE2/Ang-(1–7)/Mas axis on 
autonomic modulations parameters.

Methods

Animals

Experiments were performed in male Ang-(1–7) receptor 
Mas-knockout (KO, n = 8) and wild type (WT, n = 6) 
FVB/N mice (25-30g), obtained from the transgenic animal 
facilities of the Laboratory of Hypertension, Federal 
University of Minas Gerais. The absence of expression of 
the Mas receptor was confirmed in all knockout animals 
used, based on genotypes analysis, determined from DNA 
extracted from the animal tail, using a polymerase chain 

reaction technique. The animals were housed in controlled-
temperature rooms (22°C) with a 12:12-h dark-light cycle 
and received standard laboratory chow and water ad libi-
tum. All animal protocols were approved by the Instituto de 
Cardiologia-Fundação Universitária de Cardiologia Ethics 
Committee under de approval number: UP: 2546/2009.

Hemodynamic measurements

Mice were anesthetized with intramuscular injection of 
ketamine (4.5 mg/kg) + xylazine (0.2 mg/kg) 24 h before 
the experimental protocol. Polyethylene catheters (PE-10, 
0.28 mm ID, 0.61 mm OD, Biocorp Australia, Huntingdale, 
Victoria, Australia) filled with heparinized saline solution 
were inserted into the femoral artery for direct measure-
ments of arterial pressure (AP). The body temperature was 
maintained at 37°C using a heating pad until the full recov-
ery of animals, which were then placed in individual cages 
and kept in the experimental room for environmental adap-
tation. Conscious arterial pressure recording was per-
formed following the protocol described previously.13

One day after the surgical procedure, a catheter was 
connected to a strain-gauge transducer coupled to a com-
puter-based data acquisition system (model MP100 A-CE, 
Biopac Systems, CA, USA), and pulsatile arterial pressure 
(PAP) was continuously recorded. Mean arterial pressure 
(MAP) and HR were simultaneously calculated from the 
PAP with the software AcqKnowledge (version 3.5.3 for 
Windows) and continuously acquired. The files were 
stored and data was analyzed later.

Spectral analysis

After detecting the pulse intervals (PIs), the heart period 
was automatically calculated on a beat-to-beat basis as the 
time interval between two consecutive systolic peaks or 
PI. All detections were carefully checked to avoid errone-
ous detections or missed beats. Tachograms and systo-
grams were created from AP signals through the 
beat-to-beat PI and SAP, respectively. Sequences of 200–
300 beats were randomly chosen and if the randomly 
selected sequence included evident non stationarities the 
sequence was discarded and a new random selection was 
performed, using the stationary test reported previously.14 
Frequency domain analysis of HRV and BPV was per-
formed with an autoregressive algorithm on the PI inter-
val sequences (tachogram) and on respective systolic 
sequences (systogram).2,15 The power spectral density 
was calculated for each time series. In this study, three 
spectral components were considered: very low frequency 
(VLF), from 0 to 0.10 Hz; low frequency (LF), from 0.10 
to 1.00 Hz; and high frequency (HF), from 1.00 to 5.00 
Hz. The spectral components were expressed in absolute 
(s2 or mmHg2) and normalized units (nu). Normalization 
was obtained by calculating the power of LF and HF and 
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correlating them to the total power without the very low 
frequency component (frequencies that were < 0.1 Hz).4 
Spontaneous baroreflex sensitivity (BRS) was calculated 
using the alpha-index for the LF band (0.10–1.00 Hz). 
The coherence between R-R interval and SAP signal vari-
ability was assessed by means of a cross-spectral analysis. 
Alpha index was calculated only when the magnitude of 
the squared coherence between R-R and SAP signals, in 
the LF band, exceeded 0.5 (range = 0–1). Alpha index was 
obtained from the square root of the ratio between RR and 
SAP variability within the LF band.16

Statistical analysis

Data are presented as mean ± SD (see Table 1). Results 
from the protocol were compared using Student t test. The 
software GraphPad Prism 6.0 for Windows (GraphPad 
Software, San Diego, CA, United States) was used for the 
tests. The significance level was established at p < 0.05.

Results

Regarding the results of this experimental protocol, the 
Mas deficiency group was characterized by some signifi-
cant changes in power spectrum parameters in systolic 
BPV spectral profiles (Table 1). The Mas-KO group pre-
sented higher levels of systolic arterial pressure (SAP) and 

BPV when compared to control, wild type mice. In addi-
tion, the LF component of systolic BPV was higher in the 
Mas-KO group, indicating an increase of vascular sympa-
thetic drive on this model. Figure 1 shows an example of 
spectral analysis applied to systolic series of WT group 
(gray lines) and KO group (black lines).

Discussion

In this study we report for the first time an increase in SAP 
variability in Mas-KO mice. In addition, in keeping with 
previous reports,10 we observed an increase in blood pres-
sure in Mas-KO mice. On the other hand, no significant 
changes in HR, in HRV, or in the sympathovagal balance 
were observed.

The casual interactions and relations between HRV and 
BPV, already recognized in the literature, can be described 
also by statistical characteristics related to the complexi-
ties of the time series. Such parameters demonstrate that 
the HRV and SAP series provide additional information 
and show variations on coupling information in different 
physiological and pathological situations.17 In this case, 
the mismatched variations may be related to physiological 
variations imposed by the model.

The absence of HR variability changes in our study 
contrast with previous observations of Walther et  al.,18 
who reported an increased sympathetic modulation of the 
HR in Mas-KO mice. However, in their study a low sam-
ple rate (250 Hz) was used which limits the capability to 
detect real changes in HR or SAP variability. In addition, 
differences in the genetic background (BL6/N in the 
Walter study and FVB/N in ours) may explain the differ-
ences between studies. For example, Mas-KO in the 
BL6/N are not hypertensive while blood pressure is 
increased in FVB/N Mas-KO mice.10 In female Mas-KO a 
reduction in HR variability was observed; however, again 
the sample rate (250 Hz) rate limits any conclusion regard-
ing this finding.18

It has been described that Ang-(1–7) increase parasym-
pathetic activity after intracerebroventricular (ICV) infu-
sion or microinjection in the NTS.19,20 Indeed, genetic 
ablation of Mas, or ICV and NTS injection of A779,21 
reduced the vagal component of baroreflex.22 These obser-
vations are in contrast with our current data showing 
absence of the sympathovagal balance alterations in 
Mas-KO mice. These differences suggest that the role of 
Ang-(1–7)/Mas in the autonomic modulation of HR is more 
evident upon transient challenge (baroreflex test) than 
steady-state changes in vagal activity like in the present 
study. However, this hypothesis awaits confirmation in 
future studies. Another contributing factor for HR and SAP 
variability could be derived from the kidney. It is possible 
that the lack of Ang-(1–7) action in the kidney could unbal-
ance sodium and water excretion and indirectly impact on 
blood pressure and hence its variability, however changes 

Table 1.  Hemodynamic parameters and spectral analysis 
results.

WT (n = 6) KO (n = 8)

SAP (mmHg) 127.26 ± 11.20 135.07 ± 6.98*
DAP (mmHg) 100.64 ± 14.34 106.88 ± 9.62
MAP (mmHg) 111.78 ± 9.49 118.69 ± 5.37
HR (bpm) 642.11 ± 87.80 601.73 ± 103.91
HRV - var (ms2) 2.92 ± 4.94 2.11 ± 2.02
   - LF peak (Hz) 0.63 ± 0.34 0.68 ± 0.35
   - LF (ms2) 0.56 ± 0.90 0.52 ± 1.07
   - LF (nu) 31.54 ± 20.87 22.64 ± 24.92
   - HF peak (Hz) 3.81 ± 0.52 4.06 ± 0.72
   - HF (ms2) 1.12 ± 1.33 1.34 ± 1.11
   - HF (nu) 68.46 ± 20.87 77.36 ± 24.92
   - LF/HF index 0.64 ± 0.76 0.54 ± 0.93
SAPV – var (mmHg2) 3.54 ± 1.54 5.87 ± 2.12*
   - LF (mmHg2) 0.12 ± 0.11 0.47 ± 0.34*
   - HF (mmHg2) 0.25 ± 0.33 0.20 ± 0.13
   - VLF (mmHg2) 0.02 ± 0.04 0.41 ± 0.68
SBS – alpha LF  
index (ms/mmHg)

2.25 ± 2.20 0.93 ± 1.09

Values reported as mean ± SD. Systolic arterial pressure, SAP; diastolic 
arterial pressure, DAP; mean arterial pressure, MAP; heart rate, HR; 
heart rate variability, HRV; very low frequency component, VLF; low-
frequency component, LF; high-frequency component, HF; sympathova-
gal balance, LF/HF; systolic arterial pressure variability, SAPV; spontane-
ous baroreflex sensitivity SBS. *p < 0.05 compared with control group.
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in blood volume would preferentially influence long term 
blood pressure regulation. An influence in the beat-to-beat 
variability is unlike. The increased SAP levels and variabil-
ity suggested an increased sympathetic modulation in blood 
vessel in Mas-KO mice.23,24 This is in accordance with a 
recent observation showing a strong effect of Ang-(1–7) on 
the adrenergic system in stress-induced increase in sympa-
thetic activity,25 or amygdala stimulation.26

Mas-KO in the FVB/N background exhibited higher 
blood pressures compared to the control with a possible 
autonomic balance shifted in favor of the sympathetic 
tone.27

Furthermore, the possibility that the endothelial dys-
function present in Mas-deficient mice could contribute to 
the increased variability and increased sympathetic modu-
lation in SAP should be considered,10 especially in light of 
a similar change was absent in HR. In summary, we have 
presented evidence for an increased sympathetic modula-
tion of SAP in Mas-KO mice illustrating the importance of 
this GCPR in cardiovascular control. The absence of 
changes in HR deserves further studies for clarification.
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