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The epigenetic information encoded in the genomic DNA
methylation pattern is translated by methylcytosine binding pro-
teins like MeCP2 into chromatin topology and structure and gene
activity states. We have shown previously that the MeCP2 level
increases during differentiation and that it causes large-scale
chromatin reorganization, which is disturbed by MeCP2 Rett
syndrome mutations. Phosphorylation and other posttransla-
tional modifications of MeCP2 have been described recently
to modulate its function. Here we show poly(ADP-ribosyl)-
ation of endogenous MeCP2 in mouse brain tissue. Conse-
quently, we found that MeCP2 induced aggregation of pericen-
tric heterochromatin and that its chromatin accumulation was
enhanced in poly(ADP-ribose) polymerase (PARP) 1�/� com-
pared with wild-type cells. We mapped the poly(ADP-ribosyl)-
ation domains and engineered MeCP2 mutation constructs to
further analyze potential effects on DNA binding affinity and
large-scale chromatin remodeling. Single or double deletion of
the poly(ADP-ribosyl)ated regions and PARP inhibition in-
creased the heterochromatin clustering ability of MeCP2.
Increased chromatin clustering may reflect increased binding
affinity. In agreement with this hypothesis, we found that
PARP-1 deficiency significantly increased the chromatin
binding affinity of MeCP2 in vivo. These data provide novel
mechanistic insights into the regulation of MeCP2-mediated,
higher-order chromatin architecture and suggest therapeutic
opportunities to manipulate MeCP2 function.

In mammals, methylation of cytosine residues at the dinucle-
otide CpG is essential for development and is proposed to reg-
ulate genome organization and expression. This epigenetic
information is recognized and translated by a family of chroma-
tin-organizing proteins containing a conserved methyl CpG

binding domain (MBD)4 (1, 2). MeCP2, the founding member
of the MBD protein family, has been described to function as a
transcriptional silencer through association with corepressor
complexes mediated by its transcriptional repression domain
(TRD) (3–5). Increased expression of MeCP2 in mouse cells
induces aggregation of pericentric heterochromatin in a dose-
dependent manner, and the clustering ability is mostly depen-
dent on the MBD (6 – 8). Purified MeCP2 has also been shown
to cause compaction of nucleosomal arrays in vitro (9).

Mutations within the X chromosome-located MECP2 gene
have been linked to one of the most common human mental
retardation disorders in females, Rett syndrome (Online Men-
delian Inheritance in Man database no. 321750) (10). Although
missense mutations are mostly accumulated within the MBD
(amino acids 78 –162), the majority of nonsense mutations
occur predominantly within the TRD (amino acids 207–310).
MeCP2 Rett syndrome-associated mutations have been shown
to affect the ability of MeCP2 to bind DNA and to compact
polynucleosomal arrays in vitro (9, 11) and MeCP2 chromatin
binding kinetics in vivo (12–14). In addition, we have recently
identified MeCP2 mutants with a decreased ability to accumu-
late at pericentric heterochromatin and/or with decreased het-
erochromatin clustering potential (14, 15). Despite accumulat-
ing evidence in favor of a major role of MeCP2 in controlling
large-scale heterochromatin organization, the underlying mech-
anism and its regulation have so far not been elucidated.

In this study, we found that endogenous MeCP2 from mouse
brain tissue is poly(ADP-ribosyl)ated in vivo. We identified two
distinct MeCP2 domains relevant for poly(ADP-ribosyl)ation
and could show that deletion of these modifiable domains
increased heterochromatin clustering. Furthermore, we found
that PARP-1 deficiency increases the ability of MeCP2 to aggre-
gate and to bind to pericentric heterochromatin. These findings
unravel a novel mechanism modulating MeCP2-dependent
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Experimental Procedures

Expression Plasmids—Mammalian expression constructs cod-
ing for GFP- or YFP-tagged full-length rat MeCP2 (MeCP2G)
and deletions (MeCP2Y.3, MeCP2G.8, and MeCP2G.9) have
been described previously (6, 16). Additional mammalian ex-
pression constructs were generated in the following way. Dele-
tion constructs MeCP2G.11–15 designed with flanking XhoI
and BamHI sites according to the sequence of MeCP2G were
custom-synthesized into pPCR Script (Sloning Bio Technology,
Puchheim, Germany) and subcloned into the XhoI and BamHI
sites of MeCP2G.6 (8). MeCP2G.16 –18 were generated using
site-directed mutagenesis as described previously in detail (17,
18). For expression in Sf9 insect cells, the Bac-to-Bac baculovi-
rus expression system (Invitrogen) was used, employing a rat
MeCP2G construct and a GFP construct described previously
(16, 19).

To express PARP-1 with an N-terminal strep tag, a sequence
encoding the Strep-tactin target peptide Strep Tag III (20) was
synthesized into pPCR-Script-Amp (Entelechon, Bad Abbach,
Germany) flanked by BamHI and NotI sites and subcloned into
pFastBac1 using the same sites. Human full-length PARP-1 and
deletion constructs were generated by PCR amplification using
primers with NotI and XhoI sites and subcloned in-frame with
the strep tag in the pFastBac1 vector.

Cell Culture and Transfection—Pmi28 diploid mouse myo-
blasts were cultured as described before (21). Cells were grown
to 70 – 80% confluency on 16-mm glass coverslips in 6-well
plates and transfected using TransFectin (Bio-Rad). For trans-
fection, 3 �g of plasmid DNA together with 3 �l of TransFectin
were incubated in serum-free medium for 20 min at room
temperature and added to the cells. After incubation at 37 °C
for 4 h, the medium was changed, and the culture was incubated
at 37 °C overnight. For PARP inhibition assays, cells were
treated with 10 mM 3AB (Alexis Biochemicals, Lörrach, Ger-
many) immediately after medium change for 12–15 h. Within
this time, medium plus inhibitors were refreshed every 3 h.
Transfected cells were fixed with 3.7% formaldehyde in 1� PBS
for 10 min. In the case of PARP inhibition, 10 mM 3AB was also
added to the solutions during fixation. All washing steps after
fixation were performed with 1� PBS plus 0.01% Tween 20.
Cells were counterstained with DAPI, followed by mounting in
Vectashield (Vector Laboratories, Burlingame, CA). HEK 293-
EBNA (Epstein-Barr virus nuclear antigen-1) cells (Invitrogen)
were cultured and transfected as described previously (8).

Wild-type and PARP-1�/� mouse embryonic fibroblast
(MEF) cells (22) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM; 1 g/liter glucose) supplemented with 10%
fetal bovine serum, transfected with TransFectin (Bio-Rad;
Hercules, CA, USA) or poly-ethylenimine (PEI, 1 mg/ml in
ddH2O, neutralized with HCl; Sigma-Aldrich, St. Louis, MO,
USA) (15) and fixed with formaldehyde as above.

For fluorescence recovery after photobleaching (FRAP) and
in situ extraction experiments, wild-type and PARP-1�/� MEF
cells were transfected by electroporation. Briefly, the cell pellet
was resuspended in 100 �l of Amaxa transfection buffer (50 mM

KCl, 15 mM MgCl2, 120 mM Na2HPO4 and 50 mM mannitol)
with 2 �g of plasmid DNA. The mixture was then transferred to

an Amaxa cuvette and transfected in an Amaxa Nucleofector�
using the B-32 program for wild-type cells and the B-16 pro-
gram for PARP-1�/� cells. Following transfection, the cells
were immediately transferred into a �-Dish35 mm (ibidi GmbH,
Munich, Germany) with 3 ml of prewarmed and pre-equili-
brated DMEM and incubated for 20 h.

Sf9 insect cells (Invitrogen) were maintained in EX-CELL
420 insect serum free medium (SAFC, Hampshire, UK) supple-
mented with 10% fetal bovine serum with shaking at 100 rpm
and at 28 °C. Transfection of Sf9 cells to produce a recombinant
baculovirus was performed using Cellfectin (Invitrogen) ac-
cording to the instructions of the manufacturer.

Microscopy and Image Analysis—For chromocenter count-
ing, fixed cells were examined on a Zeiss Axiovert 200 epifluo-
rescence microscope. Image stacks (0.5-�m Z interval) were
acquired with a �63 Plan-Apochromatic numerical aperture
(NA) 1.4 or �40 Plan-Neofluar NA 1.3 oil immersion phase-
contrast objectives and a PCO Sensicam QE cooled charge-
coupled device camera. Images were processed with Adobe
Photoshop and ImageJ (http://imagej.nih.gov/ij/). Three-di-
mensional rendering of image stacks was performed using
AMIRA (Visage Imaging Inc., San Diego, CA) software. Image
stacks were analyzed for chromocenter numbers as described
in detail before (14).

To evaluate heterochromatin accumulation ability, confocal
Z stacks were acquired using an UltraView VoX spinning disc
system (PerkinElmer Life Sciences) on a Nikon Ti microscope
equipped with an oil immersion �60 Plan-Apochromat NA
1.45 objective lens (Nikon, Tokyo, Japan) (voxel size, 0.12 �
0.12 � 0.5 �m) and a 14-bit electron multiplying cooled charge-
coupled device camera (catalog no. C9100-50, Hamamatsu
Photonics K.K., Hamamatsu City, Japan). Z stacks were ana-
lyzed using Volocity 5.5 software (PerkinElmer Life Sciences).
The chromocenter and nucleoplasm were segmented by inten-
sity-based thresholding (Fig. 3). Accumulation at chromo-
centers was calculated from the ratio of the mean gray value at
chromocenters to the mean gray value in the nucleoplasm.
Accumulation values from both wild-type and PARP-1�/� cells
were then normalized to the median accumulation in wild-type
cells.

To evaluate the binding kinetics of fluorescently tagged
MeCP2 and deletion mutants in wild-type and PARP-1�/�

cells, a whole chromocenter was photobleached using an Ultra-
VIEW VoX spinning disc system (PerkinElmer Life Sciences)
mounted on a Nikon Ti microscope equipped with an oil
immersion �60 Plan-Apochromat NA 1.45 objective lens as
described before (23). Quantitative evaluation was performed
using ImageJ, and fluorescence intensity normalization and
curve fitting were performed with easyFRAP software as de-
scribed before (23). T half-values were extracted from the single
exponential fitting, and plots were generated with RStudio.

To evaluate the extractability of fluorescently tagged MeCP2
and deletion mutants in wild-type and PARP-1�/� cells, in situ
extractions were performed, and release of MeCP2 was mea-
sured in real time. The assay was performed as described before
with the following exceptions (14). Live-cell imaging was per-
formed on an UltraVIEW VoX spinning disc system (Perkin-
Elmer Life Sciences) mounted on a Nikon Ti microscope
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equipped with an oil immersion �60 Plan-Apochromat NA
1.45 objective lens. The cells were washed once with PBS/
EDTA and imaged. Then the solution was changed to PBS con-
taining 0.5% Triton X-100. Confocal Z stacks were acquired at
2-min time intervals for MeCP2G and MeCP2Y.1 for 14 min
and 40-s intervals for MeCP2Y.3 for 2 min. Quantifications
were performed using Volocity (PerkinElmer Life Sciences).
The total fluorescence intensity signal at the chromocenters
was calculated for each time point, and, for each cell, the fluo-
rescence intensity was normalized to the total intensity of chro-
mocenter before Triton X-100 treatment.

In Vivo Binding Assays—HEK 293-EBNA (Invitrogen) or
MEF cells (22), transfected with expression plasmids as indi-
cated, were pelleted after washing with 1� PBS, and lysis was
performed for 10 min on ice. To disrupt protein-DNA associa-
tions and, thus, extract higher protein amounts, buffer B (25
mM Tris-HCl (pH 8.0), 1 M NaCl, 50 mM glucose, 10 mM EDTA,
0.2% Tween 20, and 0.2% Nonidet P-40) was used and supple-
mented with protease inhibitors (Complete Mini, Roche).

Mouse whole brain tissue (3 months old, catalog no. C57BL/
6N, Charles River Laboratories, Inc., Wilmington, MA) was
first fractionated to obtain pure nuclei. Tissue (6 g) was first
homogenized in a 0.25 M sucrose solution (20 mM triethanol-
amine-HCl (pH 7.6), 30 mM KCl, 5 mM MgCl2, 0.1 mM PMSF,
and 1 mM DTT). After centrifugation at 1000 � g for 10 min, the
pellet was resuspended in 2.1 M sucrose solution followed by
centrifugation at 50,000 � g for 40 min. The pellet was again
dissolved in 0.26 M sucrose solution, and centrifugation was
done at 1000 � g for 10 min. The isolated nuclei were incubated
in buffer B for 15 min on ice. 500 �l of the extract was diluted 1:4
with buffer C (25 mM Tris-HCl (pH 8.0), 50 mM glucose, 10 mM

EDTA, 0.2% Tween 20, and 0.2% Nonidet P-40) to obtain an
NaCl concentration of 250 mM. After centrifugation (20,000 �
g, 15 min, 4 °C), rabbit polyclonal anti-MeCP2 antibody (40 �g)
(16) or chromatographically purified rabbit IgG (40 �g,
Organon Teknika Corp., catalog no. 55944, Durham, NC) was
added to the supernatant and incubated for 1.5 h while rotating
at 4 °C. To pull down the immunocomplexes, 50 �l of protein
A-agarose beads (Fast Flow, Upstate, Temecula, CA), equili-
brated with the corresponding buffer, was added and incubated
for 1 h.

For purification of MeCP2 from mouse brain tissue employ-
ing Tris-NTA-coupled beads (a gift from R. Tampé, Goethe
University, Frankfurt, Germany), �1 � 107 mouse brain nuclei
in 1� PBS were subjected to centrifugation (14,000 rpm, 10
min, 4 °C). The nuclear pellet was dissolved in 0.2% Triton
X-100 in 1� PBS supplemented with protease inhibitors as
described in Ref. 19, incubated for 10 min on ice and afterwards
washed three times with 1� PBS. 300 �l of binding buffer (20
mM imidazole and 0.5 M NaCl in 1� PBS) was added, and soni-
fication was performed twice for 20 s at 70% intensity followed
by centrifugation (14,000 rpm, 10 min, 4 °C). 120 �l of Tris-
NTA-coupled beads (NHS-activated Sepharose 4 Fast Flow, GE
Healthcare) was washed three times with binding buffer and
activated for 15–20 min with NiSO4-hexahydrate (20 mM),
added to the protein lysate, and incubated overnight at 4 °C
under rotation. To elute the proteins from the beads, the beads
were washed with 40 mM imidazole for 15 min.

To purify endogenous MeCP2 from mouse brain tissue using
boronic acid beads, mouse brain tissue was lysed in hot lysis
buffer (5 mM Tris HCl (pH 8), 250 mM NaCl, 1% SDS, 0.1% Non-
idet P-40, 5 mM MgCl2, and 0.5 mM EDTA) supplemented with
protease inhibitors (Roche), the poly(ADP-ribose) glycohydrolase
inhibitor RBPI-4 (provided by Paul J. Hergenrother (24)), and 100
�M 3AB (Alexis Biochemicals), followed by centrifugation (14,000
rpm, 10 min, room temperature). 30 �l of boronic acid bead slurry
(Chemicell) was washed twice in lysis buffer, added to each lysate,
and incubated for 30 min at room temperature, followed by three
washes in lysis buffer and one wash in water before proceeding
with SDS-PAGE and Western blotting.

For immunoprecipitation using the GFP binder (Chro-
moTek, Planegg-Martinsried, Germany, Ref. 25), 50 �l of pro-
tein A-agarose beads was incubated with 100 �g of GFP binder
for 1 h, added to the extract, and again incubated for 1 h at 4 °C
while rotating. After a short spin, the supernatant was removed,
and the beads were washed three times with 500 �l of the same
buffer used during cell lysis. The beads were resuspended in 1�
SDS-containing sample buffer, boiled for 10 min at 95 °C, and
analyzed by SDS-PAGE electrophoresis followed by Western
blotting.

Purification of Proteins—Sf9 insect cells (Invitrogen) were
infected with recombinant baculovirus (P3 stock) and incu-
bated at 28 °C with shaking for 5 days. The cells were pelleted by
centrifugation (200 � g, 5 min, 4 °C) and resuspended in either
buffer B or buffer D (PBS containing 300 mM NaCl and 0.05%
Nonidet P-40). All buffers were supplemented with protease
inhibitors (Complete Mini, Roche). After incubation on ice for
10 min, cells were disrupted with a high-pressure homogenizer
(EmulsiFlex-C5, Avestin, Ottawa, Ontario, Canada), followed
by centrifugation at 14,000 � g for 30 min.

Strep-tagged recombinant proteins were purified by incubat-
ing the supernatant with 500 �l of Strep-Tactin-Sepharose beads
(IBA, Göttingen, Germany) for 3 h at 4 °C on a rotary shaker. To
elute strep-tagged proteins, the beads were incubated with D-Des-
thiobiotin (0.5 mg/ml, IBA) dissolved in 1� PBS for 30 min at 4 °C.
After centrifugation (200 � g, 2 min), beads were separated from
the eluate containing the purified proteins.

GFP fusion proteins were immobilized using the GFP-Trap
(ChromoTek) as described previously (25).

Western Blotting Analysis—Western blotting analysis was
performed as described previously (26) using a PVDF mem-
brane (Bio-Rad). Immunoreactive bands were visualized using
either an ECL Plus or ECL Advanced Western blotting detec-
tion kit (GE Healthcare). The following primary antibodies
were used for Western blotting analysis: rabbit polyclonal anti-
MeCP2 (Upstate, catalog no. 07-013), mouse monoclonal anti-
GFP (Roche, catalog no. 11814460001), mouse monoclonal
anti-PARP-1 (F-2, catalog no. sc-8007, Santa Cruz Biotechnol-
ogy), and mouse monoclonal anti-PAR (Trevigen, Gaithers-
burg, MD, catalog no. 4335-MC). Secondary antibodies used
were horseradish peroxidase-conjugated anti-mouse IgG (GE
Healthcare, catalog no. NA 931) and horseradish peroxidase-
conjugated anti-rabbit IgG (Sigma, catalog no. A-0545).

In Vitro Ribosylation Assay—In vitro ribosylation analysis of
recombinant GFP, MeCP2G, or GFP-tagged MeCP2 deletions
immobilized onto GFP-Trap beads (ChromoTek) were per-
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formed as described in Ref. 27 with the following modifications.
Purified st-PARP-1 (50 ng) from Sf9 cells, 20 �M cold NAD� in
addition to [�-32P]NAD�, and 100 ng of DNase I-activated
DNA (Alexis Biochemicals) were used. After the reaction, the
proteins were washed three times with buffer B to disrupt bind-
ing to st-PARP-1.

Quantification of Overexpressed MeCP2G in Mouse Cells—
Mouse myoblast cells were transfected with plasmids coding
for GFP-tagged MeCP2 using FuGENE HD transfection re-
agent (Promega; Madison, WI) according to the instructions of
the manufacturer. Defined amounts of MeCP2G-expressing
cells were separated from untransfected cells and counted
using flow cytometry.

Recombinant MeCP2G, extracted from insect cells using
buffer B, was immobilized to GFP-Trap beads (ChromoTek).
To determine the concentration of immobilized MeCP2G to
obtain an MeCP2G standard, SDS-PAGE was performed, fol-
lowed by staining of the protein using Coomassie Brilliant Blue.
In parallel, defined amounts of a BSA standard were analyzed by
SDS-PAGE with subsequent Coomassie Brilliant Blue staining.
Mean intensity value of BSA standard per ng was calculated and
used to determine the amount of MeCP2G.

To calculate the amount of MeCP2G overexpressed in mouse
myoblast cells, defined amounts of recombinant MeCP2G stan-
dard and MeCP2G extracted from defined numbers of sorted
mouse myoblasts were analyzed by SDS-PAGE and quantita-
tive Western blotting with mouse anti-GFP (Roche) and anti-
mouse IgG-Cy5 (Jackson ImmunoResearch Laboratories) anti-
bodies using fluorescence imaging (Storm 860, Molecular
Dynamics).

Results

Endogenous MeCP2 from Mouse Brain Tissue Is Poly(ADP-
ribosyl)ated in Vivo—Over the last years, several posttransla-
tional modifications have been described for MeCP2. Among
them, phosphorylation of MeCP2 has been implicated to
affect MeCP2 chromatin binding and neurological functions
(28 –31).

Prompted by the poly(ADP-ribosyl)ation of MeCP2 in U2OS
cells reported recently (32), we addressed whether endogenous
MeCP2 from mouse brain tissue was poly(ADP-ribosyl)ated.
For that, we incubated boronic acid beads, specifically enrich-
ing ribonucleotides, with lysates of brain tissue. SDS-PAGE fol-
lowed by Western blotting using anti-MeCP2 antibody showed
that MeCP2 was enriched by boronic acid from mouse brain
extracts, illustrating that MeCP2 is modified by ribonucleotides
in mouse brain tissue (Fig. 1A). To more specifically investigate
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FIGURE 1. Endogenous MeCP2 is poly(ADP-ribosyl)ated in the mouse
brain. A, endogenous MeCP2 from mouse brain extracts was enriched using
boronic acid beads (Br) and input (I) and bound (B) fractions analyzed by
Western blotting (WB) with anti MeCP2 antibody. B, immunoprecipitations
(IP) of WT mouse brain extracts were performed with the indicated antibodies
and analyzed for poly(ADP-ribosyl)ation of endogenous MeCP2 by Western
blotting with anti-PAR followed by anti-MeCP2 antibodies. The asterisk indi-
cates the expected size of endogenous MeCP2. C, endogenous MeCP2 from
mouse brain extracts was enriched through Tris-NTA-coupled beads and ana-
lyzed by Western blotting using anti-PAR followed by anti-MeCP2 antibodies.
The asterisk indicates the expected size of endogenous MeCP2. D, GFP and
MeCP2-GFP were expressed in HEK293-EBNA cells. After immunoprecipita-
tion with GFP-Trap, poly(ADP-ribosyl)ation of the precipitated proteins was
checked via Western blotting with anti-poly(ADP-ribose) (anti-PAR) followed
by anti-GFP antibodies. E, recombinant immobilized GFP and MeCP2-GFP

proteins were incubated with [�-32P]NAD� and DNase I-treated calf thymus
DNA with or without purified st-hPARP-1. After SDS-PAGE, poly(ADP-ribosyl)-
ation was detected by autoradiography (right). Precipitated proteins were
stained with Coomassie Brilliant Blue (CBB, left). F and G, mapping of MeCP2
poly(ADP-ribosyl)ated domains. GFP, MeCP2-GFP, and GFP-fused MeCP2
mutants were expressed in HEK293-EBNA (F) or MEF (G) cells. After immuno-
precipitation with GFP-Trap, poly(ADP-ribosyl)ation of the precipitated pro-
teins was checked via Western blotting with anti-poly(ADP-ribose) followed
by anti-GFP antibodies. Top panels, schematics of fluorescently tagged
MeCP2 constructs. G, GFP; Y, YFP. Numbers indicate amino acid coordinates. In
the case of lanes that were not next to each other on the original blot, dashed
lines were employed to indicate that they were moved together to facilitate
understanding of the data.
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poly(ADP-ribosyl)ation of endogenous MeCP2 from brain tis-
sue, we performed immunoprecipitation assays of brain ex-
tracts with either anti-MeCP2 antibody or control rabbit IgG.
Immunoblot analysis with anti-poly(ADP-ribose) antibody
showed specific poly(ADP-ribosyl)ation of endogenous MeCP2

(Fig. 1B). In addition, we observed poly(ADP-ribosyl)ation of
endogenous MeCP2 enriched from mouse brain extracts using
Tris-NTA-coupled beads, specifically recognizing the naturally
occurring His repeat present within the COOH-terminal
domain (amino acids 366 –372) of MeCP2 (Fig. 1C). We further
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FIGURE 2. Poly(ADP-ribosyl)ation counteracts clustering of pericentric heterochromatin. A, MeCP2 exhibits decreased poly(ADP-ribosyl)ation in PARP-
1�/� MEF cells compared with WT cells. GFP-fused MeCP2 was expressed in WT and in PARP-1�/� MEF cells. After immunoprecipitation using GFP-Trap, poly(ADP-
ribosyl)ation of precipitated proteins was checked via Western blotting with anti-poly(ADP-ribose) (anti-PAR) followed by anti-GFP antibodies. B, PARP-1�/� MEF cells
exhibit enhanced MeCP2-induced chromocenter aggregation in comparison with WT cells. WT or PARP-1�/� MEF cells were transfected with an expression vector
coding for GFP or MeCP2-GFP. Z stacks of images were recorded from nuclei with similar high expression levels of the protein using constant image acquisition
parameters. Experiments were repeated twice with at least 30 cells/construct each time and are shown normalized to control GFP-expressing cells. C, Pmi28 mouse
myoblasts were seeded on coverslips and transfected with an expression vector coding for GFP-fused MeCP2G or GFP-fused MeCP2 deletions lacking the poly(ADP-
ribosyl)ated domains. Using constant image acquisition parameters, Z stacks of images were recorded of nuclei with similarly high expression levels of the GFP-tagged
protein. Graphs show median numbers of chromocenters of cells expressing the indicated proteins. Error bars represent 95% confidence interval. Experiments were
repeated twice with at least 30 cells/construct analyzed each time. **, p � 0.001. G, GFP. D, overview of the subcellular localization of MeCP2 deletions. Pmi28 myoblast
cells were transfected with plasmids coding for MeCP2 deletions fused to GFP as indicated. After fixation, DNA was counterstained with DAPI to highlight chromo-
centers (CC). PC, phase contrast. Scale bar � 5 �m. E, cells were transfected with vectors as indicated and treated with the PARP inhibitor 3AB (10 mM) or dimethyl
sulfoxide (DMSO) control for about 15 h. Graphs and statistics as in C. F, estimation of the amount of GFP-tagged MeCP2 in transfected mouse myoblast cells. Mouse
myoblast cells were transfected with plasmids coding for GFP-tagged wild type MeCP2 (MeCP2G). GFP-positive cells were isolated and counted using flow cytometry.
In parallel, recombinant MeCP2G was purified (using GFP-Trap beads), and its concentration was determined from the mean intensity per ng estimated with a BSA
calibration standard using Coomassie Brilliant Blue (CBB) staining (left and center panels). Defined amounts of purified recombinant MeCP2G and MeCP2G expressed
in defined numbers of sorted cells were analyzed by SDS-PAGE and quantitative Western blotting with an anti-GFP antibody using fluorescence imaging (right panel).
The graphs depict the signal intensity (above background) assessed by ImageJ quantitation and presented as arbitrary units (AU). All signal intensities were within
linear detection range.
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observed poly(ADP-ribosyl)ation of ectopically expressed MeCP2-
GFP but not of GFP alone (Fig. 1D).

To determine whether PARP-1 is responsible for MeCP2
poly(ADP-ribosyl)ation, we performed in vitro poly(ADP-ribo-
syl)ation analysis using recombinant MeCP2-GFP in the pres-
ence of strep-PARP-1 and [�-32P]NAD� (Fig. 1E). Although

GFP was not modified, PARP-1 specifically poly(ADP-ribosyl)-
ated MeCP2, which is in agreement with the in vitro poly(ADP-
ribosyl)ation of MeCP2 published recently (32).

Subsequent mapping identified the domain spanning the
interdomain (ID) and TRD to be strongly poly(ADP-ribosy-
l)ated in vivo (Fig. 1F). Interestingly, the NH2 terminus plus
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MBD and the COOH terminus showed almost no poly(ADP-
ribosyl)ation. We could further narrow down the modified
domain to the ID (amino acids 163–206, poly(ADP-ribosyl)ated
domain 1) and, to a lesser extent, to amino acids 244 –275 (poly-
(ADP-ribosyl)ated domain 2) (Fig. 1F).

Next we tested deletion constructs lacking the poly(ADP-
ribosyl)ated regions (Fig. 1G). Although deletion of poly(ADP-
ribosyl)ated domain 2 (MeCP2G.17, deletion of amino acids
244 –275) resulted in slightly less poly(ADP-ribosyl)ation than
deletion of the full-length domain, the construct lacking poly-
(ADP-ribosyl)ated domain 1 (MeCP2G.16, deletion of amino
acids 163–206) showed a strong decrease, and the double dele-
tion (MeCP2G.18) had an even stronger effect (Fig. 1G).

Poly(ADP-ribosyl)ation of MeCP2 Reduces Clustering of Peri-
centric Heterochromatin—Given that MeCP2 is modified by
PARP-1 in vitro (Fig. 1 and Ref. 32), we next tested whether the
absence of PARP-1 in PARP-1�/� mouse fibroblasts might
result in a lack of modification with functional consequence on
the ability of MeCP2 to reorganize heterochromatin. For that,
we compared the numbers of heterochromatic centers in
PARP-1�/� mouse fibroblasts expressing either MeCP2-GFP
or GFP alone with wild-type cells (Fig. 2B). Interestingly, we
could measure enhanced aggregation of chromocenters in
MeCP2-GFP-expressing PARP-1�/� mouse embryonic fibro-
blasts, concomitant with reduced poly(ADP-ribosyl)ation lev-
els (Fig. 2, A and B). We next compared the median numbers of
chromocenters in mouse myoblast cells expressing either
MeCP2-GFP or one of the deletion constructs lacking the poly-
(ADP-ribosyl)ated regions (Fig. 2C). These adult stem cells
express very low to undetectable levels of endogenous MeCP2
(6). First, to rule out that the level of GFP-tagged MeCP2
obtained through ectopic expression in myoblast cells is above
the physiological level of MeCP2 in brain neurons, we per-
formed quantitative Western blotting in combination with
fluorescence imaging. Using recombinant GFP-tagged MeCP2
as a direct calibration standard for the Western blotting
analysis, we could determine the average amount of GFP-
tagged MeCP2 in mouse myoblasts to vary between 1.3–2
pg/cell (Fig. 2F). These amounts are in the range of endogenous
physiological MeCP2 levels per mouse neuronal cell nucleus
(33). The numbers of chromocenters in cells expressing the
poly(ADP-ribosyl)ated domain 1 deletion (MeCP2G.16) or the
double deletion (MeCP2G.18) were reduced significantly com-

pared with cells expressing wild-type MeCP2-GFP (Fig. 2C).
However, the deletion of poly(ADP-ribosyl)ated domain 2
(MeCP2G.17) had a milder effect. These results correlate well
with the poly(ADP-ribosyl)ation levels of the respective con-
structs (Fig. 1G). We could exclude major conformational
changes caused by these deletions because all mutant proteins
localized at chromocenters as the wild-type protein (Fig. 2D).

To further validate that the increase of chromocenter clus-
tering was on the basis of reduced poly(ADP-ribosyl)ation lev-
els and not simply because of deletion of amino acids within
MeCP2, we treated cells with the PARP inhibitor 3-amino-
benzamide (3AB). Because the chromocenter numbers of GFP-
expressing cells treated with 3AB were comparable with
dimethyl sulfoxide-treated cells, we concluded that the inhibi-
tors themselves did not have a significant effect on chromo-
center aggregation (Fig. 2E, left). In stark contrast, MeCP2-
GFP-expressing cells incubated with the PARP inhibitor
exhibited significantly increased clustering of pericentric het-
erochromatin relative to the dimethyl sulfoxide control (Fig.
2E, right).

MeCP2 Binding to Pericentric Heterochromatin Is Elevated in
PARP-1�/� compared with Wild-type Cells—Because the chro-
matin aggregation potential of MeCP2 was increased in PARP-
1�/� mouse fibroblasts in comparison with the wild-type fibro-
blasts (Fig. 2B), we further tested whether the absence of
PARP-1 and its mediated posttranslational modification in
those cells might have a functional effect on the ability of
MeCP2 to bind heterochromatin.

Therefore, we transfected wild-type and PARP-1�/� mouse
fibroblasts with a plasmid coding for GFP-labeled MeCP2 and
quantified MeCP2 binding to heterochromatin in vivo (Fig. 3,
A–D). We found that the heterochromatin accumulation abil-
ity of MeCP2-GFP was increased significantly in PARP-1�/�

compared with wild-type cells (Fig. 3E). This is not the result of
differences in DNA methylation per se at major satellite repeats
in PARP-1�/� versus wild-type cells because it has been
reported recently that cytosine methylation is unchanged (34).

To test whether the poly(ADP-ribosyl)ated domains were
needed, we selected MeCP2 deletions, including or excluding
the modifiable ID-TRD. To allow scoring of chromatin binding
in vivo, we further needed to include the MBD (6, 14). Compar-
ing all of these deletions in PARP-1�/� cells, it became clear
that the ID-TRD was responsible for a significant enhancement

FIGURE 3. The chromatin binding ability of MeCP2 is elevated in PARP-1�/� cells. A–D, image analysis protocol for quantification of chromocenter accumulation.
All steps necessary for analysis were performed using Volocity 5.5 built-in functions such as image processing, object segmentation, and measurements. Z stacks of
cells transfected with a GFP fusion protein were cropped to obtain single nuclei per image. Thresholds for segmentation were set individually for each nucleus. The
chromocenter and nucleoplasm were segmented utilizing the built-in thresholding function, which uses the percentage of the overall image intensity. A, nucleus of
an MeCP2-GFP-expressing cell before segmentation. Bottom right panel, the nucleus in x-y axis view. Top right and bottom left panels, the nucleus in x-z and y-z axis
views, respectively. Scale bars � 5 �m. B, histogram of the frequency of fluorescence intensities plotted on a logarithmic scale. The thresholds for chromocenter (CC)
and nucleoplasm (NP) segmentation are displayed in red and blue, respectively. Care was taken to exclude chromocenters from nucleoplasm segmentation and vice
versa. C and D, visualization of chromocenter (red) and nucleoplasm (blue) segmentation according to the thresholds displayed in B. E, WT or PARP-1�/� MEF cells were
transfected with expression vectors coding GFP- or YFP-tagged MeCP2 constructs as indicated. Z stacks of images were taken from cells expressing comparable levels
of the GFP-fused construct. Experiments were repeated at least twice with as many as 30 cells analyzed per construct each time. The graphs show the accumulation
of the MeCP2 constructs at heterochromatin in PARP-1�/� cells normalized to wild-type mouse fibroblasts. *, p � 0.05; **, p � 0.001. Error bars represent 95%
confidence interval. F, FRAP analysis of full-length GFP-tagged MeCP2 and mutant proteins. Top panel, an example of MeCP2G protein recovery after photobleaching.
Circles indicate the bleached region. Scale bars � 5 �m. Center panel, fluorescence recovery curve for each construct. The experiment was repeated twice with 7–15
cells used each time for analysis. Results were averaged, and the mean value was plotted. Bottom panel, the half-time of each construct and p value for WT and
PARP-1�/� cell line are calculated using a t test. The cell number and median are indicated beside the box plot. G, in situ extraction of full-length GFP-tagged MeCP2
and mutant proteins. Top panel, representative images of MeCP2G and MeCP2Y.1 extraction after 0.5% Triton X-100 treatment. Scale bars � 5 �m. Bottom panel,
normalized fluorescence intensity before and after treatment. For each construct, the normalized intensity was averaged, and the mean value was plotted. The
experiment was repeated twice, and each time 5–10 cells were used for analysis.
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in chromatin binding (Fig. 3E). These data indicate that the
observed effect is not due to methylcytosine binding but that it
requires PARP-1 and the ID-TRD of MeCP2.

To further probe MeCP2 heterochromatin binding kinetics,
we performed fluorescence recovery after photobleaching
(FRAP) analyses of GFP-tagged MeCP2 as well as MeCP2 dele-
tions with or without the modifiable ID-TRD. The results
showed that the ability of MeCP2-GFP to accumulate to peri-
centromeric heterochromatin was accelerated in PARP-1�/�

compared with wild-type cells, as evident by the slower recov-
ery after photobleaching in PARP-1�/� cells (Fig. 3F). Strik-
ingly, the MeCP2 deletion construct, including the ID-TRD,
also showed a prominent enhancement in chromatin binding in
PARP-1�/� compared with wild-type cells, whereas the dele-
tion construct terminating after the MBD domain did not
exhibit any altered chromatin accumulation and displayed a
very fast exchange at heterochromatin (Fig. 3F).

Finally, we performed in situ extraction experiments of
PARP-1�/� and wild-type cells expressing the same full-length
MeCP2 and deletion mutants. Both GFP-tagged full-length
MeCP2 and the deletion containing the ID-TRD domain
(MeCP2Y.1) were extracted after several minutes of Triton X-100
incubation. Importantly, they were extracted faster from wild-type
cells and were still well detectable at chromocenters after 14 min of
detergent treatment in PARP-1�/� cells (Fig. 3G). In stark con-
trast, the mutant truncated after the MBD was very fast and
extracted equally from both wild-type and PARP-1�/� cells.

Together, the results obtained from these three independent
methods addressing chromatin binding clearly indicate that
MeCP2 chromatin accumulation depends on PARP-1 and the
ID-TRD of MeCP2 and that the ID-TRD alone is sufficient to
restore MeCP2 heterochromatin binding ability in vivo to a
comparable degree as the full-length protein.

Discussion

In summary, we showed poly(ADP-ribosyl)ation of MeCP2
in mouse brain tissue (Fig. 1). In addition, we found that
MeCP2-induced pericentric heterochromatin clustering is in-
creased in the absence of PARP-1 (Fig. 2) and could show that the
chromocenter binding ability of MeCP2 is elevated in PARP-1�/�

in comparison with wild-type cells (Fig. 3). Because a reduced
poly(ADP-ribosyl)ation level of MeCP2 led to a significant
but not too strong increase in the chromatin aggregation
ability of MeCP2, we suggest a modulatory role of poly(ADP-
ribosyl)ation in MeCP2-mediated chromocenter aggregation
(Fig. 4).

We propose that varying degrees of poly(ADP-ribosyl)ation
within MeCP2 establish different anionic phosphate-contain-
ing islands within the highly cationic MeCP2 protein. This
should lower MeCP2 affinity to negatively charged DNA and/
or chromatin proteins (3–5). Because nucleosome-MeCP2-
nucleosome or DNA-MeCP2-DNA interactions have been
proposed as a mechanism for MeCP2-induced chromatin com-
paction in vitro (11), we demonstrate here that poly(ADP-ribo-
syl)ation could interfere with these interactions and uncluster
chromatin in vivo. Although the MBD domain is necessary and
sufficient for chromatin clustering in vivo (6), different lines of
evidence point to an additive function of the ID-TRD in this

context. On one hand, fluorescence recovery after photo-
bleaching studies demonstrated that, in addition to the MBD,
the ID and TRD also strengthen MeCP2 chromatin binding in
vivo (Fig. 3 and Refs. 12, 13). On the other hand, in vitro bio-
chemical analyses showed that the ID and TRD contribute to
DNA and nucleosomal interactions (35). The fact that poly-
(ADP-ribosyl)ation targets both of these domains suggests a
regulatory role of this modification in the MeCP2 chromatin
remodeling function. Our results showing an increase of chro-
matin binding in PARP-1�/� compared with wild-type cells
reinforce this proposal.

Most nonsense and frameshift mutations reported in Rett syn-
drome truncate MeCP2 after the MBD, and, in particular, the
nonsense mutations R168X and R255X are among the most
frequent mutations in Rett syndrome patients. This suggests
that aberrant MeCP2 poly(ADP-ribosyl)ation could addi-
tionally contribute to protein dysfunction in Rett syndrome, as
has been proposed recently for phosphorylation of MeCP2
(28 –30).

Our data reveal a complex interplay between MeCP2 do-
mains, their regulation by poly(ADP-ribosyl)ation, and the
functional consequences for MeCP2-mediated, higher-order
chromatin organization. We propose that residues within the
MBD domain of MeCP2 and poly(ADP-ribosyl)ation within the
ID and TRD work in concert to mediate and regulate MeCP2
function in modeling chromatin architecture. Because we have
shown recently that the ID-TRD mediates homo-interactions
of MeCP2 (19), it is tempting to speculate that poly(ADP-ribo-
syl)ation within this domain negatively regulates the ability of
MeCP2 to cross-link chromatin fibers in vivo.
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Chromatin binding and clustering

MeCP2 poly(ADP-ribosyl)ation

FIGURE 4. Summary of factors influencing MeCP2-mediated heterochro-
matin binding and clustering. A higher level of MeCP2 and/or a decrease of
MeCP2 poly(ADP-ribosyl)ation causes increased heterochromatin binding
and clustering (hyperclustering).
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