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Supplementary Methods 

 

Behavior 

Before experiments all animals were single caged and handled extensively. First, mice were 

tested in the hot plate test to rule out a priori differences in pain sensitivity. Mice were placed 

on a 55 °C hot plate and their latency to lick hind paws was assessed by an experimenter 

who was blind with respect to the animal genotype. Immediately after first occurrence or after 

a maximum duration of 30 s, mice were removed from the plate to avoid tissue damage 

(Wrenn et al.,  2004). 

  

19 days later fear conditioning and extinction training took place in a sound isolation cubicle 

containing a 16 x 32 x 20 cm acrylic glass arena with a grid floor, loudspeaker and ventilation 

fan (background noise 70 dB SPL, light intensity < 10 lux; TSE, Bad Homburg, Germany). 

Three training sessions were applied on consecutive days, each comprising 2 min initial 

context exposure followed by mild electric foot shock (1 s, 0.4 mA) and additional 30 s in the 

training apparatus. One day after the last training, extinction training commenced with five 

daily 10 min exposures to the training context without any foot shock reinforcement. Freezing 

behavior (lack of any detectable movement except for respiration) was determined as a 

measure of fear. Data were analyzed in 2 min bins throughout training and extinction to 

isolate possible time-dependent between-session and within-session effects in a most 

accurate manner possible. Data is reported as percent time of the investigated 2 min time 

interval (except Suppl. Figure 6). The first 2 min of each training and extinction session were 

taken for the analysis of long term memory; moreover, planned comparison of the last 2 min 

interval with the first interval of the following extinction session was done to determine fear 

recovery between two sessions. Animal behavior was assessed online via a photo beam 

detection system and the number of freezing bouts > 1 s and the total duration of freezing 

behavior were assessed as established measures of fear memory (Albrecht et al.,  2013; 
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Laxmi et al.,  2003). Baseline activity levels were evaluated before first shock application 

(with activity defined as time spent moving at a velocity between  3 to 20 cm/s). 

 

To investigate whether the observed deficit is specific for contextual fear memory or more 

generally related to deficits in fear extinction, we performed auditory cued fear conditioning 

and extinction in a separate batch of Hprtα3L185L +/0; PvalbCre +/- mice (N = 10) and Hprtα3L185L +/0 

control mice (N = 9). As described before mice were single caged before the experiment 

started. Before conditioning, animals were adapted to the chamber twice a day on two 

consecutive days for 6 minutes per session. On the third day, mice were trained with three 

tone/shock pairings (tone: 9 s, 10 kHz, 85 dB SPL co-terminating with a foot shock: 1 s, 

0.4 mA; ISI: 20 s), preceded and followed by each 2 min without acoustic stimulus 

presentation. For the next five days, mice received extinction training for the cue in the 

neutral context (a standard home cage, placed into the training apparatus; R/E1-E5). One 

extinction session consisted of a total of 20 tone presentations (each 10 s) with ISI of each 

20 s and was again preceded and followed by 2 min without acoustic stimulus presentation. 

In addition to a stimulus-by-stimulus analysis, to allow for comparison to contextual 

extinction, auditory fear memory was assessed in 2 min bins throughout training and 

extinction. Data is reported as percent time of the investigated 2 min time interval. For tone-

specific fear memory, freezing duration and number of freezing bouts during the first 4 CS 

presentations were averaged and used for analysis. Finally, after extinction training the cue 

was presented in the original shock context to test for context-induced fear renewal (Fig. 3). 

 

Electrophysiology 

In total, 18 naïve control mice (Hprtα3L185L +/0; n = 64 slices) and 16 Hprtα3L185L +/0; PvalbCre +/- 

mice (n = 68 slices) were investigated. CA3-CA1 network interactions during SPW-R activity 

was investigated using 5 naïve control mice (Hprtα3L185L +/0; n = 19 slices) and 4 Hprtα3L185L +/0; 

PvalbCre +/- mice (n = 15 slices). For correlation of SPW-R activity and freezing behavior 

additional 8 control mice (Hprtα3L185L +/0; n = 40 slices) and 8 Hprtα3L185L +/0; PvalbCre +/- mice (n = 
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37 slices) were studied after extinction session E2. For slice preparation, mice were 

decapitated under N2O (70 % N20 - 30 % O2) and isoflurane (starting with 3 % isoflurane and 

then rapidly reducing it to 0.5 %). Brains were placed in ice-cold artificial carbogenated (5% 

CO2 - 95% O2) cerebrospinal fluid (ACSF) which contained (in mM) 129 NaCl, 21 NaHCO3, 3 

KCl, 1.6 CaCl2, 1.8 MgSO4, 1.25 NaH2PO4 and 10 glucose, pH 7.4, osmolarity: 300 ± 5 

mosm / kg. Horizontal hippocampal slices (400 μm at bregma -4.7 to -7.3 mm, 3-4 slices from 

most ventral portion) were prepared at an angle of 12° in the fronto-occipital direction (with 

the frontal portion up) using a vibratome (752 M Vibroslice, Campden Instruments). To 

achieve dorsal transverse-like slices, we used several methods described in the literature 

(Papatheodoropoulos and Kostopoulos 2000; Papatheodoropoulos and Kostopoulos 2002; 

Dougherty et al.,  2012; Steullet et al.,  2010). First, the dorsal part of the hippocampus was 

isolated and glued to the cutting platform, the most dorsal part facing upwards. The stability 

of the hippocampus during slice cutting was achieved via an agar block positioned behind the 

hippocampus. Second, ~30° or ~45° tilted coronal hemisphere sections were cut to obtain 

transverse slices of the dorsal hippocampus (Dougherty et al.,  2012; Steullet et al.,  2010). 

Last, parasagittal hemisphere sections (~30° tilted or without any angle) were cut to achieve 

transverse-like dorsal hippocampal slices. None of the dorsal hippocampal slices prepared 

using the methods described above showed any spontaneous SPW-Rs (N = 8 mice, n = 48 

slices). This is in line with the previous observations showing lack of spontaneous activity in 

isolated dorsal hippocampal slices (Papatheodoropoulos and Kostopoulos 2002). 

 

Brain slices were transferred to an interface recording chamber continuously perfused with 

ACSF at a flow rate of 1.8 ± 0.2 ml / min at 36 ± 0.1 °C. Slices were incubated for at least 

one hour before starting field potential (FP) recording using microelectrodes (5-10 MΩ) filled 

with ACSF. Signals were pre-amplified using a custom-made amplifier equipped with 

negative capacitance compensation and low-pass filtered at 3 kHz. Signals were sampled at 

a frequency of 5-10 kHz and stored on a computer hard disc for off-line analysis (Cambridge 

Electronic Design, Cambridge, UK). 
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Recordings were made in stratum pyramidale (SP) of CA1 and CA3. After at least one hour 

of slice recovery, the majority of the ventral horizontal slices exhibited spontaneous SPW-Rs 

in the hippocampus. For analysis of SPW-Rs, data files with 3 min recording time were 

extracted and further analyzed using a MATLAB-based code (MathWorks, Natick, MA). 

Sharp waves (SPW) were detected by low-pass filtering the data at 45 Hz. For the filtering of 

the recordings, an 8-order symmetric Butterworth filter was used (He et al.,  2010). The 

threshold for event detection was set to 3 times the standard deviation added to the mean of 

the lowpass-filtered signal. Also, the minimal time interval between two subsequent SPW 

was set to 100 ms. An event crossing the threshold but closer than 80 ms to the previous 

SPW was discarded. Data stretches of 125 ms centered to the maximum of sharp wave 

event were stored for further analysis. To analyze area under the curve of SPW events points 

crossing the mean of the data were used as start and end point of a SPW. The area under 

curve was measured using trapezoidal numerical integration of low pass-filtered data.  

 

To isolate ripples, raw data was band-pass filtered at 120-300 Hz. In our preparation, the 

ripples usually occurred at the ascending phase of the sharp wave. The number of ripples 

changed from 1 to 5 ripples per SPW. Thus data stretches of 15 ms before and 10 ms after 

the maximum of SPW events (25 ms) were stored for further analysis. Threshold for ripple 

detection was set to 3 times standard deviation of the band-pass filtered signal. To analyze 

the ripple amplitude, triplepoint-minimax-determination was used. If the difference between 

falling and rising component of a ripple was higher than 75 %, ripples were discarded from 

analysis. Frequencies of the ripples were calculated only from subsequent ripples. Ripple 

measurements in vivo are obtained from the area CA1. To our knowledge, the ripple 

occurrence in area CA3 in vivo is weak. SPW bursts emerges in the CA3 subregions and 

spread to the CA1 area in vivo. During slow wave sleep that is when hippocampal SPWs 

occur, the coherent discharge of a small group of CA3 cells is the primary cause of spiking 

activity in CA1 pyramidal neurons and ripple occurrence in the area CA1 (Csicsvari et al.,  
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2000). However, in slice preparations one can also observe the ripples superimposed to a 

slow wave (sharp wave) also in the area CA3 (Maier et al.,  2003). Thus, to make a complete 

in depth analysis, we have also included the CA3 ripple data in our analysis. 

 

For the definition of the noise level, the detected peak (trough) distribution was decomposed 

by a bivariate gaussian mixture distribution model supplied by Matlab's statistics toolbox 

(gmddistribution class). The aim was to define the most prominent distribution part of small 

noise values which is assumed to follow a gaussian distribution. This was confirmed by visual 

inspection.  

 

From the estimated noise distribution parameters (mean and standard deviation) a set of 

confidence levels were tested, starting from 2 up to 20 standard deviations above the mean 

in four hundred steps. The test variable, here called peak signal-to-noise ratio, was defined 

as ratio of the squared mean peak value of the fraction above the tested confidence level 

(power of signal - SPW peak) to the squared mean peak value of the fraction below the 

tested confidence level (power of signal without SPW). If the tested confidence level reached 

the values close to the large amplitude values of the SPW events, a large increase of the 

peak signal-to-noise ratio followed. In order to detect prominent changes of the peak signal-

to-noise ratio in dependence of the tested confidence levels, a reference line was defined. 

The reference line begins at the test function value of the smallest tested confidence level 

and ends at the test function value of the highest tested confidence level. The finally used 

confidence level was set at the largest deviation from the reference line. 

 

Only those peak values were accepted that were above the confidence level of the noise 

distribution. For parameter estimation (mean and standard deviation) of the peak value 

distributions a gaussian distribution fitting procedure was applied (normpdf supplied by 

matlab's statistics toolbox). For parameter (shape and scaling parameter) estimation of the 

inter-event interval distributions a gamma distribution fitting procedure was applied (gamfit 
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supplied by matlab's statistics toolbox). Events following their predecessors within less than 

100 ms were discarded.  

 

For analysis of SPW propagation from CA3 to CA1, the temporal relationship between 

presumably connected SPW events between CA3 (starter) and CA1 (follower) was analyzed. 

The connected SPW events had to fulfil the following criteria: 1) A follower event occurred 

between two successive starter event times (larger or equal: the first starter event time; 

smaller: the subsequent starter event time). If there were more than one follower event 

detected, only the closest one was used to calculate the temporal relationship. 2) The 

distributions of the time distance of the connected events were quantified, and connected 

events were included if their time distance were below the 0.05 level of the cumulative 

density function of the time distance distribution. Event trains were created with the sampling 

period of the recording. Each accepted event time was set to one (else zero). Such an event 

train was convolved by a gaussian function with a standard deviation of 2 ms (95 % of the 

area within the duration of 8 ms). For both, the global detected event times and the defined 

connected event times of the two areas, the respective event trains were cross correlated 

(lag zero normalized). The analyzed lag range was +/- 30 ms. The cross-correlation function 

was analyzed by detecting the global maximum correlation value and its lag time. 

Furthermore, the peak values of the connected events were correlated (the zero lag of the 

normalized covariance function). All value distributions were Box-Cox transformed if they did 

not satisfy the Lilliefors test (alpha=5 %). 

 

Correlation between SPW-R activity and freezing behavior  

Animals were sacrificed 1 h after the extinction session E2, and horizontal slices were 

obtained from the ventral hippocampus as described above. Per mouse 6-8 slices were 

obtained and SPW-Rs were recorded simultaneously during 10 min from areas CA3 and 

CA1. Only slices exhibiting SPW-Rs in both CA3 and CA1 were further processed for 

correlation analysis (2-5 slices per mouse). Propagation failure, CA1 incidence, CA3-CA1 
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correlation, CA3 signal-to-noise ratio, and CA3-CA1 latency were extracted from each slice. 

The average value per mouse was obtained by averaging the values obtained from each 

slice. This value was further used for analysis of correlation with freezing duration (in percent 

time of 2 min) at E2. 
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SUPPLEMENTARY FIGURE 1. Acquisition and filtering of the SPW-R data from horizontal 

ventral hippocampal slice preparations. (A) Sketch of a hippocampus illustrating the 

positioning of the electrodes. Note that the electrodes were positioned at pyramidal cell 

layers of CA3 and CA1. (B) Example of a sharp-wave ripple (SPW-R, top); traces of ripple 

oscillations (middle) and SPW (bottom) of the same SPW-R. The data were recorded at 5 or 

10 kHz. The slow component (SPW) was obtained by low-pass filtering at 45 Hz while the 

ripple component was obtained by band-pass filtering between 120 and 300 Hz.  

 

SUPPLEMENTARY FIGURE 2. Lack of correlation between background fluorescence in 

ventral hippocampal slices and freezing duration. (A) Background fluorescence in relation to 

laser power. Each slice processed for confocal microscopy is represented by a circle. Control 

and Hprtα3L185L +/0; PvalbCre +/- mice are color coded grey and blue, respectively. (B) Freezing 

duration (in percent time of 2 min) at E2 in relation to background fluorescence. Animals are 

represented using grey and blue circles.   

 

SUPPLEMENTARY FIGURE 3. Over-night return of fear memory after extinction. All 

genotypes displayed comparable freezing levels in the last 2 min of each session. However, 

while freezing levels were maintained at comparable levels in Hprtα3L185L +/0 and Hprtα3L185L +/0; 

Camk2aCre +/- mice, they significantly increased in Hprtα3L185L +/0; PvalbCre +/- mice in the first 2 

min period of the subsequent session. Data represent mean +/- SEM. R = retrieval, E1-5 = 

extinction days 1-5. Significant difference between subsequent extinction sessions within a 

genotype for Hprtα3L185L +/0; PvalbCre +/- mice is indicated using & or && symbols (&: p < 0.05; 

&&: p < 0.01). 

 

SUPPLEMENTARY FIGURE 4. Sharp wave-ripples (SPW-Rs) in area CA1 of Hprtα3L185L +/0; 

PvalbCre +/- mutant mice. (A) Example traces of SPW-Rs recorded in pyramidal cell layer of 

CA1 in ventral horizontal hippocampal slice preparations. (B) Representative traces of SPW-
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R (top trace), ripples (middle trace) and SPW (bottom trace) of each genotype. For values 

see Table 1. 

 

SUPPLEMENTARY FIGURE 5. Pearson product-moment correlation coefficient “R” was 

used to assess correlation between freezing duration at E2 and SPW-R properties. Freezing 

duration at E2 negatively correlates with CA3-CA1 event failure (A, R = - 0.536; *: p < 0.05) 

and positively correlates with CA1 SPW incidence (B, R = 0.538; *: p < 0.05). 

 

SUPPLEMENTARY FIGURE 6. Pearson product-moment correlation coefficient “R” was 

used to assess correlation between freezing duration in seconds at E2 and mean percentage 

of neurons with different PV signal intensities classified according to the four different PV 

signal intensity groups. In area CA3b of the ventral hippocampus, freezing duration at E2 

positively correlated across genotypes with mean percentages of PV interneurons classified 

“intermediate high” (A, R = 0.59, *: p < 0.05), while it negatively correlated with mean 

percentages of PV interneurons classified “low” (A, R = -0.74, **: p < 0.01). In the dorsal 

hippocampus (B), freezing duration at E2 did not correlate with any of the four fractions of PV 

interneurons. Grey and blue colored circles identify control and Hprtα3L185L +/0; PvalbCre +/- mice, 

respectively. 
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Suppl. Figure 2 
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Suppl. Figure 3 
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Suppl. Figure 4 
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Suppl. Figure 5 
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Suppl. Figure 6 
 

 
 


