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Biomedical literature curation is the process of automatically and/or manually deriving knowledge from scientific publica-

tions and recording it into specialized databases for structured delivery to users. It is a slow, error-prone, complex, costly

and, yet, highly important task. Previous experiences have proven that text mining can assist in its many phases, especially,

in triage of relevant documents and extraction of named entities and biological events. Here, we present the curation

pipeline of the CellFinder database, a repository of cell research, which includes data derived from literature curation and

microarrays to identify cell types, cell lines, organs and so forth, and especially patterns in gene expression. The curation

pipeline is based on freely available tools in all text mining steps, as well as the manual validation of extracted data.

Preliminary results are presented for a data set of 2376 full texts from which >4500 gene expression events in cell or

anatomical part have been extracted. Validation of half of this data resulted in a precision of �50% of the extracted data,

which indicates that we are on the right track with our pipeline for the proposed task. However, evaluation of the methods

shows that there is still room for improvement in the named-entity recognition and that a larger and more robust corpus is

needed to achieve a better performance for event extraction.

Database URL: http://www.cellfinder.org/
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Introduction

Biomedical literature curation is the process of automatic-

ally and/or manually compiling biological data from scien-

tific publications and making it available in a structured

and comprehensive way. Databases that integrate infor-

mation derived in some way from scientific publications

include, for instance, model organism databases (1), pro-

tein–protein interactions (2) and gene–chemical–disease re-

lationships (3). Typical literature curation workflows

include the following steps (4): triage (selection of relevant

publications), biological entities identification (e.g. genes/

proteins, diseases, etc.), extraction of relationships (e.g.

protein–protein interactions, gene expression, etc.), associ-

ation of biological processes with experimental evidence,

data validation and recoding into the database.

Therefore, literature curation requires a careful reading

of publications by domain experts, which is known to be

a time-consuming task. Additionally, the increasing growth

of available publications prevents a comprehensive manual
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curation of intended facts and previous studies show that it

is not feasible (5).

Recent advances in text mining methods have facilitated

its application in most of the literature curation stages.

Challenges have contributed to the improvement and avail-

ability of a variety of methods for named-entity prediction

(6), and more specifically for gene/protein prediction and

normalization (7, 8). Also binary relationships (9) and event

extraction (10) have been improved, and its current per-

formance allows its use on large scale projects (11).

Finally, integrated ready-to-use workbenches have also

been available, such as @Note (12), Argo (13), MyMiner

(14) and Textpresso (15), although the performance and

scalability to larger projects is still dubious for some of

them. A comparison between some of them is found in

this survey on annotation tools for the biomedical

domain (16).

Previous reports (17, 18) and experiments (19) have con-

firmed the feasibility of text mining to assist literature

curation and recent surveys (4, 20) show that, indeed, it is

already part of many biological databases workflows. For

instance, text mining support is being explored for the

triage stage in FlyBase (21), for curation of regulatory an-

notation in (22) and also in the AgBase (23), Biomolecular

Interaction Network Database (BIND) (24), Immune Epitope

Database (IEDB) (25) and The Comparative Toxicogenomics

Database (CTD) (26) databases. Additionally, many solu-

tions have been proposed for the CTD database during a

recent collaborative task (27). Further, Textpresso has been

widely used to prioritize document and for Gene Ontology

(GO) terms (28) annotation in WormBase and The

Arabidopsis Information Resource (TAIR) (29). Named-

entity recognition has also been included in the curation

workflow of Mouse Genome Informatics (MGI) (30) for

gene/protein extraction, and in Xenbase (31) for gene

and anatomy terms, for instance. Finally, few databases

have tried automatic relationships extraction methods: pro-

tein phosphorylation information has been extracted using

rule-based pattern templates (32), recreation of events has

been carried out for the Human Protein Interaction

Database (HHPID) database (33) and revalidation of rela-

tionships for the PharmGKB database (34).

We present the first description of the curation pipeline

for the CellFinder database (http://www.cellfinder.org/),

a repository of cell research, which aims to integrate

data derived from many sources, such as literature curation

and microarray data. It is based on a novel ontology [Cell:

Expression, Localization, Development, Anatomy (CELDA)

(http://cellfinder.org/about/ontology)], which allows stand-

ardization and integration to other available ontologies

on the cell and anatomy domains. Hence, the CellFinder

platform provides a framework for comprehensive descrip-

tions of human tissues, cells and commonly used model

organisms on molecular and functional levels, in vivo and

in vitro.

The CellFinder pipeline for literature curation integrates

state-of-art freely available tools for the document triage,

recognition of a variety of entity types and extraction of

biological processes. Curation is carried out for full text

documents available at the PubMed Central Open Access

(PMC OA) subset (http://www.ncbi.nlm.nih.gov/pmc/tools/

openftlist/), and manual intervention from curators is

currently only necessary for querying new documents for

curation and validation of the derived biological processes.

In both cases, web-based tools are being used, which allow

their integration into the CellFinder web site. We are not

aware of prior usage of available systems for the automatic

extraction of biological events. For instance, Xenbase

manually annotates gene expression events (31), whereas

others databases use proprietary systems (34) or tools,

which do not allow re-use for other domains (33).

Our literature curation pipeline has been evaluated

using a dataset on the kidney cell research. The kidney con-

sists of >26 cell types, which arise and organize into several

anatomical structures during a conserved developmental

process (35). Kidney disease culminates from a common

sclerotic pathway involving epithelial-mesenchymal transi-

tion, extracellular matrix remodeling and vascular changes

(36). Multiple renal and non-renal (e.g. inflammatory) cell

types are involved in these processes, with dynamic gene

expression patterns and functions (37). Therefore, to iden-

tify relevant research describing cells and their interactions

in normal and diseased kidney, we decided to include spe-

cies-independent experimental and clinical data of renal

disease and of kidney development in CellFinder. For the

kidney cell use case, information is compiled about charac-

terization of gene expression profiles in cells and other

anatomical locations, such as tissues and organs. Hence,

named-entity extraction is performed for genes, proteins,

cell lines, cell types, tissues and organs. Gene expression

events are then extracted between a gene/protein and

a certain cell or anatomical part. The sentence below illus-

trates one such example (PMID 18989465):

On the other hand, the podoplanin expression occurs

in the differentiating odontoblasts and the expression

is sustained in differentiated odontoblasts, indicating

that odontoblasts have the strong ability to express

podoplanin.

We are aware of only two previous publications, which

report extraction of gene expression in anatomical loca-

tions from biomedical texts. OpenDMAP (38) uses Protégé

and UIMA-based components, and it has been evaluated

for three applications: protein transport, protein inter-

actions and cell type-specific gene expression. OpenDMAP

extract genes/proteins and cells using A Biomedical Named

.............................................................................................................................................................................................................................................................................................
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Entity Recognizer (ABNER) (39) and a short list of trigger

words. Relationships between the triple gene-cell-trigger

are identified based on manual pattern templates. It re-

ports precision of 64% and recall of 16% from an evalu-

ation of 324 NCBI’s GeneRIFs, which consists of short

descriptions of gene functions.

A more comprehensive study on the expression of genes

in anatomical location was carried out in (40) with the Gene

Expression Text Miner system. The work included extending

150 abstracts from the BioNLP corpus (41) with annotations

for anatomical parts and cell lines, as well as relationships

to the existing gene expression events. Genes/proteins were

extracted using GNAT (42), anatomical part and cell line

recognition was performed by Linnaeus (43) using 13 ana-

tomical ontologies and one for cell lines. A list of expression

triggers was manually built, and association between

the entities is also rule-based. Evaluation on the extended

150 abstracts resulted in a precision of almost 60% and a

recall of 24%.

The next section will describe the CellFinder curation

pipeline and the methods that are used in each stage.

Results for the experiments performed for most of the

steps are shown in the section ‘Results’ followed by discus-

sion on the more important aspects of the pipeline in the

section ‘Discussion and future work’.

Methods and materials

The curation pipeline for the CellFinder database includes

the following steps (cf. Figure 1): triage of potential

relevant documents, retrieval of full text, linguistic pre-

processing, named-entity recognition, post-processing, rela-

tionship extraction, manual validation of the results and

integration of gene expression events into the database.

This section describes details on the methods used in each

phase.

Triage

Document triage is usually the first step in any literature

curation workflow and consists of retrieving potential rele-

vant publications for manual curation or for further pro-

cessing by a text mining pipeline. In the CellFinder project,

Figure 1. Overview of the literature curation pipeline for the CellFinder database. It includes the following steps: triage of
potential relevant documents, retrieval of full text, preprocessing (sentence splitting, tokenization and parsing), named-entity
recognition (genes, proteins, cell lines, cell types, organs, tissues, expression triggers), gene expression events extraction, manual
validation of the results and integration into the database. Automatic procedures are shown in red, whereas the manual ones
are shown in blue.
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we aim to curate only full texts documents, which are avail-

able for text mining purposes, i.e. the ones included in the

PMC OA subset. Although it is a much smaller collection

than the whole Medline, this subset currently contains

>200 000 documents.

In our pipeline, document triage was performed by

querying MedlineRanker (44), a machine learning based

text categorization system. We have performed eight

queries to MedlineRanker as follows: ‘kidney tubular epi-

thelial EMT’, ‘kidney vascular endothelial interstitium’,

‘kidney glomerular basement membrane’, ‘kidney mesan-

gial space podocyte’, ‘kidney development differentiation

pronephros’, ‘kidney extra cellular matrix, ‘kidney regener-

ation mesenchymal precursor’ and ‘corticomedullary junc-

tion’. The search terms were aimed to identify cells, genes

and structures that relate to cells contained in nephrons

and tubules, such as epithelial cells, endothelial cells and

podocytes, as well as cell changes associated with mesen-

chymal–epithelial transition (EMT) and fibrosis, changes in

extracellular matrix and relevant proteins and in cells

during kidney development, such as mesenchymal precur-

sor cells.

Each query retrieved a list of 10 000 (MedlineRanker’s

cut-off) potential PMC relevant documents, including

many repeated documents found across lists. After a post-

processing step, which included verification on whether

documents were part of the PMC OA subset and exclusion

of repeated entries, a list of 2376 documents was derived.

Documents were retrieved from PMC and were processed

through our text mining pipeline.

Pre-processing

Full texts documents were first split by sentences using the

OpenNLP toolkit (http://opennlp.apache.org/) and then

parsed by the Brown Laboratory for Linguistic

Information Processing (BLLIP) parser (https://github.com/

dmcc/bllip-parserV) (45) (also known as McClosky-Charniak

parser). Part-of-speech tags, tokenization and full parsing

were derived from the BLLIP parser output. Dependency

trees were built using the Stanford parser (http://nlp.stan-

ford.edu/software/lex-parser.shtml). Part-of-speech, tokeni-

zation and parsing information are only necessary for the

gene expression extraction (cf. ‘Event Extraction’ below).

Named-entity recognition

Named-entity recognition has been performed for five

entity types: genes/proteins, cell lines, cell types, anatomical

parts and gene expression triggers. Extraction is based on

available state-of-art systems and dictionary or ontology-

based approaches, without any adaption nor retraining.

Methods are similar to the ones investigated in previous

experiments performed with the CellFinder corpus (46).

To enable data integration into the CellFinder database,

all extracted mentions must be normalized to any of the

ontologies or terminologies currently supported by our

database: Cell Ontology (CL) (47), Cell Line Ontology

(CLO) (48), EHDAA2 (49), Experimental Factor Ontology

(EFO) (50), Foundational Model of Anatomy (FMA) (51),

GO (52), Adult Mouse Anatomy (MA) (53) and Uberon (54).

We identify genes using GNAT (42), a system for extrac-

tion and normalization of gene and protein mentions.

GNAT assigns confidence scores (up to 1.0) to the gene/pro-

tein candidates. Based on previous experiments (46), we

have decided for a threshold score of 0.25 for filtering

out potentially wrong gene/protein predictions. GNAT pro-

vides identifiers for all gene mentions with respect to the

EntrezGene database (55).

Cell lines are recognized based on the version 4.0 of

Cellosaurus (ftp://ftp.nextprot.org/pub/current_release/con-

trolled_vocabularies/ cellosaurus.txt), a manually curated

vocabulary of cell lines provided by the Swiss Institute of

Bioinformatics. Synonyms from Cellosaurus were automat-

ically expanded according to space and hyphens, such as

‘BSF-1’, ‘BSF 1’ and ‘BSF1’, resulting in a list of >41 000

synonyms for 15 245 registered cell lines. Matching of the

derived list of synonyms and the full texts is performed by

Linnaeus (43).

For the recognition of cell types and anatomical parts,

we use Metamap (56), a system for Unified Medical

Language System (UMLS) concept extraction. We config-

ured Metamap to generate acronym variants and restricted

results by the following semantic types: ‘Cell’ for cell types

and ‘Anatomical Structure’, ‘Body Location or Region’,

‘Body Part, Organ or Organ Component’, ‘Body Space or

Junction’, ‘Body Substance’, ‘Body System’, ‘Embryonic

Structure’, ‘Fully Formed Anatomical Structure’ and

‘Tissue’ for anatomical parts. Metamap uses natural lan-

guage processing techniques for breaking the text into

phrases and further match them to UMLS concepts. From

the potential matches returned by Metamap, we record not

only the ones with highest score but also those that have

the longest matching with the respective phrase.

Cell types have also been extracted using an ontology-

based approach in which synonyms from the CL are

matched against the full texts. It consists on a list of 2786

cell types from 1491 terms and matching is again per-

formed by Linnaeus (43). Finally, triggers are extracted

based on a list of 509 expression triggers, which was built

manually. Terms from the list are matched against the full

text using Lingpipe (http://alias-i.com/lingpipe/).

Post-processing

Acronym resolution. Metamap includes a step for acro-

nym resolution, which returns a list of the pairs of abbrevi-

ations and long forms found as equivalent. However,

Metamap sometimes recognizes the plural of some abbre-

viations but not the singular form or it does not return

some abbreviations as a mention, but only the long

.............................................................................................................................................................................................................................................................................................
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forms. For instance, for cell types, Metamap recognizes

‘hESCs’ as an acronym for ‘human embryonic stem cells’,

but not its singular form ‘hESC’. Further, although it lists

the pair ‘hESCs’ and ‘human embryonic stem cells’ as being

equivalent, only the long form is returned as a mention.

Based on the list of pairs of abbreviations and long forms

returned by Metamap, we try to match missed abbrevi-

ations and singular forms using Lingpipe.

Ontology mapping. Metamap returns annotations with

regard to Concept Unique Identifier (CUI) terms, the ori-

ginal UMLS identifiers. Whenever available, we map them

to FMA and GO terms using mappings available at the

UMLS database. CUI terms are also mapped to other ontol-

ogies and terminologies supported by UMLS, but not by

CellFinder, such as the CRISP Thesaurus (http://www.nlm.

nih.gov/research/umls/sourcereleasedocs/current/CSP/).To

increase the recall of anatomical terms, we mapped UMLS

CUI terms to CRISP terms [using mappings available at

BioPortal (57)], and then further to other ontologies sup-

ported by CellFinder (e.g. CL, CLO, EHDAA2, MA, Uberon).

Annotations returned by Metamap, which could not be

automatically mapped to any supported ontology, are not

removed, as identifiers could still be provided manually

before integration of the data into the CellFinder database

(not yet supported in the current curation workflow).

Blacklist filtering. Blacklists of manually curated men-

tions and identifiers are used for filtering out potential

false predictions for all four entity types. This list was manu-

ally built based on the analysis of wrongly extracted anno-

tations from the two corpora used for evaluation (cf.

section ‘Results’). The list of mentions contains only one

entry for cell line (‘FL’), 39 for anatomical parts (e.g. ‘organ-

ism’, ‘tissue’ and ‘analysis’), 31 entries for cell types (e.g.

‘cell’ and ‘stem cell’) and 79 entries for genes/proteins

(e.g. ‘anti’, ‘repair’, ‘or in’). The list of identifiers include

those which refer to broad concepts such as ‘cell’

(FMA:68646) or ‘tissue’ (FMA:9637). We filter out extracted

mentions associated to any of the identifiers in this list.

Event extraction

Results from sentence splitting, tokenization, part-of-

speech tagging, parsing, dependency tags and named

entities are integrated into the so-called ‘Interaction XML’

file format (https://github.com/jbjorne/TEES/wiki/TEES-

Overview) (58) used by the Turku Event Extraction System

(TEES) (59). TEES is an event extraction system, which uses

multiclass Support Vector Machine on a rich graph-based

feature set for trigger, edge and negation detection.

Despite recent improvement of relation extraction methods

(10), TEES seems to be the only available system suitable to

be re-trained with novel corpora from any domain without

the need of performing changes in its source code.

We trained TEES in a gold-standard set of 20 full text

annotated documents, 10 on human embryonic stem cell

research (hereafter called CF-hESC), whose entities annota-

tions have been previously published (46) and a new set of

10 full texts documents on kidney stem cell research (here-

after called CF-Kidney). Both corpora have been manually

annotated with the five entity types (gene/proteins, cell

lines, cell types, anatomical parts, expression triggers) and

gene expression events (cf. example in Figure 2). These

events are composed of a trigger, which is always linked

to two arguments, a gene/protein (hereafter called ‘Gene’

argument) and a cell line, cell type or anatomical part

(hereafter called ‘Cell’ argument). We split both corpora

into three parts (training, development and test) and

perform experiments using one corpus or a combination

of both for training. Details on the corpora are shown in

Table 1.

TEES receives the Interaction XML file as input and re-

turns a new XML file, which includes predictions for the

‘Cell’ and ‘Gene’ relationships. The later are subsequently

combined to compose complete gene expression events by

Figure 2. Examples of gene expression events for the kidney stem cell corpus (PMID 17389645, PMCID PMC1885650). Each
expression trigger (dark yellow) is always related with only one gene/protein (in blue) and only one cell (in yellow) or anatomical
part (in red). However, the corpus was also annotated with entities, which do not take part in any event. Visualization of the
corpus was provided by Brat annotation tool (60).
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checking the presence of both a ‘Gene’ and a ‘Cell’ relation-

ship linked to the same trigger. TEES relationships are

restricted to entities present in the same sentence; there-

fore, the same restriction is valid for all derived events.

Manual validation

We applied TEES-trained models on the kidney cell data set

of 2376 full texts. Results were manually validated using

Bionotate (61), a collaborative open-source text annotation

tool. Bionotate presents a snippet of text along with anno-

tated entities, a question, and a list of possible answers.

Curators were instructed to give one answer per snippet,

and although Bionotate allows changing the span of the

named entities, for this experiment, curators were asked

only to answer the question. Bionotate selects snippets ran-

domly among all those included in its repository. A snippet

is no longer presented to the user when a certain number

of agreements (equal answers) have been reached. For this

experiment, one answer from any of our expert curators

suffices.

We have converted the output from TEES event extrac-

tor system to the XML format of the Bionotate. Snippets

are composed of the sentence in which the event occurs

and the two previous and subsequent sentences, for a

better understanding of the context (cf. Figure 3).

Additionally, a link to the respective PubMed entry is pro-

vided, in case those curators needed to check the abstract

or full text of the publication before answering the

question. The questions assessed whether there was a

gene expression event taking place in the snippet, includ-

ing its negation, whether the named entities were correctly

recognized or if the publication was relevant for the kidney

cell research. This resulted in the following possible

answers: [1] Yes, an event is taking place and all entities

are correct. [2] Yes, but the text says the gene expression is

NOT taking place. [3] No, no event is taking place although

all entities are correct. [4] No, this is not a gene expression

trigger. [5] No, this is not a gene. [6] No, this is not a cell or

anatomical part. [7] No, both gene and cell or anatomical

part are incorrect. [8] No, the snippet (publication) does not

seem to be relevant for CellFinder.

Results

In this section, we describe the evaluation performed for

the methods used in the various stages of the text mining

pipeline. We also present an overview of the data, which

have been extracted by our curators with the help of the

pipeline. The triage phase has not been directly evaluated,

except for the answer number 8 during the manual valid-

ation of results (cf. ‘Manual validation’ in this section).

Evaluation of the named-entity recognition and event

extraction will be shown in terms of precision (P), recall

(R) and f-score (F). Precision represents the ratio of the

correct predictions of a particular system among all the

returned ones. On the other hand, recall corresponds to

Table 1. Statistics on the corpora

Features CF-hESC CF-Kidney

Training Development Test Training Development Test

Documents 6 2 2 6 2 2

Sentences 1379 259 539 1578 618 383

Sentences with entities 944 163 302 1344 527 314

Sentences with events 147 26 40 240 210 122

Entities 4158 583 1260 4834 3443 1748

Genes/proteins 1264 163 355 1440 1338 782

Cell lines 198 72 141 11 8 1

Cell types 1556 179 524 917 259 72

Anatomical parts 921 137 173 2116 1380 617

Expression triggers 219 32 67 350 458 276

Relationships 944 160 390 1144 1404 1320

Expression-Gene/protein 472 84 195 572 702 660

Expression-CellLine 13 6 36 14 5

Expression-CellType 435 56 122 411 398 86

Expression-anatomy 24 18 37 147 299 574

Information is shown for the training, development and test data sets of the CF-hESC and CF-Kidney data sets. It includes number of

documents, sentences, sentences with entities and sentences with events. Number of annotations is presented by entity type, and the

number of events also shown according to the entities participating in the relationships.
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the ratio of gold-standard annotations, which were actually

returned by the system. Finally, the f-score is a harmonic

average of both measures and shows the overall perform-

ance of a system.

Pre-processing

During the pre-processing step, sentence splitting in all

2376 full text documents resulted in a total of 581 350

sentences. Parsing and dependency tags conversion was

successfully for 578 572 of them. The parsing information

is only used by the TEES system (cf. ‘Event extraction’ in

section ‘Methods and materials’), which means that

although named-entity recognition was carried out in all

sentences, only those correctly parsed ones were analyzed

by TEES.

Named-entity recognition

Named-entity extraction was evaluated on the develop-

ment and test gold-standard documents belonging to

the human embryonic and kidney stem cell research (cf.

Table 1), but only the development data sets were used

for further improvements of methods, such as trigger list

or blacklist construction and error analysis (cf. section

‘Discussion and future work’). Table 2 shows the evaluation

of each entity type for both corpora. The ‘Exact’ evaluation

assesses annotations, which matched regarding span and

entity type, whereas ‘Overlap+Type’ allowed overlapping

spans for annotations of the same type and ‘Overlap’ let

annotations to have different types. The latter is particu-

larly helpful regarding overlapping annotations between

cell lines, cell types and anatomical parts, as any of these

entity types corresponds to the same argument ‘Cell’ in the

gene expression event (cf. Figure 2).

Recall is particularly low for genes/proteins in the devel-

opment data set of the CF-Kidney corpus owing to a high

number of annotations from a few genes/proteins, which

have been missed by the system: ‘Gata3’ (155), ‘Ret’ (97)

and ‘EpCAM’ (83). Some of these were found by GNAT but

with a recall lower than the threshold we have considered.

Cell lines are very rare in the CF-Kidney corpus, and the eight

Figure 3. Screen-shot of Bionotate configured for the validation of the gene expression events. Three named-entities are always
pre-annotated: a trigger (in green), a gene (in blue) and a cell line, cell type or anatomical part (in red). The answers assess
whether the biological event is taking place, its negation, the accuracy of the named-entity recognition and the relevancy of the
publication from where the snippet was derived.
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identical cell lines of the development data set and the

only one of the test data set were correctly extracted

(thus recall 1.0). Finally, recall is also particularly low for

cell types in the development data set, even when allowing

overlaps. Indeed, there is a great variety of cell types (>100),

which could not be recognized, especially cell types, which

in fact represent gene expressions events, such as ‘NCAM +

NTRK2 + cells’ or ‘Gata3�/Ret� cells’.

The ontology mapping post-processing step could auto-

matically map a total of 171 (CF-hESC corpus) and 121

(CF-Kidney corpus) additional annotations to an identifier

from any of the ontologies supported in CellFinder. They

had been previously extracted by Metamap, but they were

associated only to the UMLS CUI identifier. However, 1342

(33%) and 961 (16%) of the extracted annotations, respect-

ively, remain assigned only to the UMLS CUI identifier, with

respect to the total number of cell types and anatomical

parts.

The acronym resolution procedure has resulted in a slight

increase in recall for cell types and anatomy, without loss of

f-score (result not shown). For instance, recall for cell types

in the CF-hESC corpus increased from 64 to 70% (result not

shown) owing to the extraction of acronyms such as ‘MEF’

(mouse embryonic fibroblast) or ‘EB’ (embryoid body),

which have not been previously returned by Metamap.

Finally, blacklist filtering of terms also allowed a modest

improvement of precision for both corpora (result not

shown). For instance, precision for genes/proteins in the

CF-hESC corpus increased from 43 to 50% (result not

shown) owing to filtering out annotations such as ‘or in’

or ‘membrane’, which had been recognized by GNAT and

genes or proteins.

The named-entity extraction methods were run on the

2376 full texts and resulted in a total of >2 200 000

mentions for all five entity types. Details on the extracted

annotations are presented in Table 3, such as the number

of mentions for each entity type, distinct text spans and

distinct identifiers.

Event extraction

To extract gene expression events, we investigated training

TEES on three models: CF-hESC corpus (6 full text docu-

ments), CF-Kidney corpus (6 full text documents) and a

mix of both (12 full text documents) (hereafter called

CF-Both). Input to TEES should include three data sets:

training, development and test. During the training step,

TEES automatically configures its parameters using the

development data set and presents an evaluation of its

own for the test set. Details on the performance of the

relationship extraction is shown in Table 4 for the three

training models, as well as for the complete events further

performed by the authors. This is the performance of TEES

without the influence of the named-entity recognition pre-

dictions of our text mining pipeline, as only gold-standard

documents are used during the training step. Recall of the

relationships range from 60 to 70% while precision is also

Table 2. Evaluation of the automatic named-entity recognition on the CF- hESC and CF-Kidney corpora

Corpora Match Entity types (recall/F-score)

Genes C. lines C. types Anatomy Expression

CF-hESC

Development Ex. 0.61/0.54 0.68/0.61 0.14/0.15 0.34/0.34 0.72/0.15

OT 0.75/0.65 0.94/0.85 0.62/0.66 0.48/0.45 0.91/0.19

Ov. 0.82/0.69 0.94/0.81 0.70/0.73 0.72/0.62 0.97/0.20

Test Ex. 0.68/0.65 0.40/0.49 0.25/0.28 0.30/0.25 0.45/0.08

OT 0.76/0.72 0.58/0.65 0.58/0.65 0.43/0.35 0.54/0.09

Ov. 0.77/0.71 0.61/0.69 0.77/0.82 0.81/0.71 0.55/0.10

CF-Kidney

Development Ex. 0.34/0.45 1.00/0.33 0.17/0.26 0.69/0.75 0.68/0.43

OT 0.35/0.46 1.00/0.33 0.18/0.27 0.88/0.87 0.69/0.43

Ov. 0.46/0.56 1.00/0.34 0.77/0.80 0.90/0.89 0.76/0.47

Test Ex. 0.69/0.76 1.00/0.33 0.89/0.86 0.67/0.74 0.80/0.42

OT 0.70/0.77 1.00/0.33 0.93/0.89 0.69/0.76 0.80/0.42

Ov. 0.70/0.77 1.00/0.33 0.94/0.91 0.72/0.77 0.81/0.42

Results are shown for the development and test data sets in the format recall/F-score. Matching is evaluated regarding same span and

entity type (Ex.), overlapping span and same type (OT) and overlapping span of any entity type (Ov.).

Table 3. Statistics on the extracted named entities

Annotations Genes C. lines C. types Anatomy Expression

Distinct mentions 702 829 81 074 183 820 565 860 681 370

Distinct spans 34 222 1825 9142 14 874 892

Distinct ids 34 353 11 875 1150 4300

For each entity type, the number of annotations, distinct spans

and identifiers is shown. Sometimes more than one identifier is

assigned to a mention, therefore their high number. Trigger

words (Expression) are not normalized to any ontology.
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good, from 60 to almost 90%. Both the recall and precision

drop when considering the complete events, and recall is

not always as high as the argument with the lower recall.

This is due to the fact that TEES predicts the ‘Cell’ and

‘Gene’ relationships independently, and many of them

are not associated to the same trigger.

In Table 5, we show the performance of TEES relation-

ship extraction when using the predictions obtained in

the named-entity recognition step, as well as gene ex-

pression events derived from the binary relationships.

This is the final performance of our text mining pipeline

for the extraction of gene expression events on cell and

anatomical locations. Additionally, we include the per-

formance for the prediction of the triplets gene-cell-trig-

ger, which represent every possible combination of

annotations from these three arguments in the same sen-

tence. Therefore, it represents the higher possible recall

for the event extraction provided the predicted named

entities.

Results are shown using the approximate span matching,

i.e. for each argument, overlapping matches are allowed,

but entities should have the same type as well as equality of

the argument type (‘Cell’ or ‘Gene’). For the development

data set and when using the CF-Kidney corpus for training

TEES, whether alone or together with the CF-hESC corpus,

no complete event was extracted. This is due to two rea-

sons: (i) the low recall of genes/proteins and cell types for

the CF-Kidney corpus (cf. Table 2, evaluation OT) and (ii) the

inability of the CF-Kidney model to extract events from

documents from other domains, i.e with different cell

type nomenclature. Indeed, no gene expression events

have been extracted from the two development documents

of the CF-hESC corpus included in the development data

set of the CF-Both corpus. This probably due to the high

complexity and variability of the cell types in the CF-Kidney

corpus, with examples such as ‘NCAM� cell’ or

‘EpCAM�NCAM�NTRK2+ cells’.

We have run TEES using the three models (CF-hESC, CF-

Kidney and CF- Both) on the 2376 documents and the

named-entities previously extracted (cf. Table 3). We have

obtained only 115 and 178 gene expression events for the

CF-Kidney and CF-Both models, respectively, whereas the

CF-hESC model retrieved 4280 events. The latter were

derived from almost 127 000 binary relationships, i.e. the

complete events correspond to only 14% of the original

extracted relationships. The last column of Table 5 summar-

izes the number of relationships and derived events, which

have been obtained using each training model.

Manual validation

The gene expression events obtained with the three models

were converted to the Bionotate XML format, and snippets

were loaded into its repository. Curators have manually vali-

dated 2741 snippets, which contained events predicted by

the three distinct models. Results are summarized in Table 6.

The validated data, one file per snippet in the Bionotate’s

XML format, is available for download at the CellFinder web

site (http://cellfinder.org/about/annotation/).

Validation for the events extracted using the CF-hESC

model, the best performing one according to the evalu-

ation and the number of predictions, can be summarized

as follows. About 51% (answers 1 and 2) of the gene ex-

pression events have been extracted correctly, as well as the

participating entities. This includes both positive and nega-

tive statements of gene expression in cell in anatomical

parts. Exactly 17% (answers 3 and 4) of the snippets

described processes not related to gene expression, al-

though the gene, cell or anatomy were correctly recog-

nized. Almost 25% (answers 5, 6 and 7) of the extracted

events contained a wrong identified gene/protein, cell/

Table 4. Evaluation of TEES during training

Data sets Relationship Development Test

P R F P R F

CF-hESC

Cell 0.86 0.56 0.68 0.77 0.45 0.57

Gene 0.91 0.68 0.78 0.82 0.90 0.86

Event 0.60 0.35 0.44 0.38 0.53 0.44

CF-Kidney

Cell 0.71 0.50 0.59 0.62 0.68 0.65

Gene 0.60 0.82 0.69 0.73 0.75 0.74

Event 0.17 0.49 0.25 0.12 0.56 0.20

CF-Both

Cell 0.77 0.55 0.65 0.69 0.64 0.67

Gene 0.67 0.81 0.73 0.69 0.84 0.76

Event 0.55 0.48 0.51 0.50 0.56 0.53

Evaluation is shown for the ‘Cell’ and ‘Gene’ relationships and for the development and test data sets, as described in Table 1. The

complete events derived from a ‘Cell’ and a ‘Gene’ argument associated to the same trigger are also shown. For each training run,

evaluation is carried out on the corresponding development and test data sets, i.e. two documents for each single corpus (CF-hESC and

CF-Kidney) and four documents when training on the joined corpus (CF-Both). Predictions were performed over the gold-standard

named-entity annotations. ‘P’ refers to ‘Precision’, ‘R’ to ‘Recall’ and ‘F’ to ‘F-score’.
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anatomy or both of them, which means that precision was

higher than the average for the named-entity recognition

(cf. Table 2). Finally, 7.2% of the snippets turned out to

belong to documents, which are irrelevant to the kidney

cell domain, which gives a hint on the performance of

the triage step.

Discussion and future work

We have described our preliminary text mining pipeline for

the extraction of five entity types and gene expression

events. In this section, we discuss the most important results

derived from this first experiment with our text mining

curation pipeline.

Named-entity recognition

In the named-entity recognition step, we have considered

only state-of-art and freely available tools, and we did not

train specific systems with the gold-standard corpora dis-

cussed here. Results for entity extraction are in-line with

previous published ones (46), although data sets are

Table 5. Evaluation of gene expression extraction

Data sets Relationship/Event Development Test Predictions

P R F P R F

CF-hESC

Cell 0.43 0.06 0.10 0.76 0.33 0.46 14 551

Gene 0.35 0.22 0.27 0.76 0.79 0.77 112 372

Events 0.50 0.08 0.14 0.27 0.05 0.08 4280

Triplets 0.06 0.51 0.10 0.05 0.35 0.09

CF-Kidney

Cell 0.44 0.02 0.05 0.52 0.57 0.55 109 934

Gene 0.62 0.06 0.10 0.77 0.69 0.73 5520

Event 115

Triplets 0.02 0.19 0.04 0.02 0.28 0.05

CF-Both

Cell 1.0 0.01 0.02 0.70 0.64 0.67 69 079

Gene 0.33 0.01 0.01 0.69 0.84 0.76 3792

Event 178

Triplets 0.02 0.22 0.04 0.03 0.30 0.05

We have trained the TEES system on three data sets: CF-hESC, CF-Kidney and CF-Both. Results for the ‘Cell’ and ‘Gene’ relationships were

provided by TEES during processing of the documents. Performance for complete events is evaluated allowing overlapping matches for

entity spans, but with equality of entity types and argument types. The triplets correspond to every possible combination of the triggers,

genes/proteins, cells or anatomical parts in the same sentence, i.e. the highest possible recall for any relationship extraction system

provided the predictions for the entities. The ‘Pred.’ column presents the number of relationships or complete events, which have been

extracted from the 2376 full texts on kidney research when using each of the training models. ‘P’ refers to ‘Precision’, ‘R’ to ‘Recall’ and

‘F’ to ‘F-score’.

Table 6. Evaluation of the gene expression snippets in Bionotate

Answers CF-hESC CF-Kidney CF-Both Total

No.

snippets

% No.

snippets

% No.

snippets

% No.

snippets

%

1. Yes 1204 49.1 34 29.5 6 3.3 1244 45.4

2. Yes (negation) 47 1.9 3 2.6 0 0 50 1.8

3. No (but entities correct) 218 9.0 8 7.0 1 0.6 227 8.3

4. No (trigger wrong) 194 8.0 28 24.3 78 43.8 300 11.0

5. No (gene wrong) 346 14.1 11 9.6 6 3.4 363 13.2

6. No (cell/anatomy wrong) 207 8.5 26 22.6 9 5.1 242 8.8

7. No (gene/cell/anatomy wrong) 55 2.2 4 3.5 1 0.6 60 2.2

8. No (irrelevant document) 177 7.2 1 0.9 77 43.2 255 9.3

Total 2448 100 115 100 178 100 2741 100

A total of 2741 snippets (gene expression events) were validated. These events were predicted by the three models used for training

TEES event extraction system. Percentages for each answer are also shown.
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different and, therefore, results are not directly compar-

able. A high recall is preferable over a high precision, as

events cannot be predicted if the participating entities have

not been previously extracted. On the other hand, a high

number of wrong predictions slow down the validation

process, and therefore, a balance between precision and

recall (given by the f-score) is also desirable. Provided the

still low recall for some entities, and the consequent low

recall of the event extraction, future work should still focus

on the improvement of the named-entity prediction.

Regarding genes/proteins extraction, most of the missing

annotations could have been recognized by GNAT if we

had used a lower threshold. Other tools could also be com-

bined with GNAT, such as GeneTUKit (62) or BANNER (63).

Additionally, use of domain-specific post-processing, such

as ‘whitelists’ of genes/proteins, would certainly help, and

future work will concentrate on these two approaches.

Recall for genes/proteins increases considerably for both

development data sets when allowing overlaps and an

improvement is also perceived when type equality is

relieved, which shows that some genes overlap with some

cells names or anatomical parts, such as ‘C34’ (a gene) and

‘C34 cell’ (a cell type).

Cell lines are not as common as cell types in our corpora,

specially in the CF-Kidney corpus where this entity type is

almost non-existent (cf Table 1). However, it plays an im-

portant role in the cell research, and scientific literature

reports many gene expression events, which take place in

cell cultures. Restricting our evaluation to the CF-hESC

corpus, recall varies from 60 to >90% when allowing over-

lapping spans (cf. Table 2), but it is still not satisfactory, and

dictionary-based methods might not be sufficient. Missing

annotations for cell lines are mostly due to the absence

of the synonym in any of the available thesaurus or ontol-

ogies, such as ‘SD56’, which is not included in Cellosaurus.

Thus, future work will include training a machine learning

system for cell line recognition, including annotation of

additional gold-standard documents.

Improvement of the event extraction starts with the

improvement of the recall for the named entities.

Performance of cell types and anatomical parts are rather

variable. A good recall is usually obtained when releasing

equality of types, and further experiments should consider

unifying the cell types and anatomical parts in our corpora.

If fact, previous studies on the CF-hESC corpus show that

inter-annotator agreement for these entity types was low

(46). Overlaps between cell types and anatomical parts

should not be a problem for the gene expression event

extraction, as both entity types takes part in the ‘Cell’

argument.

Cell types were sometimes poorly recognized for the

CF-Kidney data set, owing to the high variability of the

nomenclature and the presence of gene expression in its con-

tents, such as ‘NCAM+NTRK2+ cells’ or ‘Gata3�/Ret� cells’.

Thus, improvements on cell type extraction should also focus

on training machine learning algorithms. Mapping cell types

with such a pattern to an identifier is also a challenge, as

these terms are not included in any available ontology. The

prior identification of the original cell type in which the

gene is being expressed can help in the normalization of

these cells, an information that is usually present in the

text, although not always in the same sentence.

Expression triggers are extracted based on a manually

curated list, which assures a high recall. Low recall, such

as the ones for the development data set of the

CF-Kidney corpus are due to unusual trigger words, such

as ‘-’ (negative expression), ‘dim’ and ‘bright’.

Event extraction

We obtained the gene expression events using the TEES

edge detection module, which extracted relationships

between expression triggers and a gene/protein, cell or

anatomy. TEES allows training the system with novel cor-

pora, and during the training step, examples are generated

for all combinations of entities provided in the training

corpus. Therefore, a few relationships returned by TEES

are related to the wrong entity type. For instance, it ex-

tracts some ‘Gene’ arguments associated to cells or anatom-

ical parts and some ‘Cell’ arguments related to genes,

although no such examples can be found in any of our

gold-standard corpora. TEES extracts the relationships inde-

pendently. Therefore, the recall of the binary relationships

does not correspond to the recall of the complete gene

expression event. Future work on event extraction will

also include trying additional event extraction systems,

such as (64, 65).

Use of more annotated documents might also improve

the event extraction. Further experiments can also be

performed using available corpora, such as the set of anno-

tated abstracts of the Gene Expression Text Miner corpus

(40). Additionally, a careful analysis of the wrongly

extracted events returned by TEES when using gold-stand-

ard annotations (cf. low precision for CF-Kidney corpus in

Table 4) could reveal inconsistencies in the manual annota-

tions in our corpora. To avoid huge differences between

development and test results, a cross-validation could

have been investigated. In summary, a cross-validation in

a larger and more robust corpus could provide more stable

results.

Nevertheless, these preliminaries results on extraction of

gene expression in cells and anatomical parts are certainly

interesting for the many groups working on event extrac-

tion, as this is one of the first curation experiment to use a

event extraction system, which had not been developed by

the authors. Additionally, it is probably the first external

evaluation of TEES on a new corpus, one of the very few

event extraction systems available to the public. Finally, the

use of corpora from two distinct cell research domains
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shows how large differences in results are dependent on

the corpus and the corresponding learned model.

Processing of the data set of 2376 full text documents for

kidney cell research resulted in a high number of entities

but apparently a low number of extracted events.

However, recall is unknown, as well as the number of pub-

lications, which described expression of genes in cells and

anatomical parts for the kidney cell research. The number

of correct gene expression events is certainly low compared

with the number of processed documents, but number of

irrelevant publications in our collection is also unknown

and could be higher than 6%, as reported by answer

number 8 of the validation (cf. Table 6).

Next event extraction tasks will involve recognition of

additional relationships, such as identifying the cell type

or tissue from which a certain cell line was derived.

Future work will also include additional biological pro-

cesses, such as cell differentiation. These relationships

have already been annotated in the two gold-standard cor-

pora discussed here and involve the same entities whose

recognition is already included in our pipeline.

Manual validation

Manual validation of 2741 snippets reported that half

of them contained correctly recognized entities and gene

expression events, which is in line with the precision of TEES

shown in Table 5. Curators reported that most mistakes

concentrated on incomplete extraction of genes/proteins

and cell types, such as the recognition of ‘TGF’ instead

of ‘TGF-beta’. Feedback from the validation will help to

improve both recall and precision for the named-entity rec-

ognition by adding more terms to the blacklists (potential

wrong predictions) and by creating ‘whitelists’ (potential

missing annotations).

Curators reported a positive first experience with

Bionotate, although changes in visual interface, short-cuts

and functional features have been suggested as future

work. Next experiments will also focus on the validation of

the identifiers, which were automatically assigned during

the named-entity recognition, as well as allowing curators

to change the span of the pre-annotated entities, a feature

already supported by Bionotate. Validation of the normal-

ized identifiers is an important step before final integration

of the results into the CellFinder database. Version 2.0 of

Bionotate (66) supports this functionality and will certainly

be considered for integration in our pipeline.

Conclusions

We presented here our preliminary results for the text

mining pipeline for curation of gene expression events in

cells in anatomical parts for the CellFinder database. Our

pipeline relies only on open-source or freely available tools,

and evaluation for each stage has been carried out based

on gold-standard corpora. We are not aware of previous

database curation pipelines where text mining methods

have been used in all of the following stages: triage,

named-entity recognition and event extraction.

We performed named-entity extraction extraction for

genes/proteins, cell lines, cell types, tissues, organs and

gene expression triggers. Gene expression events were

extracted using machine learning algorithms trained on

manually annotated corpora from two domains, human

embryonic stem cells and kidney cell research. Results for

both the name-entity recognition and event extraction

steps are promising, although improvements are still neces-

sary to achieve a higher recall and precision.

The text mining pipeline has been used to process 2376

full texts documents on kidney cell research and resulted in

a total of >60 000 distinct entities and >4500 gene expres-

sion events. Half of the events have been manually vali-

dated by experts, and about half of them were classified

as describing a gene expression taking place in a cell or

anatomical part.
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