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ABSTRACT: Mass spectrometry-based proteomics coupled
to liquid chromatography has matured into an automatized,
high-throughput technology, producing data on the scale of
multiple gigabytes per instrument per day. Consequently, an
automated quality control (QC) and quality analysis (QA)
capable of detecting measurement bias, verifying consistency,
and avoiding propagation of error is paramount for instrument
operators and scientists in charge of downstream analysis. We
have developed an R-based QC pipeline called Proteomics
Quality Control (PTXQC) for bottom-up LC−MS data
generated by the MaxQuant1 software pipeline. PTXQC
creates a QC report containing a comprehensive and powerful
set of QC metrics, augmented with automated scoring
functions. The automated scores are collated to create an overview heatmap at the beginning of the report, giving valuable
guidance also to nonspecialists. Our software supports a wide range of experimental designs, including stable isotope labeling by
amino acids in cell culture (SILAC), tandem mass tags (TMT), and label-free data. Furthermore, we introduce new metrics to
score MaxQuant’s Match-between-runs (MBR) functionality by which peptide identifications can be transferred across Raw files
based on accurate retention time and m/z. Last but not least, PTXQC is easy to install and use and represents the first QC
software capable of processing MaxQuant result tables. PTXQC is freely available at https://github.com/cbielow/PTXQC.
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■ INTRODUCTION

The importance of quality control (QC) and quality assessment
(QA) has been long acknowledged. Data quality is a
cornerstone of solid research, demanding repeatability and
reproducibility.2 Ideally, small deviations in performance are
observable, and their origin can be tracked down.
Adverse effects of missing QC can be found in early

proteomics research,3 which could have been prevented if
proper QC was in place.4

In 2009, the Amsterdam Principles5 called for the develop-
ment of universally applicable quality metrics to ensure that
only high-quality data is used in publications and released to
public repositories. In 2012, a corollary was published, detailing
potential metrics.6 Additionally, the National Institute of
Standards and Technology (NIST) proposed a set of 46 QC
metrics in 2010.7

Since then, many QC packages have been developed. NIST
provide their own pipeline called MSQC7,8 for Microsoft
Windows, which can read Thermo and Agilent TOF data and
uses the Open Mass Spectrometry Search Algorithm
(OMSSA)9 or SpectraST10 as the identification engine.
Unfortunately, the output of MSQC is text-based, i.e., no
visualization is provided, and development of OMSSA has been
discontinued. A similar approach, extending the NIST metrics,

is pursued in QuaMeter,11 relying on pepXML or mzIdentML
file formats, which are not supported by all software packages.
Another tool named Metriculator12 uses the NIST pipeline as
the backend and provides plots and tracking of samples via a
web interface. Recently, QC workflows were introduced for
OpenMS/KNIME, along with an XML-based file exchange
format named qcML.13 SIMPATIQCO14 is being actively
developed and extracts QC metrics like injection times, peptide
spectral matches over retention time (RT), protein coverage,
etc. directly from Thermo Raw or Agilent Wiff files, running on
a dedicated server. Identification requires a local Mascot server
or MS Amanda.15 SIMPATIQCO also offers a qcML export.
Amidan et al.16 reported a machine learning approach to
automatically classify standard QC samples that determines
overall instrument performance. The classifier should be trained
on a per-laboratory basis to account for high lab-to-lab
variability. Another tool, which collects and plots QC metrics
like chromatograms, source current, and injections times
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directly from single Thermo Raw files, is RawMeat (http://
vastsci.com/rawmeat/). However, since RawMeat performs no

actual data processing (e.g., peptide identification), only limited
conclusions can be drawn. Extensive data visualization

Table 1. Overview of Quality Metrics and Plots

file source (.txt)
abbreviation
in plots data source heatmap score basis

scoring
functiona

Parameters PAR •General parameters settings (MaxQuant version, modifications,
ppm tol., FASTA database, FDR cutoff, etc.)

NA

Summary SM •MS2 identification rate (1) Distance to “great” threshold •LinRef
ProteinGroups PG •Protein Intensity (MS1, iTRAQ reporter, [LFQ]) NA (not suitable for Raw file based heatmap, since an

experimental group might correspond to more than one
Raw file)

•Fraction of contaminants
•User-defined contaminants
•{SILAC only} Ratio distributions
•PCA plot

Evidence EVD •Peptide Intensity (2) Intensity threshold •LinRef
•Number of protein and peptides per condition (w and w/o
matched)

(3) Count threshold •LinRef

•MBR RT alignment (4) Interfile pair distance •AlignDistc

•MBR RT matching (5) Intrafile group distance •MatchDist
•Charge distributions (6) Deviation from prototype •MedianDistb

•IDs over RT (7) Equal counts per RT bin •Uniform
•MS1 decalibration (8) Proximity to max. tol. •CenteredRefc

•MS1 recalibration error (9) Centeredness around 0 •GaussDev
•Contaminants (10) Summed intensity •LinRef
•RT peak width distribution (11) Deviation from prototype •BestKSb

•Twin sequence fraction (oversampling estimation) (12) % of single MS/MS per Peak •LinRef
Msms MSMS •Missed cleavage (13) Fraction of MC > 0 •Percent

•Missed cleavages variance (14) Deviation from prototype •MedianDistb

•MS2 fragment mass error (15) Centeredness around 0 •Centered
MsmsScans MSMSscans •TopN over RT (16) Equal saturation over RT •Uniform

•TopN (17) Reaching highest N consistently •MaxN
•% identified by TopN (18) Equal ID rate for all N •Uniform
•Ion Injection time (19) Fraction of scans > time threshold •Percent

aSee Supporting Information for details. bThe quality function computes scores per Raw file using other Raw files as reference. All other functions
will return an absolute score, which depends only on the Raw file itself. cThe quality function relies on parameter settings in MaxQuant, which must
be matched in PTXQC. If the mqpar.xml file is present, these settings are extracted automatically.

Figure 1. Experimental and software workflow for bottom-up shotgun proteomics experiments. First, the protein sample is digested, typically using
trypsin, to yield peptides. Subsequently, the sample is subjected to HPLC, separating the peptides by their physicochemical properties. The eluent is
then ionizied using electrospray ionization, and the mass/charge ratio of the peptides is measured. The quality of the resulting spectra is influenced
by all preceding steps. Spectra are then submitted to MaxQuant for analysis. The resulting output is assessed by PTXQC, and upon passing the
quality criteria, it is cleared for downstream analysis. If quality is not satisfactory, then either remeasurement is required or (preferably) MaxQuant
parameters are adapted to remove the bias detected by PTXQC.
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capabilities including QC plots for MS/MS-based proteomics
data are offered by various software packages written in R17

(see ref 18 for an exhaustive review).
To our knowledge, there is no published QC software

capable of processing MaxQuant1 results. However, MaxQuant
has a large user base within the proteomics community and
would thus benefit greatly from QC software to ensure
unbiased downstream analysis.
In principle, raw data could be checked using any QC

software as described above, even before running MaxQuant.
Unfortunately, some of the above tools are not actively
maintained, offer only a command line interface, or produce
only text-based results. Additionally, some QC tools (e.g.,
MSQC) are meant to compare performance only among
dedicated QC samples, i.e., they cannot be used for samples of
biological interest. However, the major drawback of using such
an external QC is the lacking guarantee that MaxQuant will
deliver the same performance. This might simply be due to
deviating parameter settings (e.g., MS2 search tolerance),
internal algorithm specifics (e.g., possibility for calibration of
RT and m/z, Andromeda19 search engine, false discovery rate
(FDR) model), or the support for special experimental designs
(e.g., phosphorylation enrichment). In addition, MaxQuant
features algorithms, such as mass recalibration and second
peptide search, which might enable data recovery to an extent
that is not possible with other tools. Thus, it is paramount to
perform QC checks on the results of MaxQuant and report a
set of comprehensive metrics.
We developed Proteomics Quality Control (PTXQC), which

is capable of reading MaxQuant output and generating a
comprehensive report using a wide range of QC metrics. In
total, PTXQC reports up to 24 quality metrics (Table 1), of
which 19 can be automatically scored using dedicated scoring
functions. The scores are collated to create an overview chart
(heatmap) that displays up to 19 scores per Raw file for a
compressed overview of the whole experiment. The user can
subsequently follow up on detailed quality metric plots of
interest in the remainder of the report.

■ METHODS
A typical shotgun LC−MS experiment in bottom-up
proteomics encompasses the following main steps: digestion,
separation by high-performance liquid chromatography, and
subsequent acquisition of mass spectra (MS) and tandem mass
spectra (MS2) data by a mass spectrometer (Figure 1).
Subsequently, a processing suite for proteomics data (here,
MaxQuant) is used to identify and quantify proteins, typically
comparing different biological conditions. Intermediate results
(e.g., peptide−spectrum matches) are commonly available as
well. Subsequently, it is highly recommended to carry out a QC
assessment (e.g., using PTXQC). If quality is satisfactory, then
the data is cleared for downstream analysis. Upon rejection,
previous steps of the pipeline require optimization. Depending
on the severity of the detected problem, a change in MaxQuant
software parameters (e.g., calibration tolerance or alignment
window) might suffice to pass the QC. Ultimately, QC failure
can trigger a complete remeasurement of the samples (e.g.,
upon unsatisfactory protein digestion).
A good approximation for overall performance of the

pipeline is the number of quantified proteins per sample.
However, this reflects only the average performance of the
pipeline as a whole. If one could benchmark individual stages,
then not only QC but also optimization becomes possible.

Thus, QC tools that report metrics on individual steps of the
shotgun proteomics pipeline can be used to identify poorly
performing parts and identify targets for optimization (Figure
1).
PTXQC makes use of two distinct but related concepts,

namely, quality metrics and quality scores. Quality metrics
(such as digestion performance) are shown in the report using
different kinds of plots, usually detailing the performance of
multiple Raw files concurrently. On the basis of the data
underlying these metrics, PTXQC computes a quality score
using a scoring function (see below). The scores represent the
basis for the overview heatmap, which is presented at the
beginning of the report. In summary, quality metrics offer a
visual guide to user to judge quality, whereas scores computed
from the underlying data represent a mathematically more rigid
way to automatically flag data sets as failed or successful.
To conveniently visualize the metrics, PTXQC makes use of

different types of plots, multiplotting, and color schemes. If
thresholds are known (e.g., MS2 fragment ion search tolerance),
then they are added for visual guidance.

QC Metrics

PTXQC’s metrics can be assigned to four categories,
corresponding to steps in the experimental workflow (sample
preparation, LC, MS, and general performance). An abbrevia-
tion of the data source (Table 1) is provided with every plot,
allowing the user to trace the origin of the information, e.g., PG
indicates the MaxQuant’s protein groups table, EVD points to
the evidence table, etc.
In the following paragraphs, we introduce three novel and

powerful QC metrics exclusively found in PTXQC, namely,
custom contaminants and metrics for RT alignment and
transfer of spectrum identifications across Raw files. Details on
common metrics like digestion efficiency, charge distribution,
and ion injection times can be found in the Supporting
Information.

Customizable Contaminant Search

While MaxQuant supports customizable contaminant lists, it is
sometimes not desirable to modify this file, especially when
multiple operators utilize the same MaxQuant installation. On
the other hand, flagging a protein posthoc as contaminant is
possible only by manually editing the MaxQuant output. Thus,
PTXQC offers configurable lists of custom protein contami-
nants, supplied as a regular expression applied on the protein
name or description. If a larger set of proteins with
nonoverlapping names is sought, then the user can employ
custom FASTA files amended with protein name tags during
the MaxQuant analysis or provide a more complex regular
expression. The latter allows the PTXQC analysis to be run
without rerunning MaxQuant. We compute two abundance
measures for contaminants from the evidence table: one based
on intensity and the other based on spectral counts. PTXQC
reports the sum-of-intensity/proportion of peptides matching
the regular expression compared to all peptides. Non-unique
peptides and hits to the reverse database are discarded in
advance.

Retention Time Alignment and ID-Transfer

MaxQuant’s match-between-runs (briefly described in refs 20
and 21) will align the retention times across Raw files using 3D
peaks with identical peptide IDs as landmarks. The alignment
function is nonlinear and can correct retention time differences
up to a certain extent (by default, 20 min). In a second step,
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MaxQuant will transfer MS2 identifications across Raw files
using corrected retention times and an accurate mass, thus
assigning a peptide ID to hitherto unlabeled 3D peaks. For
samples where MS2 coverage was not sufficient to identify all
peptides, MBR can significantly increase the number of
annotated 3D peaks, therefore providing more data for
downstream quantification of proteins. The MaxQuant
developers recommend using MBR only on samples with
comparable LC gradient conditions.
In the remainder of the this article, we will refer to peptide

identifications as genuine if the identification was obtained from
an MS2 spectrum and passes the FDR filtering, whereas we call
an identification transferred if the corresponding 3D peak is
annotated via MBR. Additionally, a peptide sequence implicitly
includes modifications (e.g., carbamidomethyl), i.e., two
identical sequences are regarded as unequal if they have
different modifications.
Retention Time Alignment. MaxQuant’s RT alignment

function can be reconstructed from the evidence table. Note
that MaxQuant’s retention time correction is reported relative
to the first Raw file, even though files were aligned using a guide
tree for the alignment.20 Thus, reported shifts may exceed the
given 20 min tolerance since RT shifts can accumulate when
walking the alignment tree. We found the shape of the
alignment function not to be feasible for assessing the success
of the alignment quantitatively. Instead, we introduce two new
metrics: the first metric is aimed at alignment quality (and is
thus an inter-Raw file metric) and the second is aimed at the
actual transfer of identifications between Raw files (constructed
as an intra-Raw file metric; see the ID Transfer section below).
In order to estimate the alignment quality, PTXQC

compares the residual retention time difference of two RT-
aligned 3D peaks with identical identifications across Raw files
(i.e., using corrected retention times). For example, after
alignment, a peptide with sequence DFINGAR with charge
state 2, genuinely identified both in files A and B, should have a
very similar corrected RT in both files. Such pairs of peptides,
genuinely identified in both the reference Raw file and another
Raw file, with identical sequence and charge state, are called ID-
pairs. For each Raw file, we compute the RT difference of every
ID-pair using the calibrated retention time. Ideally, most
differences are within MaxQuant’s matching tolerance (see ID
Transfer section below). The reasoning is as follows: only if ID-
pairs, i.e., landmarks, are aligned well can we expect the
subsequent ID transfer to be successful. If ID-pairs are not well-
aligned for a certain stretch in RT, then every ID-transfer
within this stretch will be a random hit and thus a false positive.
PTXQC plots results for each Raw file (Figure 4) and reports
the alignment score “EVD: MBR Align” in the heatmap as the
percentage of ID-pairs that are within the matching tolerance.
The alignment metric also estimates the maximally required

RT alignment window (in rare cases, more than 20 min is
needed), allowing the user to make a data-based decision on
how to change MaxQuant parameters to obtain a better
alignment.
For experimental designs using a prefractionation strategy,

PTXQC picks one reference file per fraction and compares it to
all proximal Raw files (i.e., the immediate fraction neighbors).
This is required since the overlap between distant fractions will
usually be small or empty and MaxQuant uses only proximal
fractions for transferring IDs. See Figure S1 for an example.
ID Transfer. After retention times have been calibrated

using genuine MS2 identifications, MaxQuant transfers peptide

IDs from any Raw file to any other Raw file (if MaxQuant’s
“match-from-and-to” setting was unchanged). Further restric-
tions apply for fractionated samples (see above). An
unidentified 3D peak (target) receives an annotation if a
genuinely identified counterpart from another Raw file (source)
has a similar calibrated retention time (0.7 to 2 min deviation
by default, depending on the MaxQuant version) and if its m/z
matches the theoretical m/z of the peptide to be transferred
(within 4.5−7 ppm by default, depending on the MaxQuant
version).
MaxQuant reports the RT difference between the source

identification and its target in the “match-time-difference”
column of the evidence table. However, small values do not
indicate that this matching is correct, since any unannotated 3D
peak with similar RT and m/z is a putative target candidate.
Therefore, a robust alignment is paramount for the ID-transfer.
To gauge the correctness of the transfer step, the PTXQC

metric compares all transferred identifications to the genuine
identifications within each Raw file. If the transfer was correct,
then no identification should occur more than once. In
particular, a genuine ID (locally confirmed by MS2) and a
transferred ID in the same Raw file indicate that the matching
targeted the wrong 3D peak (generating a false positive)
because the same peptide was already identified genuinely.
Alternatively, the MaxQuant feature finding algorithm
accidentally split a 3D peak into two separate entities, where
only one was identified by MS2. In this case, the genuine and
transferred IDs will have similar corrected retention times.
PTXQC assigns every 3D peak into one of three classes:

“Single”, “Group − in width”, and “Group − out width”. The
“Single” class covers all 3D peaks whose peptide sequence and
charge state is unique for the Raw file at hand. The other two
classes represent 3D peaks that are part of a group, i.e., that
have siblings with identical sequence and charge in the same
Raw file. Within each peak group, PTXQC uses the retention
time deviations to decide if the group is valid (“in width”) or
invalid (“out width”). The threshold to decide if a peak group is
“in width” is the median RT peak width of the respective Raw
file. If the RT span of the group is larger than the typical RT
peak, then the evidence is considered segmented and it is
assigned to the out-width class, i.e., it is unlikely that the out-
width group represents a split 3D peak but, rather, two (or
more) entirely different 3D peaks.
Depending on which subset of peaks is used to assign the

three classes, different conclusions can be drawn. Considering
only genuine 3D peaks and assigning them to a class, we can
determine the intrinsic segmentation of a Raw file. The
proportion of out-width peaks is usually very small, since a
peptide usually elutes only once from the LC column. If we
consider only the subset of 3D peaks that were identified via
MBR plus all genuine 3D peaks that have the same
identification, then we can draw conclusions about the success
of the ID-transfer. PTXQC reports the fraction of singlets plus
in-width group as the quality score for ID-transfer (see yellow
arrows inserted into Figure 5). The out-width fraction can rise
considerably, depending on the success of the alignment,
resulting in a lower score. Finally, if we consider all 3D peaks
(irrespective of if they are genuine or transferred) and assign a
class to them, then we obtain an overall view on the
segmentation issue.
We emphasize that the plain number of transferred IDs per

Raw file is a rather inaccurate indicator for correct ID transfers
since (a) samples with high genuine MS2 coverage and good
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alignments to other samples are expected to yield few ID
transfers and (b) high-complexity samples with low genuine
MS2 coverage and bad alignment to other samples are expected
to yield many false positive ID transfers.
The MBR-FDR calculation mentioned in Geiger et al.21 is a

valid alternative to our ID-transfer scoring function as described
above. However, MBR-FDR values are not calculated by default
and cannot be activated within the MaxQuant application. This
feature needs to be manually enabled using the “matchBet-
weenRunsFdr” entry in the MaxQuant XML configuration file.
Subsequently, the “match.q.value” column of the evidence table
will contain q-values for matched evidence. However, the
validity of this intrinsic MaxQuant metric critically depends on
alignments of good quality.
If either alignment or matching is unsatisfactory, then MBR

should be disabled partially or completely.

QC Scores

For 19 out of 24 quality metrics supported by PTXQC, we have
devised a set of mathematical equations (Table 1 and
Supporting Information) that allows one quality score to be
computed per Raw file and metric. The remaining five metrics
remain unscored since they are based on the protein groups
table where a 1:1 relationship between the experimental groups
and Raw files cannot be guaranteed. Each quality score ranges
between zero and one. The exact mathematical formula is listed
in the Supporting Information. A heatmap summarizes up to 19
quality metrics per Raw file, with quality scores represented by
a color gradient. The columns (metrics) are ordered according

to the analytical flow (Figure 1). Each row represents one Raw
file. Green tiles indicate good quality, red indicates failure, and
black marks indicate intermediate performance.
The majority of scores (16 of 19) are reference-less, i.e., their

value depends only on the particular Raw file at hand. Thus, all
Raw files can potentially achieve very good performance, i.e.,
there is no relative scaling. The three remaining quality metrics
are scored relative to the data available in the study: “Charge
distribution”, “RT peak width over time”, and “Missed
cleavages variance”. These metrics depend on the data at
hand, and target values are hard to formalize. In particular, the
charge distribution should be similar across all Raw files,
whereas the exact share of doubly charged peptides is of
secondary concern. The scoring function is therefore selecting
the most representative Raw file and penalizes deviations from
this reference. A similar argument applies for the variance of
missed peptide cleavages. Recent research shows that missed
cleavages do not negatively influence protein quantification if
all samples share the same degree of digestion.22 The degree of
digestion itself is additionally represented by a “Missed
Cleavage” score. Finally, the RT peak width strongly depends
on the LC setup. The quality score penalizes Raw files that
deviate strongly in their RT peak width distribution compared
to a representative Raw file of the same study.

■ RESULTS
In this section, we will provide an example of the overview
heatmap and in-depth examples of the three metrics described
in the Methods section. Please refer to the Supporting

Figure 2. Heatmap overview of a TMT-labeled data set. Columns denote the metric; rows correspond to Raw files. The color gradient for each cell
ranges from best (green), to underperforming (black), and, finally, fail (red). Column names are sorted and color-coded (gray or black, alternating)
by the four main steps in the analytical workflow.
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Information for a detailed description of the remaining metrics,
example figures, full QC reports, and a description of the data
sets.

Overview Heatmap

We use a prefractionated, TMT-labeled data set23 consisting of
24 Raw files as the basis for the heatmap show in Figure 2. The
MaxQuant result folder was obtained from the Pride Archive,24

ID PXD000427. Expected protein and peptide counts per Raw
file were adapted from 3500 and 15 000 to 1000 and 3000,
respectively, via PTXQC’s YAML configuration file (see below)
to account for the reduced protein content due to
prefractionation.
Sample preparation quality is shown in the first five columns

of the heatmap: The first column, “EVD: Contaminants”,
represents common laboratory contaminants (e.g., keratins), as
annotated by MaxQuant. For the TMT-labeled data set, most
samples contain low amounts of contaminants; only the last
two fractions show a minor increase. Peptide intensity (column
2) is as expected, except for fractions 1, 15, 18, and 19.
Fractions with low overall intensity show a poor ion injection
time (column 11), MS2 identification rate (column 17), and
number of identified peptides (column 20). Digestion was very
thorough with few missed cleavages (“MSMS: MC”, column 3),
except for fractions 6 and 19−21. Not surprisingly, the same
files are also negatively indicated in the MC variation column
since they deviate from the majority of files with good digestion
(column 4).
LC performance is shown in columns 6 to 10. Along the LC

gradient, peptides do not seem to elute uniformly over time
(“MSMScans: TopN over RT”, column 6), also affecting the
number of successful identifications over time (“EVD: ID rate
over RT”, column 7). The first fraction shows unusual RT peak

width (column 8). The alignment step of Match-between-runs
has failed for fractions 1 and 13 (column 9); fraction 1 simply
shares no landmarks with its immediate neighbors (fraction 2);
thus, MaxQuant could not align them. Fraction 13 should align
very well, but it was unintentionally labeled as fraction 3 in the
MaxQuant configuration. Hence, MaxQuant (and PTXQC)
cannot find any landmarks for alignment. However, PTXQC’s
ID transfer metric (column 10) suggests that fraction 13
behaved very well. The reason is simply that all IDs transferred
to fraction 13 (from fraction 2 and 4) have sequences that are
not expected at such a late fractionation stage. Hence,
transferred IDs are singlets, not conflicting with genuine MS2

IDs from fraction 13. Fraction 1, on the other hand, shows an
NA score since it received no transferred IDs.
Instrument performance is reflected in columns 11−19: MS1

calibration was very good on the instrument-level already
(“EVD: MS Cal-Pre”, column 13, with 20 ppm tolerance).
MaxQuant’s internal mass recalibration cannot be scored
(“EVD: MS Cal-Post” is NA, column 14) since mass deltas
for chemically modified peptides (such as TMT and iTRAQ)
are reported incorrectly by MaxQuant (see Supporting
Information for details). The instrument mostly reached its
TopN limit (“MSMSScans: TopN high”, column 18).
General parameters, reflecting overall performance, are

shown last: Not surprisingly, the overall protein and peptide
counts per Raw file vary widely (columns 20 and 21), with the
richest fraction containing at most 900 proteins.
In summary, a few fractions show extremely low peptide

abundance, which causes dependent metrics such as ion
injection time and MS/MS ID rate to underperform. MBR
across neighboring fractions has worked very reliably and
should remain enabled, on average contributing 36% increased

Figure 3. A custom database containing proteins from Mycoplasma hyorhinis was included during the MaxQuant analysis of an in-house human QC
data set. PTXQC was configured to search for mycoplasma proteins. (A) Summary of the relative abundance (red) and spectral counts (blue) of
proteins (or protein descriptions) containing the string “MYCOPLASMA”. The first two Raw files (file 1, file 2) serve as negative controls, in
addition to two Raw files with known contamination (file 3, file 4), as confirmed by both intensity and spectral counting. The default threshold of 1%
is plotted by PTXQC as a horizontal dashed line for visual guidance. Exceeding the threshold will report the respective Raw file as failed in the
overview heatmap. (B) Corresponding heatmap summarizing the whole study. The second column shows the scores for the mycoplasma query. This
column is present only if a custom contaminant query is requested via the PTXQC configuration file.
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ID counts per fraction. If resources permit, then MaxQuant
should be rerun with a corrected fraction assignment for
fraction 13, which received 13 wrong peptide assignments
(from 34 PSMs) in addition to the genuinely identified 1438
PSMs. Conversely, real fractions 2, 3, and 4 also received false
positive identifications from fraction 13 (since it was labeled as
fraction 3). For subsequent studies of similar sample complex-
ity, we would recommend combining low-abundance fractions
with neighboring fractions prior to LC−MS measurement,
reducing the number of sample injections, and avoiding most
problems mentioned here.

Custom Contaminant Detection (Mycoplasma)

To demonstrate the flexibility of PTXQC’s custom contami-
nant approach, we searched for Mycoplasma hyorhinis in a study
using HEK293 cell lines. Mycoplasma contamination should be
avoided at all costs since infection can alter cell metabolism and
physiology. Infection of tissue culture cell lines was first
described over 50 years ago, and to this day, it remains a
persistent problem since it is subtle and hard to detect unless
specific measures are taken. Sources of contamination range
from animal-derived media products and laboratory personnel
to cross-contamination, with estimated cell culture contami-
nation rates up to 35%.25 LC−MS data can serve as a basis for a
confirmatory experiment. Creating a suitable protein database is
straightforward. Since mycoplasma contamination can usually
be attributed to a few mycoplasma strains (here, M. hyorhinis),
the choice of strains is paramount for successful detection. We
advise against using a mycoplasma database containing all
strains. Instead, the search should be restricted to likely
candidate strains. Adding a full-blown database will unnecessa-

rily increase the peptide search space and most likely reduce the
number of successfully identified peptide spectra at a fixed
FDR.26 For example, the UniRef9027 database contains a
remarkably high number (27 535) of mycoplasma protein
clusters.
Figure 3 shows a plot with results from a mycoplasma query.

For this analysis, we included an unmodified M. hyorhinis
FASTA database during the MaxQuant run and instructed
PTXQC to search for protein hits containing the string
“mycoplasma”. Two samples can be clearly identified as being
contaminated by M. hyorhinis, contributing almost 5% of the
total sample content. These files should be excluded from
downstream analysis. Furthermore, the source of contamination
needs to be tracked down and eliminated.

Retention Time Alignment

MaxQuant’s Match-between-runs represents a valuable mech-
anism to boost the protein coverage and increase the number of
quantifiable proteins. However, it should be used only under
comparable column conditions for all samples involved.
However, the exact degree of comparability is hard to quantify
by manual analysis. Using a set of four files from an in-house
HEK293 QC study, we demonstrate the sensitivity of our
alignment and ID-transfer metrics. Files 1 and 2 were measured
on the same day, file 3, the following day, and file 4, under
different column conditions a few months earlier.
Figure 4 shows the alignment plot and the corresponding

scores for the RT alignment. The RT calibration function
reported by MaxQuant is normalized with respect to file 1. File
2 aligns perfectly, whereas file 3 can be only partially aligned.
File 4 used a different column, resulting in a failed alignment.

Figure 4. Retention time correction using Match-between-runs. Alignment performance is judged using the residual RT difference (ΔRT) of
identical genuine 3D peak pairs after alignment with respect to a reference file (file 1). Each ID-pair is represented by a dot: green dots indicate that
the underlying 3D peaks are successfully aligned, with a residual RT difference of less than 0.7 min. Red dots indicate that the alignment was unable
to bring the 3D peaks close enough in RT (>0.7 min). The RT correction function of MaxQuant is shown in blue. The fraction of good pairs is given
in the panel title, e.g., 99% of the pairs between the reference (file 1) and file 2 are successfully aligned. (A) Four Raw files of human QC samples
with varying degrees of alignment success (decreasing). MaxQuant’s RT alignment tolerance window was set to the default of 20 min. The horizontal
yellow arrow indicates the required RT alignment tolerance (∼85 min). (B) The same files as in (A) but with a larger RT alignment tolerance of 100
min. Note the increased fraction of good ID-pairs for file 4 (11%) due to a small region between 200 and 250 min that was now successfully aligned.
(C) Side-by-side representation of the MBR alignment scores for the analyses in A (left column) and B (right column) as shown in the heatmap.
The actual heatmap has many more columns; we show only the column of interest, “EVD: MBR Align”. File 3 shows a trend toward being colored
red (due to the score decreasing from 58 to 40%); file 4 shows a slight improvement (from 0 to 11%).
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All ID-pairs between files 1 and 4 show a large residual delta
RT (ΔRT) after alignment, reaching up to 75 min, which is
much larger than MaxQuant’s target value of <0.7 min (the
default for MaxQuant v1.5, which was used here). However,
MaxQuant, by default, searches only within a 20 min RT
tolerance window for an optimal alignment. The required width
of the RT tolerance window can be gauged visually using the
maximum vertical distance between the ID-pairs (red/green)
and the alignment function (blue). Here, we can estimate the
maximal RT difference between the two columns to be around
85 min (see yellow arrow, Figure 4a), indeed suggesting very
different column conditions considering the total gradient
length of 300 min.
In summary, the data indicate that an optimization of

MaxQuant parameters could rescue the failed alignment. This is
a promising solution since it avoids a costly remeasurement of
data on one hand and loss of information by disabling the failed
MBR on the other hand. One minor drawback is a potential
increase in MaxQuant processing time due to the larger search
space for alignment. However, for this data set, we did not
observe a longer runtime when increasing the RT tolerance
window settings from 20 to 100 min. Indeed, the new setting
yields a partially successful alignment (Figure 4b). However,
overlap of only 11% of ID-pairs in file 4 still renders this
alignment unacceptable. Performance of file 3 even decreases
from 58 to 40%. Figure 4c shows alignment scores extracted
from the heatmap plot corresponding to Figure 4a,b. In
conclusion, only files 1 and 2 should be aligned. Files 3 and 4

do not align well to any other file and should be excluded from
MBR.
Larger data sets with distinct subsets of column conditions

usually benefit from introducing an artificial fraction assignment
during the configuration of MaxQuant. By assigning non-
neighboring fractions to each subset (e.g., fraction 1 for all
samples with LC-column A; fraction 5 for all samples with LC-
column B, etc.), MaxQuant will apply MBR only within the
groups of similar column conditions. On one hand, samples in
the same group align well and benefit mutually from transferred
IDs. On the other hand, false positive ID-transfers due to failed
alignments are avoided.

ID Transfer

Our second metric visualizes the performance of the second
step during MaxQuant’s Match-between-runs, i.e., the transfer
of identifications across Raw files after retention times have
been aligned. Failed alignments usually lead to (a) few
identifications being transferred and (b) a large proportion of
false positive annotations. In order to quantify the ID-transfer
performance, we inspect the increase in segmentation by
Match-between-runs (i.e., increase of identically annotated 3D
peaks with widely different retention times within one Raw
file).
Figure 5 shows the ID-transfer corresponding to the analysis

conducted above for the RT alignment (Figure 4). Figure 5a
clearly shows false positive identification transfers to file 4 (red
bar), affecting 100% − 26% = 74% of all transferred IDs. The
overall impact (“all” column, row 4) is not severe: file 4
received only 507 transferred IDs (vs 26 298 genuine IDs

Figure 5. ID-transfer performance of Match-between-runs. Per Raw file (rows), three different aspects of evidence are shown (columns): “genuine”
uses only 3D peaks that have genuine MS2 identifications, “transferred” ignores 3D peak groups that are purely genuine, and “all” considers all
evidence (genuine + transferred). Each stacked bar contains three peak classes, together summing to 100% of peaks: single, group (in width), and
group (out width). (A) Four Raw files of human QC samples. Files 1 and 2 were measured on the same day, file 3, the following day, and file 4,
under different column conditions (aging) a few months earlier. MaxQuant’s RT alignment tolerance was set to the default of 20 min. Most IDs
transferred to file 4 are false positives (large red bar in the “transferred” column). The overall effect is not drastic (“all” column) since most IDs in file
4 are genuine and only few IDs were transferred to file 4. (B) The same files as in (A) but with a larger RT alignment tolerance of 100 min. Note the
decreased contribution of the “group (out-width)” for file 4, indicating fewer false positive matches. (C) Side-by-side representation of the MBR ID-
transfer scores for the analyses in A (left column) and B (right column) as shown in the heatmap. The actual heatmap has many more columns; we
show only the column of interest, “EVD: MBR ID-Transfer”. The first three files show almost no change, whereas file 4 shows an improvement (dark
red to black).
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locally identified). Consequently, 507 peptide quantifications
(∼2%) are certainly based on wrong identifications since we
already know that alignment completely failed for file 4
(compare to Figure 4a). Thus, 74% for out-width peaks is an
underestimation and, conversely, singlets are overestimated
(i.e., false positive ID transfers that are unique to the target Raw
file and cannot be detected as false positives since they have no
genuine counterpart to create an out-width group).
Using a partially successful alignment (100 min RT

tolerance; compare to Figure 4b), we also find slightly
improved ID-transfer performance (compare Figure 5, panel
A vs B, increase from 26 to 50%).
In conclusion, files 1 and 2 should be included during MBR

(requiring a change in MaxQuant’s match-from-and-to settings
and a subsequent rerun of MaxQuant) since they show
sufficient gain in IDs and almost no segmentation. After the
restriction of MBR to files 1 and 2, the (already good) ID-
transfer scores for files 1 and 2 increase further (from 90 to
97% for both files; data not shown) since false positive transfers
from files 3 and 4 are avoided.
In most data sets that we examined (data not shown), we

find MBR to increase the segmentation, i.e., create out-width
groups. The severity, however, depends highly on the
alignment quality. This is not surprising since a good alignment
will prevent false ID transfers. In general, both the alignment
score and ID-transfer score should be >95% for each Raw file
participating in MBR.

Report Configuration

PTXQC is capable of extracting parameters from the
MaxQuant configuration file (mqpar.xml) automatically, thus
reducing the user’s configuration effort to a minimum. Other
parameters, e.g., individual target thresholds for the number of
identified proteins, can be configured via a configuration file in
YAML format [http://www.yaml.org]; see Table 2 for an
example. The default configuration has sensible defaults for
high-complexity samples acquired on an LTQ-Velos Orbitrap
and a long nano-LC gradient of 4 h. The user is free to specify

new default settings for different setups (e.g., fractionated
samples, long/short LC gradients) and apply them depending
on the data set at hand.
Additionally, the configuration file allows only a subset of

metrics to be enabled, permitting the evaluation of incomplete
MaxQuant result folders or reducing the size of reports. Input
file names are automatically shortened or renamed to allow the
figure axis annotation within plots to be compact. If desired, the
user can modify the name mapping and assign new file names
globally.

■ DISCUSSION
We have introduced PTXQC, a tool that greatly facilitates and
automates QC checks of proteomics data. The QC tool was
developed to compare samples from the same batch but also
from different batches to allow for comparisons of multiple
parameters in an easy and structured way. This ultimately
became necessary when working with large sample batches
regardless if SILAC was used or label-free quantitation was
applied. Differences in the sample input, digestion efficiency, or
machine performance ultimately influence identification and
quantification of peptides. Thus, besides the (desired) bio-
logical changes in protein abundance, technical limitations can
introduce significant bias into the data. If no QC is applied,
then it is hard to find the origin of the variance within the data.
At the same time, a positive QC increases the confidence of the
experimental results and marks an important step before data
publication.
We have introduced two new metrics (RT alignment and ID-

transfer) to judge the Match-between-runs functionality of
MaxQuant. Also, visualization and scoring of contaminations, as
demonstrated on the example of mycoplasma, have proven to
be useful in our day-to-day routine. PTXQC has additional
convenience functionality (e.g., detecting mass calibration
issues), which is described in the Supporting Information.
We believe PTXQC is useful to a wide audience and can

drastically shorten the number of data evaluation/remeasure-
ment iterations since quality can be checked directly without
scripting/programming experience. The heatmap provides a
wealth of information on a single page at the beginning of the
report, allowing underperforming parts of the pipeline to be
quickly tracked or failed samples to be detected. The
underlying quality scores are automatically exported to a text
file and can be readily used for automated annotation of data
sets and to trigger notifications. Since PTXQC supports QC
measures for many checkpoints along the shotgun proteomics
pipeline, it is also suitable for performance optimization.
Additionally, but not less important, a structured QC is

necessary for every proteomics platform to ensure a constant
level of performance. For example, we use PTXQC to monitor
instrument performance over time using a human cell line
standard.
Future extensions of PTXQC include support for qcML, an

XML-based reporting format for QC and addition of other
quality metrics, such as reporter-ion fragmentation efficiency.

■ SOFTWARE INFORMATION

Runtime

If the MaxQuant result folder is placed on a local spinning hard
disk, then a small number of samples is processed on the order
of minutes on a standard desktop PC. A larger study
comprising 350 Raw files, featuring a MaxQuant result folder

Table 2. Shortened PTXQC Configuration File in YAML
Formata

aTo disable all plots based on proteinGroups.txt, the parameter “File
→ ProteinGroups → enabled” should be changed from yes to no. A
detailed manual of parameters and their values is provided with the
PTXQC package.
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of 25 GB, was processed in 75 min. On average, each Raw file
requires about 15 s for processing.
System Requirements

PTXQC will run on any modern operating system (Windows,
Linux, or MacOSX) where the R software17 can be installed and
usually requires less than 2 GB of RAM. For larger studies with
more than 100 Raw files, we recommend a 64 bit operating
system with at least 8 GB of RAM.
MaxQuant Support

PTXQC was designed to support a wide range of MaxQuant
versions, starting from MaxQuant 1.0.13 to the current version,
1.5. Recent versions of MaxQuant provide additional
functionality (e.g., Match-between-runs). PTXQC will auto-
matically detect their presence and incorporate the data into
the report. Note that PTXQC can currently read only
MaxQuant txt files. Output from software packages other
than MaxQuant would require appropriate reformatting into a
MaxQuant-like CSV format to enable processing by PTXQC.
Target Audience

PTXQC is designed for a wide audience (including technicians
operating the instrument, biologists providing the sample, or
bioinformaticians conducting downstream analysis) and can be
run from within R (all operating systems) or using a convenient
drag-and-drop functionality (Windows only), requiring basic
computer skills only.
Software Availability and Documentation

The software is available open source under a GPL license at
https://github.com/cbielow/PTXQC, along with documenta-
tion (for users and developers) and the sample data used here.
PTXQC is actively used in our lab, ensuring future
maintenance. We welcome suggestions and contributions
from the community.
Sample Data

All data used in this article was obtained from (PXD000427) or
uploaded to (PXD003133, PXD003134) the PRIDE archive.24

For more information, see Supporting Information 1.
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