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expression differences (Mann-Whitney test). (e-h) Ctps1, Fads1, Gja1 and Ppia 
(heart) belong to the RNAonly group and quantitation by qRT-PCR shows significant 
differences (Mann-Whitney test, P < 0.05) at the RNA level between the strains, 
whereas comparable protein levels are detected by western blotting. (i) Myh7 (heart) 
is classified as a RNA+RIBO gene and shows differences between BN-Lx and 
SHR/Ola both at RNA and protein levels. 
In some cases the same membrane was used to detect two proteins of interest, after 
stripping. Therefore, the pairs Gja1-Mrpl48, Ctps1-Myh7, Ppia-Fads1 share the same 
loading controls. 
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Supplementary Table 1. Partial correlation analysis of RNA-seq, Ribo-seq and 
protein levels. Using data of each strain separately, each pair of variables is tested 
for conditional independence given the third variable as denoted in the column 
“conditional independence” using partial correlation. The null hypothesis of zero 
partial correlation coefficients is tested using the t-statistic (column “t”) with the 
corresponding degrees of freedom (“df”) (see methods). 
	

Strain 
Conditional 

Independence 
Partial Correlation t df p 

BN (Ribo ~ Protein | RNA) 0.27 19.71 4757 <2.2e-16 

BN (RNA ~ Protein | Ribo) -0.03 -1.87 4757 0.06 

BN (RNA ~ Ribo | Protein) 0.92 156.93 4757 <2.2e-16 

SHR (Ribo ~ Protein | RNA) 0.27 19.32 4757 <2.2e-16 

SHR (RNA ~ Protein | Ribo) -0.02 -1.29 4757 0.20 

SHR (RNA ~ Ribo | Protein) 0.92 159.00 4757 <2.2e-16 
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Supplementary Table 2. Overlap of strain-specific gene usage and eQTL data. 
Linkage analysis of the HxB/BxH RI panel4 using RNA-seq data derived from BN-Lx 
and SHR/Ola reveals RNA expression differences under genetic control. We then 
compared this eQTL data with all three modes of gene expression regulation in-
between the parental strains. Genes with expression differences in the parental 
strains (RNAonly; RNA+RIBO) were enriched for eQTLs. Most gene expression traits 
on the RNA level (eQTLs)  were found to alter protein synthesis rates (RNA+RIBO) in 
the parental strains. Only few eQTLs were buffered in the translational level (eQTL 
and RNAonly). As expected, strain-specific usage of RIBOonly genes was not 
significantly enriched for RNA expression traits since the gene expression for these 
genes is regulated mostly on the translational level only (eQTL and RIBOonly). 
 

  Strain-Specific Differences 
 eQTL RNAonly RNA+RIBO RIBOonly n.s 

H
ea

rt
 FALSE 167 322 486 9211 

TRUE (EXP) 24 (4) 119 (10) 12 (11) 83 

TRUE / EXP 5.6 11.9 1.1  

 

L
iv

er
 FALSE 39 199 343 11921 

TRUE (EXP) 13 (1) 93 (3.2) 11 (3.9) 24 

TRUE / EXP 21 29 2.8  
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Supplementary Table 3. Motifs of RNA binding proteins enriched for genetic 
variation in differentially translated genes across strains. We determined all motifs of 
RNA binding proteins5 in the 3’UTR of genes that were under translational regulation 
(RIBOonly) in either heart or liver tissue between both rat strains. The motifs of 8 RNA 
binding proteins were more often mutated between the SHR/Ola and BN-Lx strains 
than expected (one-sided Wilcoxon-Mann-Whitney, corrected using the Benjamini-
Hochberg method). 
 

CISBP-RNA 
Database ID 

Ensembl ID 
Gene 

Symbol 
P Value 

Corrected 
P Value 

T41133_0.6 ENSRNOG00000020271 Tial1 0.0012 0.0259 

T41136_0.6 ENSRNOG00000020689	 Cpeb3 0.0011	 0.0259 

T41220_0.6 ENSRNOG00000033169	 Cpeb4 0.0011	 0.0259 

T41110_0.6 ENSRNOG00000016813	 Tia1 0.0012	 0.0259 

T41117_0.6 ENSRNOG00000017405	 Raly 0.0008	 0.0259 

T40997_0.6 ENSRNOG00000000702	 Sart3 0.0024	 0.0334 

T41142_0.6 ENSRNOG00000021181	 Sf3b4 0.0019	 0.0334 

T41078_0.6 ENSRNOG00000011621	 D4ACR0_RAT 0.0034	 0.0413 
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Supplementary Table 4. Expression levels of RNA binding proteins in heart and 
liver. The motifs of these RNA binding proteins are enriched for genetic variation in 
differentially translated genes across strains (see Supplementary Table 3). We 
calculated their RPKM value (average of 5 biological replicates) based on Ribo-seq 
data to test whether they were also translated in heart and liver tissue. If present in 
the tissue, they can potentially contribute to translational regulation between strains 
through cis-regulatory variation in their binding sites. We did not detect significant 
differential transcription or translation of these genes in-between strains.	
 

Ensembl ID 
Gene 

Symbol 

Heart 
BN-Lx 

[RPKM] 

Heart 
SHR/Ola 
[RPKM] 

Liver 
BN-Lx 

[RPKM] 

Liver 
SHR/Ola 
[RPKM] 

ENSRNOG00000020271 Tial1 40.4 41.4 20.1 25 

ENSRNOG00000020689	 Cpeb3 16.2	 12.9 3.6 3.6 

ENSRNOG00000033169	 Cpeb4 23.2 26.3 10.8 12.9 

ENSRNOG00000016813	 Tia1 14.7 13.7 0.9 0.9 

ENSRNOG00000017405	 Raly 219.8 229.0 91.7 88.7 

ENSRNOG00000000702	 Sart3 9.1 10.9 3.8 4.4 

ENSRNOG00000021181	 Sf3b4 17.8 22.3 12.1 12.4 

ENSRNOG00000011621	 D4ACR0_RAT 0.8 1.1 1.5 1.3 
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Supplementary Table 5. Differential miRNA expression and translational regulation. 
We determined differential miRNA expression for heart and liver tissues in-between 
rat strains. Differentially transcribed genes (RNA+RIBO) are not as strongly enriched 
for targets of differential miRNAs than genes under translational control (chi squared 
test, method Fisher meta P = 0.008). 
	
 

 Strain-Specific Differences  
 ∆miRNA Target RNA+RIBO RIBOonly  

Heart 
FALSE 224 207  

TRUE (EXP) 217 (239) 291 (269)  

Liver 
FALSE 186 208 

meta P = 0.008 

TRUE (EXP) 106 (114) 146 (138)  
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Supplementary Table 6. GWAS candidate genes primarily under translational 
control (RIBOonly) in heart or liver in the SHR/Ola model for complex traits. 
 

Gene Symbol Human ID Orthologue Rat ID Tissue Trait GWAS  
ACAA2 ENSG00000167315 ENSRNOG00000013766 Liver HDL cholesterol  8  
ACADL ENSG00000115361 ENSRNOG00000012966 Liver Metabolite levels  9,10  

ACADM ENSG00000117054 ENSRNOG00000009845 Heart 
Metabolite levels 
Metabolic traits 

 10,11  

ACOT7 ENSG00000097021 ENSRNOG00000010580 Heart QT interval  12  

ADH5 ENSG00000197894 ENSRNOG00000033854 Liver 
HDL cholesterol 

Obesity-related traits 
 13  

AQP9 ENSG00000103569 ENSRNOG00000015949 Liver Metabolite levels  14  

CCDC141 ENSG00000163492 ENSRNOG00000012580
Heart 
Liver 

Blood pressure 
Heart rate 

 15,16  

COL4A1 ENSG00000187498 ENSRNOG00000016281 Heart 
Coronary heart/artery disease 

Obesity-related traits 
 17–19  

COL4A2 ENSG00000134871 ENSRNOG00000023972 Heart 
Coronary artery calcification 

Coronary heart/artery disease 
17,19,20 

CPN1 ENSG00000120054 ENSRNOG00000013439 Liver Liver enzyme levels  21  
ELMO1 ENSG00000155849 ENSRNOG00000018726 Heart QT interval  22  

EMP1 ENSG00000134531 ENSRNOG00000008676
Heart 
Liver 

Coronary artery calcification  23  

ENG ENSG00000106991 ENSRNOG00000050190 Heart Metabolic syndrome  24  

ETFDH ENSG00000171503 ENSRNOG00000009538
Heart 
Liver 

Metabolite levels/traits  10,11  

FADS3 ENSG00000221968 ENSRNOG00000020385 Liver 

Metabolite levels 
HDL/LDL cholesterol 

Triglycerides 
Lipid metabolism phenotypes 

13,25–28 

FES ENSG00000182511 ENSRNOG00000011683 Liver 
Diastolic/Systolic Blood pressure 

Hypertension 
 29,30  

GNB4 ENSG00000114450 ENSRNOG00000011070 Heart Heart rate  16  

GRB14 ENSG00000115290 ENSRNOG00000031396 Heart 
Blood pressure 
Type 2 diabetes 

 31,32  

KIAA1755 ENSG00000149633 ENSRNOG00000014424 Heart Heart rate  16  
KLF6 ENSG00000067082 ENSRNOG00000016885 Liver Coronary artery calcification  23  
KLF9 ENSG00000119138 ENSRNOG00000014215 Liver Body mass index  33  

LAMC2 ENSG00000058085 ENSRNOG00000002667 Heart Coronary heart disease  34  
MGMT ENSG00000170430 ENSRNOG00000016038 Liver Metabolite levels  (X-11787)  35  
MTCH2 ENSG00000109919 ENSRNOG00000008682 Heart Body mass index  36,37  
MYH6 ENSG00000197616 ENSRNOG00000025757 Heart Heart rate  16  
NEIL3 ENSG00000109674 ENSRNOG00000011688 Heart Heart rate variability traits  38  
NPC1 ENSG00000141458 ENSRNOG00000012016 Liver Obesity  39  

PDE11A ENSG00000128655 ENSRNOG00000024457 Heart Heart rate  16  

PLD5 ENSG00000180287 ENSRNOG00000003997 Heart 
Coronary artery calcification 

Obesity-related traits 
 18,23  

PLEKHG1 ENSG00000120278 ENSRNOG00000016011 Heart 
Blood pressure 

Obesity-related traits 
 18,40  

PLEKHO2 ENSG00000241839 ENSRNOG00000029242
Heart 
Liver 

Coronary heart disease  34  

PRF1 ENSG00000180644 ENSRNOG00000000562 Heart Obesity  41  
PRKCE ENSG00000171132 ENSRNOG00000015603 Liver Metabolite levels  (X-11787)  35  

PTPRD ENSG00000153707 ENSRNOG00000005711 Liver 
Type 2 diabetes 

Obesity-related traits 
18,42,43 

RBM43 ENSG00000184898 ENSRNOG00000004673 Heart Type 2 diabetes  44  
SLC1A4 ENSG00000115902 ENSRNOG00000005248 Heart Metabolite levels  14,28  
SOX17 ENSG00000164736 ENSRNOG00000027357 Liver LDL cholesterol  13  

TNFAIP3 ENSG00000118503 ENSRNOG00000049517 Heart Cardiac Troponin-T levels  45  

WDR12 ENSG00000138442 ENSRNOG00000017340 Heart 
Myocardial infarction 

Coronary heart/artery disease 
17,19,46 
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Supplementary Table 7. List of primers used for qRT-PCR. F, forward; R, reverse. 
Myh6 and Myh7 share the same forward primer, but the different reverse oligos 
ensure the amplification of specific products.  
 
Gene Symbol F (5‘ – 3‘) R (5‘ – 3‘) 
Ctps1 GTTCCTTGATATCCGCCTCAC CATCACCCACTCTTGAATTGC 
Fads1 CCCACCAAGAATAAGGCGCT TTTCATGAGGCCCATTCGCT 
Fes GCCAGCAAAGACAAGGATCG AGTACGTAGCGGTTGTGGTG 
Gja1 AGGTCTGAGAGCCTGAACTCT CATGTCTGGGCACCTCTCTT 
Maoa AATGGGTAGATGTTGGTGGAG CCACGGAATGGGTAAGTTTTC 
Mrpl48 ATGAGCGGAACCCTGGGAAAG CCACCTGCAGAATAAATGGGAT 
Myh6 AGAGGAGAGGGCGGACATTG AACAGCGAGGCTCTTTCTGC 
Myh7 AGAGGAGAGGGCGGACATTG GGCATCCTTAGGGTTGGGTAG 
Polr2a CACTCAAGCTGACGGATTACAGA GAGCATGGACGCCAAAGC 
Ppia GCAGACAAAGTTCCAAAGACAG CCATTATGGCGTGTGAAGTC 
Tbp TTCGTGCCAGAAATGCTGAA TTCGTGGCTCTCTTATTCTCATGA 
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