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Supplementary Figure 1. General attributes and quality control for RPF libraries of
frozen tissues. (a) Read distribution across gene bodies is shown for 10 libraries (5x
SHR/Ola; 5x BN-Lx) for each tissue. Reads covering 5’UTR, CDS or 3’'UTR were
normalized to feaure length and library depth to calculate the average “reads per
kilobase per million reads” RPKM. Ribosome footprints are mainly found in the
coding region of transcripts and to a lesser extent in the leader sequence (5’ UTR),
while the average RPKM for the 3’ UTR in both tissues is less than 0.5. (b) Average
read length distribution of 10 heart (black) and 10 liver (grey) Ribo-seq libraries.
Ribosomes protect mostly 29 nt on transcripts. (¢) Pie charts illustrate the average of
mitochondrial, tRNA and rRNA read fractions for heart and liver datasets. The “past
filter” share denotes the reads used for downstream analysis. (d) Periodicity profile of
RPFs in hepatic tissue at a subcodon resolution. The plot shows, for each sample,
the number of RPF reads’ 5’ termini (read start) aligning in 48 nt windows around
start and stop codons. Only reads with a length of 29 nt were considered. Ribosomes
located with the P site at the start codon protected fragments starting at 12 bp
upstream of the AUG codon. Ribosomes detach from transcripts once the A site of
the ribosome reaches the stop codon. For each library, the fraction or reads covering
each frame is shown. The majority of ribosomes are located on the codons of the
open reading frame of protein coding genes. Error bars indicate s.d..
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Supplementary Figure 2. Sample clustering and coverage. (a) Heatmaps show
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to one unique position in the genome and located in an exon is plotted for each
biological replicate in both tissues. To ensure expression differences unique to a
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reads mapping uniquely and located within an exon for both tissues before estimating

gene expression levels.
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Supplementary Figure 3. Scatter plots of pairwise RNA-seq and Ribo-seq
comparisons. (a) Heart Ribo-seq, (b) Heart RNA-seq; (c) Liver Ribo-seq and (d)

Liver RNA-seq gene-based counts between SHR/Ola and BN-Lx rat strains. The red
color indicates significantly different genes in-between the strains according to
DESeq2 (Bonferroni correction for multiple testing, FDR < 0.01). For RNA expression,
we only considered genes that were detected in both RNA-seq experiments and
plotted the average expression across RNA-seq1 and RNA-seq2.
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Supplementary Figure 4. Comparison of fold changes between Ribo-seq and RNA-
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for buffered (RNAony), forwarded (RNA+RIBO) and reinforced (RIBOoniy) genes in the
heart and the liver between the SHR/Ola and BN-Lx rat strains. (a) Heart Ribo-seq
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each tissue were defined as described in the supplementary material.
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Supplementary Figure 5. Genome-wide correlation of RNA, RPF and protein
abundance. Protein abundance in the liver as measured by mass spectrometry? is
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d) based RPKM values. In agreement to what has been previously reported in the
literature®, absolute protein levels show a better correlation with ribosome profiling
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Supplementary Figure 6. Experimental validation of different modes of gene
expression regulation. Genes belonging to each of the categories described in the
manuscript (RIBOogniy in red, RNAony in blue, RNA+RIBO in black) were validated by
gRT-PCR and western blotting. For each gene, qRT-PCR results are shown on the
left (error bars indicate s.d.) and western blots on the right. (a-d) Fes (liver), Maoa,
Mrpl48 and Myh6 (heart), which were classified as RIBOony genes, show differences
on the protein level in-between the strains in the absence of significant RNA



expression differences (Mann-Whitney test). (e-h) Ctpsl, Fadsl, Gjal and Ppia
(heart) belong to the RNA.ny group and quantitation by qRT-PCR shows significant
differences (Mann-Whitney test, P < 0.05) at the RNA level between the strains,
whereas comparable protein levels are detected by western blotting. (i) Myh7 (heart)
is classified as a RNA+RIBO gene and shows differences between BN-Lx and
SHR/Ola both at RNA and protein levels.

In some cases the same membrane was used to detect two proteins of interest, after
stripping. Therefore, the pairs Gja1-Mrpl48, Ctps1-Myh7, Ppia-Fads1 share the same
loading controls.
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Supplementary Figure 7. Translational and transcriptional regulation of (a) fatty acid
and (b) cardiomyopathy pathways (KEGG). Arrows indicate either up- or
downregulation in the SHR. All differences detected on the RNA level for these
metabolic pathways were confirmed to lead to changes in protein synthesis (black;
RNA+RIBO). The majority of genes are regulated on the translational level between
BN and SHR (red) and can only be detected as being differentially expressed using
ribosome profiling techniques. (¢) Read counts of Hadh and Tpm1 across three
different sequencing strategies (Ribosome profiling (Ribo-seq), polyA+ RNA
sequencing (RNA-seq1) and total RNA sequencing (RNA-seq2)) visualize how novel
and reinforced strain-specific differences in gene usage can be effectively revealed
by Ribo-seq in both tissues. DESeq2 based P-values are corrected for genome-wide
testing (Bonferroni, FDR < 0.01). Error bars indicate s.d..
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Supplementary Figure 8. Full size western blots corresponding to cropped images
shown in Supplementary Figure 6. Gja1-Mrpl48, Myh7-Ctps1 and Fads1-Ppia were

detected on the same membranes after adequate stripping procedures.



Supplementary Table 1. Partial correlation analysis of RNA-seq, Ribo-seq and
protein levels. Using data of each strain separately, each pair of variables is tested
for conditional independence given the third variable as denoted in the column
“conditional independence” using partial correlation. The null hypothesis of zero
partial correlation coefficients is tested using the t-statistic (column “t”) with the
corresponding degrees of freedom (“df’) (see methods).

Strain In%(;:z:?::(lte Partial Correlation t df o]
BN (Ribo ~ Protein | RNA) 0.27 19.71 4757 <2.2e-16
BN (RNA ~ Protein | Ribo) -0.03 -1.87 4757 0.06
BN (RNA ~ Ribo | Protein) 0.92 156.93 4757 <2.2e-16
SHR (Ribo ~ Protein | RNA) 0.27 19.32 4757 <2.2e-16
SHR (RNA ~ Protein | Ribo) -0.02 -1.29 4757 0.20
SHR (RNA ~ Ribo | Protein) 0.92 159.00 4757 <2.2e-16
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Supplementary Table 2. Overlap of strain-specific gene usage and eQTL data.
Linkage analysis of the HxB/BxH RI panel* using RNA-seq data derived from BN-Lx
and SHR/Ola reveals RNA expression differences under genetic control. We then
compared this eQTL data with all three modes of gene expression regulation in-
between the parental strains. Genes with expression differences in the parental
strains (RNAony; RNA+RIBO) were enriched for eQTLs. Most gene expression traits
on the RNA level (eQTLs) were found to alter protein synthesis rates (RNA+RIBO) in
the parental strains. Only few eQTLs were buffered in the translational level (eQTL
and RNA.ny). As expected, strain-specific usage of RIBOyny genes was not
significantly enriched for RNA expression traits since the gene expression for these
genes is regulated mostly on the translational level only (eQTL and RIBOgny).

Strain-Specific Differences
eQTL RNA;,y RNA+RIBO = RIBOgyy

o FALSE 167 322 486 9211
§  TRUE(EXP) 24 (4) 119 (10) 12 (11) 83

T = TRUE/EXP 56 11.9 1.1

_ FALSE 39 199 343 11921
£  TRUE(EXP) 13(1) 93 (3.2) 11 (3.9) 24

|

TRUE / EXP 21 29 2.8
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Supplementary Table 3. Motifs of RNA binding proteins enriched for genetic
variation in differentially translated genes across strains. We determined all motifs of
RNA binding proteins® in the 3'UTR of genes that were under translational regulation
(RIBOgniy) in either heart or liver tissue between both rat strains. The motifs of 8 RNA
binding proteins were more often mutated between the SHR/Ola and BN-Lx strains
than expected (one-sided Wilcoxon-Mann-Whitney, corrected using the Benjamini-
Hochberg method).

SR o SO pvawe ST
T41133_0.6 ENSRNOG00000020271 Tiall 0.0012 0.0259
T41136_0.6 ENSRNOG00000020689 Cpeb3 0.0011 0.0259
T41220_0.6 ENSRNOG00000033169 Cpeb4 0.0011 0.0259
T41110_0.6 ENSRNOG00000016813 Tial 0.0012 0.0259
T41117_0.6 ENSRNOGO00000017405 Raly 0.0008 0.0259
T40997_0.6 ENSRNOG00000000702 Sart3 0.0024 0.0334
T41142_0.6 ENSRNOG00000021181 Sf3b4 0.0019 0.0334
T41078_0.6 ENSRNOGO00000011621 D4ACRO_RAT 0.0034 0.0413

12



Supplementary Table 4. Expression levels of RNA binding proteins in heart and
liver. The motifs of these RNA binding proteins are enriched for genetic variation in
differentially translated genes across strains (see Supplementary Table 3). We
calculated their RPKM value (average of 5 biological replicates) based on Ribo-seq
data to test whether they were also translated in heart and liver tissue. If present in
the tissue, they can potentially contribute to translational regulation between strains
through cis-regulatory variation in their binding sites. We did not detect significant
differential transcription or translation of these genes in-between strains.

Gene Heart Heart Liver Liver
Ensembl ID Symbol BN-Lx SHR/Ola BN-Lx SHR/Ola
[RPKM] [RPKM] [RPKM] [RPKM]
ENSRNOG00000020271 Tiall 40.4 41.4 20.1 25
ENSRNOG00000020689 Cpeb3 16.2 12.9 3.6 3.6
ENSRNOG00000033169 Cpeb4 23.2 26.3 10.8 12.9
ENSRNOG00000016813 Tial 14.7 13.7 0.9 0.9
ENSRNOG00000017405 Raly 219.8 229.0 91.7 88.7
ENSRNOG00000000702 Sart3 9.1 10.9 3.8 4.4
ENSRNOG00000021181 Sf3b4 17.8 22.3 121 124

ENSRNOGO00000011621 D4ACRO_RAT 0.8 1.1 1.5 1.3




Supplementary Table 5. Differential miRNA expression and translational regulation.
We determined differential miRNA expression for heart and liver tissues in-between
rat strains. Differentially transcribed genes (RNA+RIBO) are not as strongly enriched
for targets of differential miRNAs than genes under translational control (chi squared
test, method Fisher meta P = 0.008).

Strain-Specific Differences

AmiRNA Target Qi TARd 1110 B 1| -] 0 v

FALSE 224 207
Heart  true ExP) 217 (239) 291 (269)

- CALSE 186 208 meta P = 0.008
Liver

TRUE (EXP) 106 (114) 146 (138)
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Supplementary Table 6. GWAS candidate genes primarily under translational

control (RIBOoniy) in heart or liver in the SHR/Ola model for complex traits.

Gene Symbol Human ID Orthologue Rat ID Tissue Trait GWAS
ACAA2 ENSG00000167315 ENSRNOG00000013766  Liver HDL cholesterol 8
ACADL ENSG00000115361 ENSRNOG00000012966  Liver Metabolite levels 9,10
ACADM ENSG00000117054 ENSRNOG00000009845 Heart Metabolite levels 10,11

Metabolic traits
ACOT? ENSG00000097021 ENSRNOG00000010580 Heart QT interval 12
ADH5 ENSG00000197894 ENSRNOG00000033854  Liver HDL cholesterol 13
Obesity-related traits
AQP9 ENSG00000103569 ENSRNOG00000015949  Liver Metabolite levels 14
CCDC141  ENSG00000163492 ENSRNOG00000012580 Héart Blood pressure 15,16
Liver Heart rate
COL4AL  ENSG00000187498 ENSRNOG00000016281 Heart ~ COronary heartartery disease 4, 9
Obesity-related traits
COL4A2 ENSG00000134871 ENSRNOG00000023972 Heart ~ Coronany artery calcification 7 19 5
Coronary heart/artery disease
CPN1 ENSG00000120054 ENSRNOG00000013439 Liver Liver enzyme levels 21
ELMO1 ENSG00000155849 ENSRNOG00000018726 Heart QT interval 22
EMP1 ENSG00000134531 ENSRNOG00000008676 'L'I‘fg"rt Coronary artery calcification 23
ENG ENSG00000106991 ENSRNOG00000050190 Heart Metabolic syndrome 24
ETFDH ENSG00000171503 ENSRNOG00000009538 ':Szrrt Metabolite levels/traits 10,11
Metabolite levels
FADS3 ENSG00000221968 ENSRNOG00000020385  Liver HDL/LDL cholesterol 13,25-28
Triglycerides
Lipid metabolism phenotypes
FES ENSG00000182511 ENSRNOG00000011683 Liver ~Diastolic/Systolic Blood pressure -, 4,
Hypertension
GNB4 ENSG00000114450 ENSRNOG00000011070 Heart Heart rate 16
Blood pressure
GRB14 ENSG00000115290 ENSRNOG00000031396 Heart . 31,32
Type 2 diabetes
KIAA1755  ENSG00000149633 ENSRNOG00000014424 Heart Heart rate 16
KLF6 ENSG00000067082 ENSRNOG00000016885  Liver Coronary artery calcification 23
KLF9 ENSG00000119138 ENSRNOG00000014215 _ Liver Body mass index 33
LAMC2 ENSG00000058085 ENSRNOG00000002667 Heart Coronary heart disease 34
MGMT ENSG00000170430 ENSRNOG00000016038 Liver _ Metabolite levels (X-11787) 35
MTCH2 ENSG00000109919 ENSRNOG00000008682 Heart Body mass index 36,37
MYH6 ENSG00000197616 ENSRNOG00000025757 Heart Heart rate 16
NEIL3 ENSG00000109674 ENSRNOG00000011688 Heart Heart rate variability traits 38
NPC1 ENSG00000141458 ENSRNOG00000012016 _ Liver Obesity 39
PDE11A _ ENSG00000128655 ENSRNOG00000024457 Heart Heart rate 16
PLD5 ENSG00000180287 ENSRNOG00000003997 Heart ~ Coronary artery calcification 18,23
Obesity-related traits
PLEKHGI  ENSG00000120278 ENSRNOG00000016011 Heart Blood pressure 18,40
Obesity-related traits
PLEKHO2  ENSG00000241839 ENSRNOG00000029242 Tﬁi? Coronary heart disease 34
PRF1 ENSG00000180644 ENSRNOG00000000562 Heart Obesity 41
PRKCE ENSG00000171132 ENSRNOG00000015603 Liver _ Metabolite levels (X-11787) 35
PTPRD  ENSG00000153707 ENSRNOG00000005711  Liver Type 2 diabetes 18,42,43
Obesity-related traits
RBM43 ENSG00000184898 ENSRNOG00000004673 Heart Type 2 diabetes 44
SLC1A4 ENSG00000115902 ENSRNOG00000005248 Heart Metabolite levels 14,28
SOX17 ENSG00000164736 ENSRNOG00000027357  Liver LDL cholesterol 13
TNFAIP3 ENSG00000118503 ENSRNOG00000049517 Heart Cardiac Troponin-T levels 45
WDR12 ENSG00000138442 ENSRNOG00000017340 Heart Myocardial infarction 17,19,46

Coronary heart/artery disease
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Supplementary Table 7. List of primers used for qRT-PCR. F, forward; R, reverse.

Myh6 and Myh7 share the same forward primer, but the different reverse oligos
ensure the amplification of specific products.

Gene Symbol  F (5'— 39 R (5‘ - 39

Cipsl GTTCCTTGATATCCGCCTCAC CATCACCCACTCTTGAATTGC
Fadsl CCCACCAAGAATAAGGCGCT TTTCATGAGGCCCATTCGCT
Fes GCCAGCAAAGACAAGGATCG AGTACGTAGCGGTTGTGGTG
Gjal AGGTCTGAGAGCCTGAACTCT CATGTCTGGGCACCTCTCTT
Maoa AATGGGTAGATGTTGGTGGAG CCACGGAATGGGTAAGTTTTC
Mrpl48 ATGAGCGGAACCCTGGGAAAG CCACCTGCAGAATAAATGGGAT
Myh6 AGAGGAGAGGGCGGACATTG AACAGCGAGGCTCTTTCTGC
Myh7 AGAGGAGAGGGCGGACATTG GGCATCCTTAGGGTTGGGTAG
Polr2a CACTCAAGCTGACGGATTACAGA  GAGCATGGACGCCAAAGC
Ppia GCAGACAAAGTTCCAAAGACAG  CCATTATGGCGTGTGAAGTC

Tbhp

TTCGTGCCAGAAATGCTGAA

TTCGTGGCTCTCTTATTCTCATGA

16
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