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ABSTRACT
Background: Habitual red meat consumption was consistently re-
lated to a higher risk of type 2 diabetes in observational studies.
Potentially underlying mechanisms are unclear.
Objective: This study aimed to identify blood metabolites that
possibly relate red meat consumption to the occurrence of type 2 diabetes.
Design: Analyses were conducted in the prospective European Pro-
spective Investigation into Cancer and Nutrition–Potsdam cohort (n =
27,548), applying a nested case-cohort design (n = 2681, including
688 incident diabetes cases). Habitual diet was assessed with validated
semiquantitative food-frequency questionnaires. Total red meat con-
sumption was defined as energy-standardized summed intake of un-
processed and processed red meats. Concentrations of 14 amino acids,
17 acylcarnitines, 81 glycerophospholipids, 14 sphingomyelins, and
ferritin were determined in serum samples from baseline. These bio-
markers were considered potential mediators of the relation between
total red meat consumption and diabetes risk in Cox models. The
proportion of diabetes risk explainable by biomarker adjustment was
estimated in a bootstrapping procedure with 1000 replicates.
Results: After adjustment for age, sex, lifestyle, diet, and body mass
index, total red meat consumption was directly related to diabetes risk
[HR for 2 SD (11 g/MJ): 1.26; 95% CI: 1.01, 1.57]. Six biomarkers
(ferritin, glycine, diacyl phosphatidylcholines 36:4 and 38:4, lyso-
phosphatidylcholine 17:0, and hydroxy-sphingomyelin 14:1) were
associated with red meat consumption and diabetes risk. The red
meat–associated diabetes risk was significantly (P , 0.001) attenu-
ated after simultaneous adjustment for these biomarkers [biomarker-
adjusted HR for 2 SD (11 g/MJ): 1.09; 95% CI: 0.86, 1.38]. The
proportion of diabetes risk explainable by respective biomarkers
was 69% (IQR: 49%, 106%).
Conclusion: In our study, high ferritin, low glycine, and altered
hepatic-derived lipid concentrations in the circulation were associ-
ated with total red meat consumption and, independent of red meat,
with diabetes risk. The red meat–associated diabetes risk was
largely attenuated after adjustment for selected biomarkers, which
is consistent with the presumed mediation hypothesis. Am J
Clin Nutr 2015;101:1241–50.
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INTRODUCTION

Red meat consumption has consistently been associated with
a higher risk of type 2 diabetes mellitus in several large cohort

studies and summarized by several meta-analyses (1–3). Re-
cently, change in red meat consumption was observed to be
related to a change in diabetes risk among 3 large US cohorts
(4), suggesting a dose-response relation. Furthermore, the red
meat–associated diabetes risk was also observed in models in
which red meat was substituted by foods with a similar mac-
ronutrient content (2), suggesting the relation to be independent
of macronutrient composition of the diet. We have previously
reported from the European Prospective Investigation into
Cancer and Nutrition (EPIC)5–Potsdam study that with regard to
type 2 diabetes risk assessment, a 150-g/d portion of red meat
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had a predictive value similar to smoking .20 cigarettes/d,
having a 7.6-cm higher waist circumference, or having one
parent with diabetes (5). Thus, available evidence from pro-
spective cohorts indicates red meat consumption as a risk factor
for the development of type 2 diabetes (6).

Yet, mechanisms underlying the relation of red meat con-
sumption with diabetes risk remain largely unknown. Components
of red meat that were proposed to affect diabetogenic pathways
include heme iron, cholesterol, fatty acids (FAs), amino acids, and
advanced glycation and lipoxidation end products (1), among
others. Reported associations of red meat consumption with bio-
markers of inflammation, glucose metabolism, and hepatocellular
and oxidative stress were mostly explainable by differences in BMI
(7, 8). Therefore, and because of potential residual confounding by
meat-related lifestyle, skepticism prevails regarding redmeat intake
as a causal factor in diabetes development.

A growing body of observational studies and dietary in-
terventions illustrates the impact of diet on systemic metabolic
processes as reflected in metabolomic data (9). In addition,
metabolomic approaches have provided deeper insight into early
diabetogenic pathways (10). Integration of metabolomic data
bears the potential here to focus on a systemic understanding of
the observed diet-disease relations in nutritional epidemiology
(11). In EPIC-Potsdam, metabolomic data were used to identify
lipid metabolites and amino acids as biomarkers of diabetes risk
(12). Furthermore, iron status, as reflected in circulating ferritin,
was shown to be related to the risk of diabetes in EPIC-Potsdam
(13). Changes in amino acid and lipid profiles and iron status
might also help to identify mechanisms underlying the red meat–
associated diabetes risk.

The present study aimed to identify metabolites that possibly
relate habitual red meat consumption to the occurrence of type 2
diabetes and to estimate to what extent this association depends
on such selected metabolites. To pursue that aim, we evaluated
data from targeted metabolomics within a large prospective
cohort study.

METHODS

Study population

The EPIC-Potsdam cohort is part of the multicenter EPIC
study (14). In Potsdam and the surrounding area, in total, 27,548
persons were recruited from the general population (16,644
women and 10,904 men) between 1994 and 1998, with an age
range of 35–64 y (15). The baseline examination included an-
thropometric measurements, a validated semiquantitative food-
frequency questionnaire (FFQ) (16), a lifestyle questionnaire,
and a personal interview. Written informed consent was ob-
tained from all study participants a priori, and the study was
approved by the ethics committee of the Medical Society of the
State of Brandenburg (15). In course of active follow-up, par-
ticipants were contacted every 2 y, with response rates ranging
between 90% and 96% per follow-up round (17). Over a mean
follow-up time of 7.0 y, 849 incident type 2 diabetes cases were
identified until August 2005. For molecular phenotyping, a nes-
ted case cohort was constructed based on all participants who
provided blood samples at baseline (n = 26,444) (18), including
a random sample representative of the full cohort (2500 par-
ticipants, from here on referred to as the subcohort) and all in-

cident type 2 diabetes cases (n = 801), with an overlap of 74
cases (19). For the current analysis, participants with prevalent
type 2 diabetes, cancer, myocardial infarction, or stroke at baseline
(n = 359); implausible self-reported energy intake (,3.35 MJ/d or
.25.12 MJ/d) and missing data for relevant variables (serum
concentrations of metabolites and other biomarkers) (n = 104);
incomplete follow-up information (n = 58); and outliers regarding
the relation between total red meat consumption and metabolites
(n = 25) (see “Statistical analysis” section) were excluded. Thus,
the analytic sample comprised 2681 participants, including 2047
participants of the subcohort and 688 incident type 2 diabetes
cases (with an overlap of 54 cases).

Dietary assessment

Mean daily intake of 158 food items in grams per day in the
year before baseline examination was estimated for each par-
ticipant from self-reports on habitual consumption in a semi-
quantitative FFQ. Total red meat intake was defined as the
summed intake of unprocessed red meat (dishes prepared from
unprocessed beef, veal, pork, and lamb) and processed meat
(bacon, ham, sausages, and the like). A substudy assessment of
unprocessed and processed meat intake showed high re-
producibility with correlation coefficients of 0.77 and 0.73, re-
spectively, between FFQs 6 months apart. Furthermore, a high
relative validity of meat intake was shown if FFQ information
was compared with repeated 24-h recalls (correlation co-
efficients: 0.65 unprocessed and 0.70 for processed red meat)
(20). Total red meat consumption was computed as dietary
density (g/MJ) (21). To define a realistic portion size as an ex-
posure unit, we divided total red meat consumption by 2 SD
(w11 g/MJ). This corresponds to an absolute amount of 93 g/
d of total red meat consumption for a person with an energy
intake similar to the populations mean.

Quantification of biomarkers

Blood samples were collected, fractioned, and aliquoted by
qualified medical personnel and stored in liquid nitrogen
(w21968C) (14). A targeted metabolomic approach was con-
ducted based on a commercial kit (AbsoluteIDQTM p 150 Kit;
Biocrates Life Sciences AG). Serum samples were analyzed on
high-throughput flow injection analysis–tandem mass spec-
trometry devices at the Helmholtz Center Munich. The mea-
surement of the samples of this study as well as the assay
procedure was described elsewhere in detail (22, 23). On the
basis of a previous evaluation of the reliability of measurements
(23), we excluded metabolites below the limit of detection (n =
30) and those with very high analytic variance (n = 6). We also
did not consider hexoses, because hexose concentrations in the
blood are mainly attributable to glucose. Elevated blood glu-
cose, however, is hardly attributable directly to red meat intake
but rather closely linked to the endpoint, type 2 diabetes. Thus,
126 metabolites were left for analyses (14 amino acids, 17
acylcarnitines, 34 diacyl phosphatidylcholines, 37 acyl-alkyl
phosphatidylcholines, 10 lysophosphatidylcholines, and 14
sphingomyelins). For lipid metabolites, FA residues were ab-
breviated x:y, where x represented the cumulative number of
carbon atoms and y the cumulative number of double bonds.
Serum ferritin concentrations were determined by using an
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ADVIA Centaur XP (Siemens Health Care) (13). Plasma con-
centrations of alanine aminotransferase, g-glutamyltransferase,
and high-sensitivity C-reactive protein were determined by us-
ing the automatic ADVIA 1650 analyzer (Siemens Medical
Solutions). All assay procedures were performed as described by
the manufacturer (24).

Identification of incident type 2 diabetes cases

Systematic information sources for the identification of in-
cident cases of type 2 diabetes mellitus were self-reports of
a diabetes diagnosis, diabetes-relevant medication, and dietary
treatment due to diabetes during follow-up. Furthermore, hints
from other information sources such as diagnoses from the tumor
center or doctor or clinic or from the death certificate were used to
identify participants who had likely developed type 2 diabetes.
Potentially incident cases were validated by the treating primary
care physician. Verification process included correct diagnosis
(International Classification of Diseases, 10th revision, E11) and
exact date of diagnosis. In the Methods and Results sections of
this article, the terms diabetes and type 2 diabetes, respectively,
refer to the verified diagnosis of type 2 diabetes mellitus as
defined here.

Statistical analysis

We selected mediators of the red meat–diabetes association
according to 4 predefined mediation criteria (25) (see Supple-
mental Figure 1A). These criteria were tested one after the
other in distinct regression models for each potential mediator
individually. Lipid metabolites, amino acids, and ferritin were
included as potential mediators of the red meat–associated di-
abetes risk because these biomarkers were assumed to be likely
influenced by total red meat consumption in a relatively direct
manner based on its nutrient composition (Supplemental Figure
1B). To reduce the probability of spurious associations, we se-
lected biomarkers only if they were associated with total red
meat consumption in both sexes in stratified analyses. The as-
sociations with diabetes risk were in general similar for men and
women, for total red meat consumption as well as for the se-
lected biomarkers. Thus, for respective analyses, men and
women were pooled.

Assessment of the red meat association with type 2 diabetes

Mediation criterion 1 (significant association between total red
meat consumption and diabetes risk) was evaluated in Cox
proportional hazards regression models with age as underlying
time scale. Study exit was determined by diagnosis of diabetes,
dropout, or censoring time, whichever came first. The case-cohort
design was accounted for by Prentice weighting (26). Potential
confounders to be included as covariates were a priori selected
based on the literature on the association between red meat intake
and diabetes risk (2, 3) and prior investigations in EPIC-Potsdam
regarding risk factors of type 2 diabetes (5), dietary patterns (27),
and determinants of metabolic profiles (28, 29). Model 1 was
adjusted for total energy intake (MJ/d) and sex and stratified
according to age at recruitment (rounded to the next full year).
Model 2 also included risk factors for type 2 diabetes (5): sportive
activity [sports (h/wk), biking (h/wk)]; smoking (4 stages: never
smoker, former smoker, current smoker ,20 units/d, or current

heavy smoker $20 units/d); education (4 stages: no vocational
training or in training, vocational training, technical school, or
technical college or university); daily intake of alcohol, coffee,
and sugar-sweetened beverages (g/d) and consumption of
whole-grain bread (g/MJ); consumption of foods related to red
meat intake (27) [refined-grain bread, cabbage, cooked vegeta-
bles, mushrooms, potatoes, sauce, and poultry (g/MJ)]; and
factors related to serum metabolite concentrations (28, 29) [in-
take of margarine and butter (g/MJ), antihypertensive medica-
tion (yes/no), and antidyslipidemic medication (yes/no)]. To
separately evaluate a possible dependency of selected mediators
on body fatness, we also adjusted the latter model for BMI (in
kg/m2) (model 3).

Biomarker selection

Mediation criterion 2 (significant association of total red meat
consumption with biomarker concentrations in the blood) was
evaluated in the subcohort in multivariate linear regression
models stratified by sex. Biomarkers were Box-Cox transformed
and Z-standardized (mean = 0, SD = 1). Outliers regarding the
relation of total red meat consumption with serum metabolites
were detected based on multivariate regression models. Outliers
were defined as observations with studentized residuals larger
than 3.5 for .5 metabolites or larger than 5 for any of the in-
vestigated metabolites and high influence on estimates for the
association according to Cook’s D statistics and were excluded
(see Study population section). The P values were controlled for
false discovery rate (FDR) within metabolite class by using the
linear step-up method by Benjamini and Hochberg (30). Co-
variates were the same as for model 3 described above. Further
analyses were restricted to metabolites that were significantly
associated with total red meat consumption in either men or
women and showed at least a trend (P , 0.1) in the same di-
rection in the other.

Mediation criterion 3 (significant associations of red meat–
associated biomarkers with diabetes risk) was evaluated in Cox
models for all biomarkers that were selected according to the
second mediation criterion. Associations of serum metabolite
concentrations with the risk of type 2 diabetes have been in-
vestigated in a previous study in EPIC-Potsdam (12). Cox
models were adjusted as described for models 2 and 3 above,
additionally including total red meat consumption as a covariate.
Correction for multiple testing (control of FDR) was applied
considering the number of biomarkers preselected according to
mediation criterion 2. Biomarkers were further evaluated as
mediators of the red meat–associated diabetes risk if the asso-
ciation with diabetes risk was significant and equally directed as
the association with total red meat consumption.

Attenuation of the red meat–associated diabetes risk by
selected biomarkers

Mediation criterion 4 (attenuation of the red meat–associated
diabetes risk after adjustment for selected biomarkers) was
evaluated by comparing Cox models without and with adjustment
for biomarkers. The statistical significance of an attenuation was
evaluated with a method introduced by Hoffmann et al. (31), ap-
plying a one-sided Wald test (H0: b-coefficient for red meat from
the corresponding reference model # b-coefficient for red meat
from the biomarker-adjusted model). In a sensitivity analysis, we
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separately evaluated the attenuation after biomarker adjustment of
the relation between subtypes of exposure (i.e., total red meat and
processed meat) and the risk of diabetes.

The proportion of the excess diabetes risk associated with total
red meat consumption that was explainable by selected biomarkers
was quantitatively estimated based on the difference between the
reference HR and the biomarker-adjusted HR relative to re-
spective excess risk [(HRRed meat – HRRed meat adjusted for biomarkers)/
(HRRed meat – 1)] (32). This estimate is a pseudo-proportion
because it is not restricted to values between 0 and 1. Note that
the term explainable refers to a statistical dependency here and
does not necessarily implicate causal inference. Especially,
complex confounding mechanisms such as not included met-

abolic variables that were influenced by red meat and associ-
ated with both the potential mediator and type 2 diabetes might
have influenced the estimates. The explainable proportion and
its stability were estimated as median and dispersion from
a bootstrapping procedure (1000 bootstrap replicates).

Relation of biomarkers with other diabetes risk markers

We furthermore evaluated cross-sectional associations of the
identified mediators with proteinaceous biomarkers of patho-
physiologic processes (g-glutamyltransferase, alanine amino-
transferase, and high-sensitivity C-reactive protein) that have
been shown to be related to red meat intake as well as diabetes
risk in EPIC-Potsdam (7). Analyses were conducted in the

TABLE 1

Baseline characteristics according to tertiles of total red meat consumption stratified by sex, EPIC–Potsdam Study1

Characteristic

Women (n = 1,257) Men (n = 790)

T1 (n = 419) T2 (n = 419) T3 (n = 419) T1 (n = 263) T2 (n = 264) T3 (n = 263)

Meat intake, g/MJ

Total meat 6.3 (0.6, 8.3)2 10.6 (8.7, 12.4) 16.1 (13.0, 23.9) 7.8 (3.1, 9.7) 12.2 (10.3, 13.9) 17.3 (14.6, 25.6)

Unprocessed meat 2.4 (0.2, 5.2) 4.3 (1.8, 7.6) 6.6 (2.9, 13.3) 3.3 (0.9, 5.5) 5.1 (2.1, 8.4) 6.8 (2.3, 13.2)

Processed meat 3.1 (0.2, 6.0) 6.1 (3.2, 9.0) 9.1 (4.7, 17.2) 4.1 (1.2, 6.8) 6.7 (3.7, 10.4) 10.8 (5.4, 19.6)

Age at baseline, y 47.7 6 9.53 49.2 6 9.2 47.4 6 8.9 52.2 6 7.9 51.5 6 8.4 49.9 6 7.3

BMI, kg/m2 25.1 6 4.6 25.5 6 4.2 25.9 6 4.6 26.3 6 3.2 26.4 6 3.3 27.0 6 3.4

Sports, h/wk 1.3 6 1.9 0.9 6 1.5 0.8 6 1.4 1.1 6 2.1 1.0 6 1.7 1.0 6 1.8

Biking, h/wk 2.2 6 3.2 2.0 6 2.9 1.5 6 2.6 2.1 6 2.9 1.6 6 2.5 1.5 6 2.4

Current smokers, % 15 14 22 22 25 29

Higher education,4 % 65 57 58 68 73 64

HT-medic (yes), % 15 16 15 20 15 17

HL-medic (yes), % 3 2 4 3 5 6

Energy, MJ/d 7369 6 1845 7428 6 1664 7455 6 1709 10,539 6 2651 10,574 6 2386 10,911 6 2703

Beverages, g/d

Alcohol 8.4 6 10.9 8.1 6 9.7 8.8 6 9.6 22.2 6 26.7 23.3 6 20.5 25.5 6 21.2

Coffee 360.5 6 287.7 409.3 6 268.2 442.1 6 308.3 426.1 6 354.0 459.2 6 362.6 479.4 6 358.8

Soft drinks 24.4 6 98.7 27.5 6 84.2 43.5 6 167.2 80.1 6 180.0 71.7 6 175.9 64.9 6 134.1

Food intake, g/MJ

Whole-grain bread 8.8 6 8.1 6.4 6 6.7 5.1 6 5.7 5.2 6 6.7 4.0 6 5.4 3.1 6 4.5

Refined-grain bread 11.7 6 8.2 14.4 6 8.0 15.6 6 8.1 15.6 6 8.5 15.3 6 7.6 15.8 6 7.1

Butter 1.1 6 1.5 1.1 6 1.5 1.1 6 1.4 1.0 6 1.4 1.0 6 1.3 1.0 6 1.3

Margarine 1.7 6 1.7 1.8 6 1.7 2.0 6 1.7 1.5 6 1.4 1.6 6 1.4 1.6 6 1.4

Cabbage 1.9 6 1.9 1.9 6 1.7 2.3 6 2.2 1.2 6 1.2 1.4 6 1.3 1.5 6 1.5

Cooked vegetables 4.2 6 3.1 3.8 6 2.2 4.4 6 2.6 2.4 6 1.6 2.8 6 1.7 2.9 6 2.1

Mushrooms 0.3 6 0.3 0.3 6 0.3 0.3 6 0.4 0.2 6 0.2 0.2 6 0.2 0.2 6 0.2

Potatoes 8.9 6 6.3 10.4 6 6.2 11.7 6 6.0 8.3 6 4.9 9.5 6 4.9 10.3 6 5.9

Sauce 1.3 6 1.5 1.4 6 1.2 1.9 6 1.5 1.0 6 0.8 1.3 6 1.1 1.6 6 1.2

Poultry 1.2 6 1.3 1.5 6 1.3 1.9 6 1.5 1.2 6 1.1 1.5 6 1.5 1.7 6 1.5

Nutrient intake

Carbohydrates, g/MJ 26.9 6 3.7 26.0 6 2.9 24.3 6 3.0 24.3 6 3.4 22.7 6 3.1 20.7 6 2.8

Monosaccharides, g/MJ 5.5 6 2.0 5.4 6 1.7 4.8 6 1.9 4.2 6 2.1 3.9 6 2.0 3.2 6 1.6

Disaccharides, g/MJ 9.3 6 2.7 8.5 6 2.1 7.5 6 1.9 7.2 6 2.6 6.4 6 2.3 5.3 6 2.2

Protein, g/MJ 7.8 6 1.1 8.1 6 1.0 8.7 6 1.0 7.5 6 1.1 8.1 6 1.0 8.9 6 1.1

Fat, g/MJ 9.6 6 1.4 10.0 6 1.2 10.6 6 1.3 10.2 6 1.9 10.8 6 1.5 11.5 6 1.5

Cholesterol, g/MJ 0.031 6 0.01 0.035 6 0.01 0.040 6 0.01 0.032 6 0.01 0.035 6 0.01 0.038 6 0.01

SFA, g/MJ 4.03 6 0.87 4.20 6 0.78 4.37 6 0.76 4.29 6 1.06 4.44 6 0.94 4.62 6 0.83

MUFA, g/MJ 3.17 6 0.48 3.37 6 0.41 3.64 6 0.45 3.38 6 0.62 3.66 6 0.49 4.03 6 0.54

PUFA, g/MJ 1.65 6 0.61 1.74 6 0.57 1.85 6 0.56 1.85 6 0.71 1.98 6 0.62 2.11 6 0.67

Iron, mg/MJ 1.55 6 0.21 1.57 6 0.18 1.62 6 0.19 1.32 6 0.23 1.35 6 0.20 1.44 6 0.25

1Baseline characteristics of the subcohort (n = 2047). EPIC, European Prospective Investigation into Cancer and Nutrition; HL-medic, medication due to

dyslipidemia; HT-medic, medication due to hypertension; T, tertile.
2Median; 5th, 95th percentiles in parentheses (all such values).
3Mean 6 SD (all such values).
4Professional school, a college of higher education, or a university.
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subcohort by using multivariate linear regression models. All
metabolites identified as potential mediators were mutually in-
cluded in the same model as explanatory variables for the
plasma concentration of each proteinaceous biomarker. The
models were adjusted as described above for model 3, including
total red meat consumption as an additional covariate.

All analyses were conducted with SAS version 9.4 (SAS In-
stitute). In all statistical tests, an a level below 0.05 was considered
statistically significant and an a level below 0.1 borderline sig-
nificant. If multiple tests were conducted, FDR-corrected P values
were used to judge significance.

RESULTS

Study population and baseline characteristics

Baseline characteristics of the EPIC-Potsdam subcohort
according to categories (tertiles) of total red meat consumption
and stratified by sex are summarized in Table 1. Briefly, in both
sexes, persons with high total red meat consumption compared
with those with low total red meat consumption tended to have
a higher BMI, a lower level of sportive activity, and a lower level
of formal education and were more likely to be smokers and to
use lipid-lowering drugs. Participants with higher total red meat
consumption tended to consume less whole-grain bread and
more alcohol, coffee, margarine, refined-grain bread, cabbage,
potatoes, sauce, and poultry compared with persons with lower
total red meat consumption. Men with higher total red meat
consumption were younger and less likely to use antihyperten-
sive drugs. Consumption of soft drinks was higher in women
while being lower in men with higher red meat consumption.
Energy standardized total intake of protein and fat was higher,
whereas intake of carbohydrates was lower among participants
with higher total red meat consumption. Also, the dietary intake
of specific sugars (mono- and disaccharides) was lower, but it
was higher for different FA types (i.e., SFAs, MUFAs, and
PUFAs) and cholesterol among participants with higher total red
meat consumption. Furthermore, dietary iron intake was higher
in participants with high total red meat consumption.

Biomarker selection

The cross-sectional associations between total red meat
consumption and each of the 127 biomarkers were analyzed,
stratified by sex. Among women, the number of P values found to
be significant after correction for FDR within metabolite class
was 32 (one of 14 amino acids, zero of 17 acylcarnitines, 10 of
34 diacyl phosphatidylcholines, 12 of 37 acyl-alkyl phosphati-
dylcholines, 4 of 10 lysophosphatidylcholines, and 5 of 14
sphingomyelins). Among men, the number of P values found to
be significant after correction for FDR within metabolite class
was 26 (zero of 14 amino acids, 2 of 17 acylcarnitines, 4 of 34
diacyl phosphatidylcholines, 11 of 37 acyl-alkyl phosphatidyl-
cholines, 2 of 10 lysophosphatidylcholines, and 7 of 14 sphin-
gomyelins). In addition, ferritin was significantly associated
with total red meat consumption in both sexes (see Supple-
mental Tables 1–6 for a detailed listing of b-coefficients and
raw and FDR-corrected P values and Supplemental Figures 2–7
for P value plots of all associations between total red meat con-
sumption and single serum metabolite concentrations). For 21 of

127 biomarkers (glycine, 4 diacyl phosphatidylcholines, 11 acyl-
alkyl phosphatidylcholines, 2 lysophosphatidylcholines, 2 sphin-
gomyelins, and ferritin), the criterion of a significant association
with total red meat consumption in either men or women and
at least a trend (P , 0.1) in the same direction in the other after
controlling for FDR was fulfilled (Table 2). Of these 21 bio-
markers, 13 were significantly associated with diabetes risk after
controlling for FDR (Supplemental Table 7). For 6 of these 13
biomarkers—namely, ferritin, glycine, diacyl phosphatidylcho-
lines 36:4 and 38:4, lysophosphatidylcholine 17:0, and hydroxy-
sphingomyelin 14:1—the associations with total red meat
consumption and with diabetes risk were consistent with the
mediation hypothesis (Table 2 and Table 3); that is, both
associations were in the same direction. These 6 biomarkers
were further investigated as potential mediators.

In a sensitivity analysis, we evaluated the impact of different
selection strategies and P value adjustments on selecting the 6

TABLE 2

Association with total red meat intake for biomarkers that fulfilled

mediation criterion 21

Biomarker

Women (n = 1257) Men (n = 790)

b Praw PFDR b Praw PFDR

Glycine 20.098 0.001 0.019 20.099 0.009 0.067

Diacyl PC 36:0 0.124 ,0.001 ,0.001 0.140 ,0.001 0.004

Diacyl PC 36:4 0.102 0.001 0.003 0.124 0.001 0.007

Diacyl PC 38:0 0.148 ,0.001 ,0.001 0.152 ,0.001 0.002

Diacyl PC 38:4 0.108 ,0.001 0.001 0.120 0.001 0.008

Acyl-alkyl PC 34:0 20.097 0.001 0.002 20.073 0.037 0.091

Acyl-alkyl PC 34:2 0.095 0.001 0.005 0.078 0.036 0.091

Acyl-alkyl PC 34:3 0.066 0.023 0.064 0.106 0.004 0.014

Acyl-alkyl PC 36:1 20.099 ,0.001 0.002 20.079 0.026 0.080

Acyl-alkyl PC 36:3 0.127 ,0.001 ,0.001 0.137 ,0.001 0.002

Acyl-alkyl PC 36:4 0.235 ,0.001 ,0.001 0.205 ,0.001 ,0.001

Acyl-alkyl PC 36:5 0.183 ,0.001 ,0.001 0.225 ,0.001 ,0.001

Acyl-alkyl PC 38:4 0.129 ,0.001 ,0.001 0.146 ,0.001 ,0.001

Acyl-alkyl PC 38:5 0.211 ,0.001 ,0.001 0.219 ,0.001 ,0.001

Acyl-alkyl PC 38:6 0.155 ,0.001 ,0.001 0.156 ,0.001 ,0.001

Acyl-alkyl PC 40:4 0.058 0.048 0.098 0.119 0.002 0.006

Lyso-PC 17:0 20.057 0.043 0.087 20.098 0.004 0.019

Lyso-PC 20:4 0.109 ,0.001 0.002 0.115 0.002 0.017

Hydroxy-SM 14:1 20.121 ,0.001 ,0.001 20.069 0.053 0.092

SM 24:1 0.075 0.014 0.040 0.203 ,0.001 ,0.001

Ferritin 0.137 ,0.001 ,0.001 0.113 0.002 0.002

1Biomarkers were preselected based on the criterion of a significant

(PFDR , 0.05) association with total red meat consumption in either men

or women and at least a similar trend (PFDR , 0.1) in the other. Standardized

b-coefficients (b) for a linear association of total red meat consumption with

serum metabolite concentration in the subcohort (n = 2047). Regression

models were adjusted for total energy intake (MJ/d), age (years), BMI (in

kg/m2), sports (h/wk), biking (h/wk), smoking (4 stages: never smoker,

former smoker, current smoker ,20 units/d, or current heavy smoker .20

units/d), education (4 stages: no vocational training or in training, vocational

training, technical school, or technical college or university degree), antihy-

pertensive medication (yes/no), antidyslipidemic medication (yes/no), intake

of beverages (alcohol, coffee, sugar-sweetened beverages) (g/d), and intake

of whole-grain bread, refined-grain bread, butter, margarine, cabbage,

cooked vegetables, mushrooms, potatoes, sauce, and poultry (g/MJ). Raw

P values and FDR-controlled P values (corrected within metabolite classes)

from a 2-sided t test (H0: b = 0). FDR, false discovery rate; PC, phospha-

tidylcholine; SM, sphingomyelin.
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above-defined potential mediators. Pooling men and women
and selecting biomarkers based on a significant P value after
controlling for FDR over all 127 biomarkers would have led to
the selection of all 6 biomarkers; using Bonferroni correction
over all biomarkers in the pooled analysis would have led to
the selection of all metabolites but lysophosphatidylcholine
17:0 (P = 0.198); keeping the sex-stratified analysis and
controlling FDR over all metabolites (instead of control within
metabolite class) would have resulted in the selection of all
metabolites but lysophosphatidylcholine 17:0 (men: P =
0.138; women: P = 0.024) and hydroxy-sphingomyelin 14:1
(men: P , 0.001; women: P = 0.159). Thus, results were
robust to the choice of selection strategy and P value adjust-
ment method for glycine, ferritin, and phosphatidylcholines
36:4 and 38:4 and were somewhat sensitive to that choice for
lysophosphatidylcholine 17:0 and hydroxy-sphingomyelin
14:1.

Attenuation of the red meat–associated diabetes risk by
selected biomarkers

A higher total red meat consumption was related to a higher
risk of developing type 2 diabetes [HR for 2 SD (11 g/MJ): 1.47;
95% CI: 1.24, 1.75] in the minimally adjusted model 1 (Table 4).
Additional adjustment for lifestyle, medication, and diet (model
2) attenuated the relation (HR: 1.33; 95% CI: 1.09, 1.62). This
association was further attenuated after also adjusting for BMI
and again remained significant (HR for 2 SD: 1.26; 95% CI:
1.01, 1.57). In Table 4, results are also presented from multiple
Cox models constructed to assess to what extent the association

between total red meat consumption and diabetes risk was at-
tenuated after adjustment for selected biomarkers. Considering
the selected biomarkers individually, the association of total red
meat consumption with diabetes risk was significantly attenuated
after adjustment for diacyl phosphatidylcholines 36:4 and 38:4,
lysophosphatidylcholine 17:0, glycine, and ferritin, and it was
borderline significantly attenuated after adjustment for hydroxy-
sphingomyelin 14:1 (P, 0.1) when using model 2 as a reference
model. When using the BMI-adjusted model 3 as reference, the
attenuation was significant after adjustment for diacyl phos-
phatidylcholine 36:4, hydroxy-sphingomyelin 14:1, and glycine
and borderline significant after adjustment for diacyl phospha-
tidylcholine 38:4 (P = 0.05) and ferritin (P = 0.06). Diacyl
phosphatidylcholines 36:4 and 38:4 were highly correlated, and
adjustment for diacyl phosphatidylcholine 36:4 did not further
attenuate the association between total red meat consumption
and type 2 diabetes risk if diacyl phosphatidylcholine 38:4 was
also included in the same model (data not shown). Therefore,
mutual biomarker-adjusted models did not include diacyl
phosphatidylcholine 36:4. After mutually including the 5 other
selected biomarkers as covariates, the HR (per 2 SD) of total red
meat consumption was significantly attenuated from 1.33 (95%
CI: 1.09, 1.62) to 1.04 (0.83, 1.30) for the non–BMI-adjusted
model 2 and from 1.26 (95% CI: 1.01, 1.57) to 1.09 (0.86, 1.38)
for the BMI-adjusted model 3.

The proportion of red meat–related diabetes risk explainable
by selected biomarkers (median from 1000 bootstrap replicates)
is shown in Figure 1. If the non–BMI-adjusted model 2 was
defined as reference, the red meat–associated diabetes risk
was attenuated by 89% (IQR: 69%, 121%) after simultaneous
adjustment for the selected biomarkers (Figure 1A). If the BMI-
adjusted model 3 was defined as reference, the red meat–
associated diabetes risk was attenuated by 69% (IQR: 49%,
106%) after simultaneous adjustment for selected biomarkers
(Figure 1B). Consistent with above-described models, diacyl
phosphatidylcholine 36:4 was not contained in mutual bio-
marker-adjusted models. The explainable proportion ranged
between 8% and 33% for single biomarker adjustments.

Our sensitivity analysis evaluating different subtypes of ex-
posure revealed that the attenuation of the associated diabetes
risk after mutual adjustment for all selected biomarkers was also
significant if only unprocessed red meat (P = 0.007) or pro-
cessed meat (P = 0.002) consumption was considered the ex-
posure variable (reference: model 3). In the fully adjusted
model 3, the proportion of associated diabetes risk explainable
by simultaneous biomarker adjustment (median and IQR from
1000 bootstrap replicates) was 49% (IQR: 29%, 89%) for un-
processed red meat consumption, whereas it was 71% (IQR:
45%, 115%) for processed meat consumption (Supplemental
Figure 8).

Relation of selected biomarkers with other diabetes risk
markers

Cross-sectional associations between the selected biomarkers
and plasma concentrations of C-reactive protein, g-glutamyl-
transferase, and alanine aminotransferase are presented in Table
5. Directions of the associations were largely accordant with the
direction of the relations of the selected mediators with the risk
of type 2 diabetes.

TABLE 3

Association with type 2 diabetes risk for biomarkers that fulfilled

mediation criteria 2 and 31

Selected biomarker HR (95% CI)2 praw pFDR

Glycine 0.66 (0.57, 0.77) ,0.001 ,0.001

Diacyl PC 36:4 1.20 (1.07, 1.35) 0.002 0.003

Diacyl PC 38:4 1.24 (1.12, 1.38) ,0.001 ,0.001

Lyso-PC 17:0 0.78 (0.68, 0.89) ,0.001 ,0.001

Hydroxy-SM 14:1 0.83 (0.73, 0.94) 0.004 0.007

Ferritin 1.28 (1.15, 1.42) ,0.001 ,0.001

1Biomarkers were selected based on the mediation criteria 2 and 3—

that is, a significant (PFDR , 0.05) association with total red meat consump-

tion in either men or women and at least a similar trend (PFDR , 0.1) in the

other (criterion 2) and equally directed associations with type 2 diabetes risk

(criterion 3). Raw P values and FDR-controlled P values (corrected for the

21 tests conducted among all metabolites that fulfilled mediation criterion 2)

from a 2-sided Wald-test (H0: b = 0). FDR, false discovery rate; PC, phos-

phatidylcholine; SM, sphingomyelin.
2Diabetes-HR per SD in serum concentration; the associations of 21

preselected metabolites with type 2 diabetes risk were evaluated in Cox models

in the case cohort (n = 2681) adjusted for total red meat intake, total energy

intake (MJ/d), age (years), sex, BMI (in kg/m2), sports (h/wk), biking (h/wk),

smoking (4 stages: never smoker, former smoker, current smoker ,20 units/d,

or current heavy smoker .20 units/d), education (4 stages: no vocational

training or in training, vocational training, technical school, or technical

college or university degree), antihypertensive medication (yes/no), antidys-

lipidemic medication (yes/no), intake of beverages (alcohol, coffee, sugar-

sweetened beverages) (g/d), and intake of whole-grain bread, refined-grain

bread, butter, margarine, cabbage, cooked vegetables, mushrooms, potatoes,

sauce, and poultry (g/MJ).
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DISCUSSION

In this prospective study of middle-aged men and women, total
red meat consumption was related to an elevated risk of type 2
diabetes. Of 127 investigated biomarkers comprising lipids,
amino acids, and ferritin, 33 among women and 27 among men
were associated with total red meat consumption, with 21 showing
similar associations in both sexes. Of these 21 biomarkers, 6 were
equally associated with type 2 diabetes risk. Mutual adjustment for
selected biomarkers revealed that the red meat–associated diabetes
risk was largely dependent on the serum concentrations of ferritin,
a small set of glycerophospholipids, and glycine.

Regarding lipid profiles, we found strong sex-consistent as-
sociations with total red meat consumption for 19 lipid metab-
olites from 4 classes. The detected enrichment of lipid metabolites
that contained 16 or more carbon atoms in their FA residues in
which one FA was contained (lysophosphatidylcholines and
sphingomyelins) or 34 or more carbon atoms in which 2 FAs were
contained (diacyl phosphatidylcholines and acyl-alkyl phospha-
tidylcholines) is plausibly related to the high proportion of even-
numbered long- and very long-chained FA contained in red meats
(33). Circulating lipid metabolites reflect synthesis activity of

lipid classes as well as availability and metabolism of specific FAs
in the liver. In the literature, several lines of experimental evidence
relate lipid metabolism to the pathogenesis of type 2 diabetes,
among them a challenged mitochondrial metabolism, altered
cellular signaling processes at the membrane, and modulation of
gene expression (34, 35). Consistently, endogenous FA compo-
sition in several lipid compartments has been related to the risk of
type 2 diabetes in several prospective cohorts, including EPIC-
Potsdam (36).

Among amino acids, glycine fulfilled predefined selection
criteria. Several studies found an inverse relation between red
meat intake and the glycine concentration in biofluids (37, 38). In
a randomized controlled feeding trial, glycine concentrations
were slightly lower in response to a meat protein–based diet
compared with a plant protein–based diet, whereas the amount
of glycine provided by the meat diet was about 50% higher (39).
Hence, available evidence suggests elevated glycine utilization
in response to red meat intake. Glycine is related to insulin re-
sistance and oxidative stress by its essential role in gluconeo-
genesis and the formation of glutathione (40). An independent
inverse association of glycine with diabetes risk was previously

TABLE 4

Association of total red meat consumption with type 2 diabetes risk in mediator-adjusted vs. non–mediator-adjusted

models1

b-coefficient2 P value3 for attenuation of b HR (95% CI)4

Model 1 0.393 1.47 (1.24, 1.75)

Model 2 0.282 (referent) 1.33 (1.09, 1.62)

Model 2 + diacyl PC 36:4 0.229 0.002 1.26 (1.03, 1.54)

Model 2 + diacyl PC 38:4 0.210 0.002 1.23 (1.01, 1.52)

Model 2 + lyso-PC 17:0 0.229 0.015 1.26 (1.02, 1.55)

Model 2 + hydroxy-SM 14:1 0.265 0.099 1.30 (1.07, 1.59)

Model 2 + selected lipid-mediators5 0.142 ,0.001 1.15 (0.93, 1.43)

Model 2 + ferritin 0.193 0.003 1.21 (0.98, 1.50)

Model 2 + glycine 0.197 0.002 1.22 (0.99, 1.50)

Model 2 + selected mediators6 0.038 ,0.001 1.04 (0.83, 1.30)

Model 3 (model 2 + BMI) 0.228 (referent) 1.26 (1.01, 1.57)

Model 3 + diacyl PC 36:4 0.194 0.018 1.21 (0.97, 1.52)

Model 3 + diacyl PC 38:4 0.199 0.053 1.22 (0.97, 1.53)

Model 3 + lyso-PC 17:0 0.212 0.166 1.24 (0.99, 1.55)

Model 3 + hydroxy-SM 14:1 0.202 0.035 1.22 (0.98, 1.53)

Model 3 + selected lipid mediators5 0.163 0.011 1.18 (0.94, 1.48)

Model 3 + ferritin 0.189 0.057 1.21 (0.96, 1.52)

Model 3 + glycine 0.164 0.003 1.18 (0.94, 1.48)

Model 3 + selected mediators6 0.086 ,0.001 1.09 (0.86, 1.38)

1An attenuation of the b-coefficient and the corresponding HR after adjustment for a biomarker indicates that this

biomarker plays a role as mediator. Cox models were used to estimate the association between total red meat consumption

and risk of type 2 diabetes in the case cohort (n = 2681). Model 1 was adjusted for age (years), sex, and total energy intake

(MJ/d). Model 2 was also adjusted for sports (h/wk), biking (h/wk), smoking (4 stages: never smoker, former smoker,

current smoker ,20 units/d, or current heavy smoker .20 units/d), education (4 stages: no vocational training or in

training, vocational training, technical school, or technical college or university degree), antihypertensive medication

(yes/no), antidyslipidemic medication (yes/no), intake of beverages (alcohol, coffee, sugar-sweetened beverages) (g/d),

and intake of whole-grain bread, refined-grain bread, butter, margarine, cabbage, cooked vegetables, mushrooms, potatoes,

sauce, and poultry (g/MJ). Model 3 was also adjusted for BMI (in kg/m2). PC, phosphatidylcholine; SM, sphingomyelin.
2b-Coefficient for 2 SD (11 g/MJ) of total red meat consumption.
3P value for the attenuation of b-coefficients from the biomarker-adjusted compared with the corresponding reference

model [one-sided Wald-test (H0: bmediator adjusted , bnon–mediator adjusted)].
4HR for 2 SD (11 g/MJ) of total red meat consumption.
5Selected lipid mediators: diacyl phosphatidylcholine 38:4, lysophosphatidylcholine 17:0, and hydroxy-sphingomyelin

C14:1.
6Selected mediators: lipid mediators, ferritin, and glycine.
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described by us and others (12, 41). A Mendelian randomization
study, however, did not provide evidence for a causal role of
glycine in diabetes-related traits (42).

We observed a direct association of total red meat consumption
with plasma ferritin levels. Heme iron intake from red meats was
shown to induce higher ferritin levels in feeding trials (43).
Interestingly, heme biosynthesis, which is triggered by high iron
availability, is an important glycine-using pathway, and high
expression of heme-synthesizing enzymes was associated with
low circulating glycine concentrations in humans (41). Consis-
tent with other studies (44), elevated iron status as assessed by
ferritin was directly related to the risk of diabetes in EPIC-
Potsdam (13). Underlying mechanisms seem to be manifold and
likely include oxidative stress and modulation of intracellular
signaling cascades (44).

The marked attenuation of red meat–associated diabetes risk
after adjustment for selected biomarkers suggests that these
biomarkers reflect metabolic processes that link habitual red
meat consumption to diabetes risk. Given that an observational
study is generally prone to confounding and other sources of bias,
interpretation of our findings with regard to biological paths is
rather hypothesis generating than able to proof their causal nature

(45). Thus, our results generate and underline experimentally
testable hypotheses that can inform future dietary interventions in
terms of design and biomarker assessment (46).

Total red meat as defined in our study is a large and hetero-
geneous food group. Still, an elevated diabetes risk was con-
sistently observed for both unprocessed and processed red meat
(1–3). Thus, we focused on the investigation of metabolic traits
that were related to red meat consumption in general. Our
sensitivity analyses in subcategories of exposure (unprocessed
and processed meat, respectively) suggest that the mutual set of
selected biomarkers is relevant across subtypes of red meat.
Still, identification of meat type–specific effects is of particular
interest. For example, advanced glycation end products, trans
FA, nitrites and nitrates, and methylamines are discussed as
meat type–specific mediators (1). Here, metabolomic data might
help to identify meat type–specific mechanisms, which could
possibly account for differences in the associated diabetes risk
between types of red meat.

Several valid alternatives to our regression-based approach to
model metabolomic data exist (e.g., correlation networks and
data reduction methods). By considering the potential biomarkers
individually, we were able to correct the predefined significance

TABLE 5

Association of selected mediators with CRP, GGT, and ALT1

Selected mediator

CRP GGT ALT

Standardized

b-coefficient (95% CI)

FDR-controlled

P value

Standardized

b-coefficient (95% CI)

FDR-controlled

P value

Standardized

b-coefficient (95% CI)

FDR-controlled

P value

Ferritin 0.020 (20.027, 0.066) 0.404 0.127 (0.084, 0.171) ,0.001 0.165 (0.121, 0.208) ,0.001

Diacyl PC 38:4 0.038 (20.003, 0.08) 0.069 0.127 (0.088, 0.166) ,0.001 0.106 (0.067, 0.145) ,0.001

Glycine 20.150 (20.191, 20.110) ,0.001 20.033 (20.071, 0.005) 0.140 20.012 (20.051, 0.026) 0.529

Lyso-PC 17:0 20.246 (20.294, 20.199) ,0.001 20.069 (20.114, 20.023) 0.005 20.063 (20.108, 20.018) 0.007

Hydroxy-SM 14:1 0.125 (0.075, 0.174) ,0.001 0.009 (20.038, 0.056) 0.697 0.044 (20.003, 0.091) 0.098

1Associations of selected mediators (explanatory variable) with CRP, GGT, and ALT (outcome) were estimated based on the subcohort (n = 2047). Linear

regression models were used, adjusted for other mediators, total red meat consumption, and total energy intake (MJ/d), age (y), sex, BMI (in kg/m2), sports

(h/wk), biking (h/wk), smoking (4 stages: never smoker, former smoker, current smoker ,20 units/d, or current heavy smoker .20 units/d), education (4 stages:

no vocational training or in training, vocational training, technical school, or technical college or university degree), antihypertensive medication (yes/no),

antidyslipidemic medication (yes/no), intake of beverages (alcohol, coffee, and sugar-sweetened beverages) (g/d), and intake of whole-grain bread, refined-

grain bread, butter, margarine, cabbage, cooked vegetables, mushrooms, potatoes, sauce, and poultry (g/MJ). FDR-controlled P values were from a 2-sided

t test (H0: b = 0). ALT, alanine transaminase; CRP, C-reactive protein; FDR, false discovery rate; GGT, g-glutamyl transferase; PC, phosphatidylcholine; SM,

sphingomyelin.

FIGURE 1 Bootstrap-HR is the median of diabetes-HR for 2 SD (11 g/MJ) of total red meat consumption from 1000 bootstrapping repetitions. Left panel:
adjusted for age, sex, diet, and lifestyle. Right panel, additionally adjusted for BMI. Proportion of excess risk explainable by biomarkers was estimated as the
difference of non–mediator-adjusted and mediator-adjusted HR divided by red meat–related excess diabetes risk; displayed are the median percentage, the IQR (gray
box), and the 5th and 95th percentiles (edges of the line). Selected lipid mediators: diacyl phosphatidylcholine 38:4, lysophosphatidylcholine 17:0, and hydroxy-
sphingomyelin 14:1. Selected mediators: lipid mediators, ferritin, and glycine. LPC, lysophosphatidylcholine; PC, phosphatidylcholine; SM, sphingomyelin.
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thresholds for multiplicity at each stage of the analysis and to
compare significant findings across sexes. This should have re-
duced the likelihood of false discoveries. Furthermore, we
evaluated the robustness of our results in a bootstrapping pro-
cedure. Still, the a priori design of our search strategy included
arbitrary decisions, and P values lose their straightforward in-
terpretability with regard to the probability of type I errors in
a step-by-step selection procedure such as ours (47). Our sen-
sitivity analysis applying different P value adjustments and
differently defined selection criteria showed that selection was
very robust for most potential mediators but was somewhat
sensitive to these choices for lysophosphatidylcholine 17:0 and
hydroxy-sphingomyelin 14:1. For these 2 metabolites, therefore,
a nonneglectable probability of type I error might have remained
even after P value adjustment. External validation of our results
is warranted and should be facilitated by our decision to con-
sider biomarkers individually.

To our knowledge, this is the first study evaluating a large set of
metabolites as potential mediators of the association between red
meat intake and diabetes risk, including several lipid metabolites,
amino acids, and ferritin. The prospective design of our study
should have minimized various sources of bias (selection bias,
reverse causation), and we controlled for a large set of potentially
confounding factors in our analyses, including lifestyle, medica-
tion, dietary factors, and BMI. Because of the observational nature
of our study, however, the possibility of residual confounding
cannot be ruled out. Further limitations of our study refer to the
data reliability. Dietary information relied on estimates of habitual
consumption over the past year by FFQs, and metabolites were
measured at a single time point. However, FFQs showed good
reliability and relative validity to assess meat intake, and in-
vestigatedmetabolites showed good reliability in validation studies
(23). Still, random measurement error may have masked some
associations. Albeit large, the set of targeted metabolites was not
exhaustive with regard to potential mediating mechanisms. Fur-
thermore, acylcarnitines have previously been linked to red meat
intake (38). This effect, however, may reflect mitochondrial me-
tabolism under acute dietary challenge (48) rather than effects of
long-term habitual diet as assessed in our study. Furthermore,
estrogen is a modulator ofmitochondrial function, and associations
of red meat consumption with acylcarnitines might be sex specific.
In this study, however, we only selected biomarkers that were
associated with red meat in both sexes to avoid spurious findings.

In addition, there is the possibility that cases remained un-
diagnosed during follow-up. However, this misclassification
should not bias the associations between red meat consumption
and diabetes given that false-positive case definitions should have
been rare due to the strict verification procedures in EPIC-
Potsdam (49).

In conclusion, high ferritin, low glycine, and altered hepatic-
derived lipids in the circulation were associated with both total
red meat consumption and diabetes risk. The large attenuation of
the red meat–associated diabetes risk after adjustment for these
potential mediators is consistent with the hypothesis that met-
abolic processes reflected in the circulating concentrations of
these biomarkers take part in linking red meat consumption to
type 2 diabetes incidence. Our results, however, cannot prove
causality of the observed associations and, where possible, the
suggested single relations should inform the design and the
biomarker assessment of interventional studies.
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