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Abstract
Correlations between two variables of a high-dimensional system can be indi-
cative of an underlying interaction, but can also result from indirect effects.
Inverse Ising inference is a method to distinguish one from the other. Essentially,
the parameters of the least constrained statistical model are learned from the
observed correlations such that direct interactions can be separated from indirect
correlations. Among many other applications, this approach has been helpful for
protein structure prediction, because residues which interact in the 3D structure
often show correlated substitutions in a multiple sequence alignment. In this
context, samples used for inference are not independent but share an evolu-
tionary history on a phylogenetic tree. Here, we discuss the effects of correla-
tions between samples on global inference. Such correlations could arise due to
phylogeny but also via other slow dynamical processes. We present a simple
analytical model to address the resulting inference biases, and develop an exact
method accounting for background correlations in alignment data by combining
phylogenetic modeling with an adaptive cluster expansion algorithm. We find
that popular reweighting schemes are only marginally effective at removing
phylogenetic bias, suggest a rescaling strategy that yields better results, and
provide evidence that our conclusions carry over to the frequently used mean-
field approach to the inverse Ising problem.
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An exciting confluence of techniques from statistical physics, computer science and information
theory over the last decade has yielded new methods for the study of high-dimensional
interacting systems, including neuronal networks [1], bird flocks [2], justices on the US
supreme court [3], gene expression networks [4], protein–protein interactions [5], transcription
factor binding motifs [6], HIV vaccine design [7], and protein folding [8–12]. Briefly, a
maximum-entropy formalism [13, 14] is used to infer the parameters of a Boltzmann-like
probability distribution such that its first two moments coincide with the ones observed in the
data. These parameters in turn can be used to distinguish direct interactions from indirect
correlations. In the comparative genomics field, which is boosted by the rapid growth of
sequenced genomes, such methods are used to study evolutionary correlations in protein
sequences, fueled by the observation that sequence changes at one locus are frequently
accompanied by compensatory changes at another locus. Assuming that this type of
evolutionary constraint results from a physical interaction of the involved residues, inference
of such direct correlations in multiple alignments of homologous protein sequences allows one
to identify pairs of protein residues in close spatial proximity within the tertiary structure, as
opposed to indirect correlations due to intermediaries [15]. This can be used to aid and greatly
simplify computational protein structure prediction [8–11].

Consider an alignment X of binary sequences from M samples (e.g., species, numbered by
greek indices) for N sites (e.g., genomic loci, numbered by roman indices), see figure 1. In a
comparative genomics application, the two states = ±αX 1i could signify whether or not the
sequence agrees with a consensus sequence, usage of a preferred or a rare codon, the presence
or absence of a binding site, or any other binary observation. To obtain a description of these
data with minimal prior assumptions means to infer parameters h and J of the maximum-
entropy probability distribution = ∑ + ∑−

<( )P Z h x J x xx( ) exp i i i i j ij i j
1 that reproduces the

observed moments = ∑α αm X Mi i and = ∑α α αm X X Mij i j . This is known as ‘inverse Ising’

Figure 1. Data are given in the form of an alignment X of N loci across M samples on a
phylogenetic tree with M external nodes (white). Data are unknown for −M 2 ancestral
nodes (gray), which are therefore integrated out. Inference of interactions between loci
from observable evolutionary correlations is confounded by phylogenetic correlations
between samples.
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inference, and a complex global problem, since in general all inferred parameters are
interdependent.

Algorithms proposed so far include small-correlation expansions [2, 16], mean-field
methods [17–19], belief propagation [5, 20], a cluster expansion method [21, 22] and logistic
regression [23, 24]. A common assumption is that the samples αX are independent of each
other. This, however, is often not the case: for instance, aligned homologous sequences share a
common evolutionary history, represented by a phylogenetic tree. Generally, the resulting
correlations are always positive and give rise to biases that do not average out within the sample
but lead to coherent fluctuations. Since the underlying evolutionary experiment normally cannot
be repeated, there is no way to obtain a less biased estimate from independent replicates.
Moreover, available sequences are usually not a fair sample of the evolutionary history, because
some clades have received more attention or were more thoroughly sequenced than others (for
instance, primates within mammals, or mammals within vertebrates). Alternatively, positive
correlations between samples could arise when sampling too densely from a time series or
Markov chain. Disregarding such correlations between samples can therefore lead to over-
estimation of true correlations between sites, and significantly bias inferred parameters of the
corresponding model.

Previously it has been suggested that one could account for the redundancy in the data,
e.g., due to oversampling of closely related species, by weighting the samples when calculating
moments, = ∑α α αm w X˜ i i [5, 8, 9, 25]. The weights αw are chosen by heuristic methods, among
them specialized weighting schemes for data from a phylogenetic tree [26, 27]. However, this
approach may lead to loss of information, and cannot correct for global biases. Alternatively, it
was proposed that the coherent nature of phylogenetic correlations leads to a pronounced signal
primarily in the first eigenvector of the observed correlations matrix [28, 29] and can thus be
efficiently removed. Other studies (reviewed in [30]) compared observed evolutionary
correlations against a background expected from the phylogeny, or obtained estimates within
an explicit phylogenetic model, but have not addressed the full inverse problem.

Here, we analyze inference biases due to correlated samples and propose an inverse Ising
inference method to account for such correlations. Our approach is motivated by the special
case of phylogenetic correlations, but our methods and conclusions also apply to between-
sample correlations arising from slow dynamical processes in other contexts unrelated to
biology. The paper is organized as follows: section 1 contains a definition of the problem and a
detailed description of analytical and numerical methods used. The latter are not essential for a
first reading of section 2, which contains a discussion of our main results. Section 3 discusses
potential applications of our findings in the context of protein structure prediction.

1. Methods

1.1. Definition of the problem

Although evolutionary dynamics does not generally occur in equilibrium, observable
correlations between samples can often be well approximated by an equilibrium process. We
thus assume that the entire dataset is one representative sample generated by such a known
process, and estimate the remaining parameters causing deviations from expectation by
maximum likelihood. Specifically, our unified framework minimizes the cross-entropy
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= − 
M

X h J
1

ln ( , ) (1)

of the entire alignment with respect to the unknown parameter sets h and J, where the fields h
cause deviations of single loci from the background and the couplings J connect pairs of loci.
This minimization is equivalent to maximizing the log-likelihood of the model given (all) the
data. The M species represent the leaves of an (unrooted) phylogenetic tree, with additional

−M 2 hidden (or ancestral) nodes in the interior of the tree for unknown states of common
ancestors (figure 1). Including these nodes into our calculation gives a larger data matrix ′X .
Marginalizing over unobserved ancestral states, the probability of the data under the model
reads

= ′ ′− 
X h J( , )

1
Tr e . (2)X( )

Here, we set the energy unit =k T 1B , ′Tr denotes a partial trace over the ancestral nodes only
(i.e., the gray nodes in figure 1), = − Tr e is the partition function with the trace performed
over all nodes, and the Hamiltonian  for a configuration = αxx ( )i is given by

∑ ∑ ∑= − −
α

α
α

α α
<

  ( ) h x J x xx x( ) . (3)
i

i
T

i

i i

i j

ij i j0

, ,

Different from a standard phylogenetic approach, we model the dependencies induced by
shared evolutionary history using a ‘phylogenetic’ Hamiltonian

∑ ∑= − −
α

α α
α β

αβ α β
<

 g x K x xx( ) (4)0

with fields and couplings g and K, respectively, where αβK is nonzero only for neighbors on the
phylogenetic tree, decreasing roughly with the logarithm of inverse branch length [31]. The
fields αg serve to prescribe a prior distribution on the states (e.g., beliefs about missing data or

other biases for some species). By means of a reference ‘background’ data set X(0), the
parameters of this model (M fields at the leaves of the tree and −M2 3 couplings) can be
inferred by matching the first two moments μ = 〈 〉α αX (0) and μ = 〈 〉αβ α βX X(0) (0) between observed
values and those calculated from 0 (see section 1.3.3 below). We note that this choice of
phylogenetic model is based on comparable assumptions as more standard phylogenetic
Markov models, and the differences lie mostly in how their parameters are interpreted (see
discussion for details).

1.2. A simple linear problem and local inference

We consider first a simplified version of the problem, where the correlation structure between
the M species follows a linear chain rather than a tree. This model does not have hidden
ancestral nodes and amounts to N coupled Ising chains with fields h, between-loci couplings J
and between-sample coupling δ=αβ α β−K K0 , 1 (i.e., between neighboring rows in figure 1). In
this case, the partition function can be calculated using textbook transfer matrix methods. We
will further restrict ourselves to the simplest case N = 2.

Specifically, we use a system of N = 2 Ising chains with fields h1 and h2, intra-chain
coupling K and inter-chain coupling J12. For large M, the partition function reads
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Λ= + + − ⎡⎣ ⎤⎦ ( )( )
M

h h J K K J h h M
1

ln , , , ln cosh cosh cosh cosh ln . (5)1 2 12
2

12 1 2
1

Here, Λ is the largest eigenvalue of the transfer matrix, which can be written as

+ − − +

×
+ + + −
− − − +

⊗
+ + + −
− − − +⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎫
⎬
⎭

( ) ( )
( ) ( )

( ) ( )
( ) ( )

T T T T

U R U R

U R U R

U R U R

U R U R

diag (1 , 1 , 1 , 1 )

1 (1 ) 1 (1 )

1 (1 ) 1 (1 )

1 (1 ) 1 (1 )

1 (1 ) 1 (1 )
, (6)

1 1

1 1

2 2

2 2

using =R Ktanh , =T Jtanh 12, and =U htanh1 2 1 2, respectively. The eigenvalue is computed
by solving

Λ

Λ

Λ Λ

− − −

− + − − − −

+ − − − + +

+ − − + − − − + +

− + + + =

⎡
⎣⎢

⎤⎦

( )( )
( )

( ) ( ) ( )
( )( )( )

( ) ( )
( )( ) ( ) ( )

( )

( )

R T U U

R R T U U TU U

R R U T U T U

R T U U U T U T U

R TU U

256 1 1 1

64 ( 1) 1 1 1 1

16 2 1 1 1 2

2 1 1 2 1 1 1 2

4( 1) 1 0. (7)

4 2 2
1
2 2

2
2 2

2 2 2
1
2

2
2

1 2

2
1
2 2

2
2 2

2
2

2
1
2

2
2

1
2 2

2
2 2

2
2 2

2
1 2

3 4

1.2.1. Numerical solution. Numerical estimates ĥ1 2 and Ĵ12 for the fields and the coupling,

respectively, are calculated from the measured moments = ∑α αm X
M1
1

,1, = ∑α αm X
M2
1

,2 and

= ∑α α αm X X
M12
1

,1 ,2 by minimizing the entropy:

μ γ

= − − − +

+ + + +

 

( )
( ) ( )h h J h m h m J m

M
h h J K

h h J C

ˆ , ˆ , ˆ ˆ ˆ ˆ 1
ln ˆ , ˆ , ˆ ,

ˆ ˆ ˆ , (8)

1 2 12 1 1 2 2 12 12 1 2 12

2 1
2

2
2

2 12
2

where the second line includes two regularization terms and a constant
= ∑ = − ∑ +α α α α α+ +C X X X XX( ) ( )

M i i
K

M

1
0 ,1 1,1 ,2 1,2 that is ignored, such that only the

partition function  retains a K-dependence.

1.2.2. Analytical solution. In principle, we could use the above expression for the partition
function and compute the expected values 〈 〉 = ∂

∂
mi M h

ln

i
and 〈 〉 = ∂

∂
mij M J

ln

ij
for i, j = 1, 2.

Assuming that measured sample averages mi and mij are representative and can be used to
approximate 〈 〉mi and 〈 〉mij , respectively, these equations would then be solved to get ĥi and Ĵij

with an estimated background coupling =K K̂ . Due to the quartic root in equation (7) this is
analytically impractical, even in the simple case N = 2. We therefore treat fields and couplings
independently. While it is possible (but tedious) to expand  in hi and Jij, it is much simpler to
get the leading order results by solving the associated simple systems instead.

Inferring a field. To first order we ignore the coupling Jij, and only deal with one single chain
of length M, with intra-chain coupling =K Ratanh and field =h Uatanhi i. The partition
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function is

=
+ + − +

− −


M

R R RU

R U

1
ln ln

1 (1 ) 4

1 1
. (9)

i

i

2 2

2 2

From this, we compute the average magnetization as

= ∂
∂

=
+

− +
= +

−
+  ( )m

M h

R U

R RU

R

R
h h

ln (1 )

(1 ) 4

1
1

, (10)i
i

i

i

i i
2 2

3

meaning that the inferred fields ĥi can be calculated from observed magnetizations mi as in
equation (24a) below with =U htanh ˆ

i i. For small fields (and hence small magnetization), this
corresponds to the expression

= −
+

+  ( )h
R

R
m mˆ 1 ˆ

1 ˆ
. (11)i i i

3

Inferring a coupling. Here, we consider two coupled chains with intra-chain coupling
=K Ratanh and inter-chain coupling =J Tatanhij ij, but no field. The partition function for this

case is given by

=
+ + − +

− −


⎡
⎣⎢

⎤
⎦⎥( )

( )M

R R T R

R T

1
ln ln

2 1 1 4

1 1
. (12)

ij

ij

2 2 2 2 2

2 2

This produces an average pair magnetization

= ∂
∂

=
+

− +
= +

−
+ ( )

( )
( )m

M J

R T

R R T

R

R
J J

ln 1

1 4

1

1
, (13)ij

ij

ij

ij

ij ij

2

2 2 2 2

2

2
3

meaning that the coupling Jij is derived from observed moments mij as in equation (24b) below.
For small Jij, we can approximate

= −

+
+  ( )J

R

R
m mˆ 1 ˆ

1 ˆ
. (14)ij ij ij

2

2
3

Again, ignoring the correlations between samples ( =K̂ 0) gives higher Ĵij than when using a
finite value.

Inference errors. Since the intra-chain correlations introduce coherent fluctuations, the sample
averages mi and mij can be quite different from the thermodynamic averages 〈 〉 = ∂

∂
mi M h

ln

i
and

〈 〉 = ∂
∂

mij M J

ln

ij
, respectively. We can quantify the leading-order contributions to the expected

inference errors Δ = 〈 − 〉h h hˆ ( ˆ )i i i
2 2 and Δ = 〈 − 〉J J Jˆ ( ˆ )ij ij ij

2 2 , by expanding in the expected
fluctuations.

The expected error Δ = 〈 − 〉h h m h( ˆ ( ) )i i i i
2 2 when using the observed value mi for inference

is estimated by expanding in the difference between the error for an average observation 〈 〉mi
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and the average error:

− = − + − − −

≈ − +
∂ −

∂
−

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

( ) ( )

( ) ( )

( ) ( )( ) ( )

( )
( )

h m h h m h h m h h m h

h m h
h m h

m
m m

ˆ ( ) ˆ ˆ ( ) ˆ

ˆ
ˆ

2
, (15)

i i i i i i i i i i i i

i i i

i i i

i

i i

2 2 2 2

2
2

2
2 2

where from equation (9) we get

− = ∂
∂

= +
−

− + + +
−

+  ( )m m
M h

R

M R

R R R

M R
h h

ln 1
(1 )

(1 )(1 (4 ))

(1 )
. (16)i i

i
i i

2 2

2 2 3
2 4

Note that the inferred field ĥi of equation (11) uses the assumed intra-chain coupling K̂ , while
the average magnetization 〈 〉mi from equation (10) and the fluctuation corrections 〈 〉 − 〈 〉m mi i

2 2

from equation (16) are calculated with the actual intra-chain coupling K0 (via =R Ktanh 0).
Combining these results in equation (15) gives equation (25a) below.

The expected error 〈 − 〉J J( ˆ )ij ij
2 in the coupling is then similarly estimated by writing

− = −

+ − − −

≈ − +
∂ −

∂
−

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( ) ( )

( )

( )

( )
( )

( )

( )

J m J J m J

J m J J m J

J m J
J m J

J
m m

ˆ ( ) ˆ

ˆ ( ) ˆ

ˆ
ˆ

2
. (17)

ij ij ij ij ij ij

ij ij ij ij ij ij

ij ij ij

ij ij ij

ij

ij ij

2 2

2 2

2

2

2
2 2

We use equation (12) to get

− = ∂
∂

= +
−

−
+ + +

−
+ ( )

( )
( ) ( )

( )
( )m m

M J

R

M R

R R R

M R
J J

ln 1

1

1 1 4

1
. (18)ij ij

ij
ij ij

2 2

2 2

2

2

2 2 2

2 3
2 4

Using equations (13) and (18) with =R Ktanh 0 in equation (17), and equation (14) with
=R Kˆ tanh ˆ gives equation (25b) below.

1.3. Numerical approach for global inference and correlations with a tree structure

In general, one is interested in inferring all fields and couplings simultaneously. At the same
time, the correlation structure between samples is often heterogeneous. In particular, in
comparative genomics applications some samples are often more similar to each other than
others, reflecting the degree of shared ancestry summarized in a phylogenetic tree. Below, we
detail a numerical procedure to perform global inference in the presence of between-sample
correlations with a tree structure. The basic idea is to break up the system into small clusters of
n sites [21] and then to condense all n values from one sample for each cluster into a single
2n-dimensional Potts spin. The interaction graph between these variables has a tree topology,
and the partition function can be calculated in linear time [20]. Note that although the linear
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chain discussed before can be seen as a special case of the tree topology (and indeed the transfer
matrix recursions are related to the belief propagation approach used below), it is much harder
to derive analytical results for a tree, even when between-sample couplings are all identical:
fixed points of transfer matrix or belief propagation recursions apply to bulk spins, while
observations with phylogenetic correlations come from the leaves of the tree, and thus represent
surface states of the system.

In the following, we show how to evaluate equation (2) using belief propagation where it is
implicitly assumed that N is a small number. The next subsection recapitulates the cluster
expansion algorithm from [21, 22] that can be used to systematically break down a large system
into a collection of small interacting clusters.

1.3.1. Evaluation of equation (2). We write = ′ −  X h Jln ( | , ) ln ln , where the restricted
partition function ′ is computed by performing the trace only over hidden ancestral nodes,
with leaf nodes fixed to observed values. We compute these two partition functions from the
Bethe free energy using the same procedure [20]. In general, the Bethe free energy reads

∑ ∑ ∑ ∑α= − + + + + ∂ − +
α β

α β αβ
α

α
α β α

 ( ) ( )P H H H P P H Pln ln ( 1) ln . (19)h h J h

x x x( , ) ,

2 2 1 1

Here, we introduced marginal distributions α βP x x( , )2 and αP x( )1 , and re-organized terms

of the Hamiltonian as follows: = −∑ + − ∑α α α α α<H g h x J x x( ˆ )h
i i i i j ij i j comes from the

effective Potts field for node α and = −∑αβ αβ α βH K x xˆJ
i i i stems from the Potts coupling

between two nodes. The first term in equation (19) sums over values of neighboring nodes
α β( , ) and the second term runs over single nodes α weighted by the number α∂ of neighbors.
The marginal distribution αP x( )1 of a single Potts variable αx at node α is given by:

∏ ∑≃α
β α

β α β
−

∈∂

−
→α

β

αβP Px x( ) e e ( ), (20)H H

x

1
h J

where ≃ means equality up to normalization (∑ =αα
P x( ) 1x 1 ) and the product includes all

neighbors α∂ of node α. The distribution α βP x x( , )2 for a pair of neighboring nodes reads

≃α β α β α β α β→
−

→αβP P Px x x x( , ) ( )e ( ). (21)H
2

J

Finally, both distributions use messages or beliefs α β α→P x( ), which are computed from the
recursion

∏ ∑≃α β α
γ α β

γ α γ→
−

∈∂ ⧹

−
→α

γ

αγP Px x( ) e e ( ). (22)H H

x

h J

These equations are evaluated along the tree, in one pass from the ancestral nodes
outwards to the leaves, in a second pass from the leaves inwards. For the restricted partition
function ′ , we use the same method, where messages for a leaf α are simply fixed at the
observed value αX by setting δ=α β α α α→P x x X( ) ( , ). The entropy = − ′ −  [ln ln ]

M

1 is
then minimized with respect to the +N N( 1) 2 parameters h and J by numerical optimization
[32], adding L2-regularization terms as prior on the coefficients. Our approach can readily be
adopted to the case where only (a small number of) nonzero entries in Jij are to be inferred:
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adding L1-regularization terms γ ∥ ∥J1 1 and using appropriate optimization methods instead

enforces sparsity of the inferred matrix Ĵ [24, 33, 34].

1.3.2. Cluster expansion for larger systems. We expand the entropy  in contributions from
successively larger clusters [21, 22],

∑ ∑Δ Δ= + + + …    . (23)
i

i

i j

ij0

,

A cluster = …C i i( )n1 of n spins is only included if its contribution
Δ Δ Δ= − − ∑ − ∑ − …∈ ∈    C C C i C i i j C ij0, , exceeds in absolute value a predefined
threshold Θ after the contributions of all subclusters have been removed. Here, the entropy

= − = − ′ −   X h Jln ( | , ) [ln ln ]C M C C
T

M C C
1 1 is computed from the difference in Bethe

free energy equation (19). Larger clusters are recursively tested by merging smaller overlapping
clusters. Each clusterʼs entropy is separately minimized with respect to its +n n( 1) 2
associated parameters h and J, and optimal parameters from overlapping clusters are summed
up as described in [21, 22]. The procedure terminates when no larger cluster with significant
contribution to the entropy can be found. Finally, while a mean-field approximation as in [21]
could be used as well (possibly including the rescaling method proposed below), for now we
choose the entropy of the background model = − = − ∑  X Xln ( |0, 0) ln ( |0, 0)

M M i i i
T

0
1 1

as reference point, where = ′ − 
X( |0, 0) Tr ei i

T X1 ( )i
T

0

0 is the probability of a single column

under the phylogenetic model equation (3) with = − Tr e0
0. Integrating a common

preprocessing step, the entropy difference of single columns Δi or pairs of columns Δij

can then conveniently be used to decide which loci exhibit significant deviations from the
background model and should be included in the inference.

1.3.3. Background estimation. −M3 3 coefficients ĝ and K̂ of the phylogenetic Hamiltonian
0 need to be estimated from background data which plausibly evolved undisturbed by any
fields h or couplings J. For instance, in a protein sequence alignment one could take less
conserved columns that are usually not used to infer evolutionary correlations. Given N0

uncorrelated columns of such background data X(0), one would then match marginal
distributions π = ∑ +α αX( 1)

N i i
1

2
(0)

0
and π = ∑ + +αβ α βX X( 1)( 1)

N i i i
1

4
(0) (0)

0
to the theoretical

marginals =αP x( 1)1 and = = = = = =α β α β βP x x P x x P x( 1, 1) ( 1| 1) ( 1)2 1 1 by nonlinear least
squares, using equations (20) and (22) to compute the marginals. Appropriate pseudo-counts or
regularization terms should be added when estimating background parameters directly from
data to avoid overfitting and reduce noise. Alternatively, if a phylogenetic Markov model for
the relevant genomic regions of the species of interest is known, one could use it to calculate the
marginals and then fit parameters g and K. For the phylogenies of figure 3, we used our explicit
Ising model on a perfect binary tree from which leaves were sampled, and then fitted the
coefficients of 0 on the induced topology by exactly calculating marginals for corresponding
leaves via equation (20).
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2. Results

2.1. Analytical results for a simplified correlation structure

To gain insight into the effect of between-sample correlations on inference, we first consider a
simplified version of the problem. Instead of a branching process giving rise to a tree structure
of between-sample correlations, we assume these correlations have the structure of a linear
chain, as would happen if samples were taken from a time series or a Markov chain. We do not
attempt to explicitly model the process that gives rise to these correlations, but assume that a
linear Ising chain with intra-chain coupling K0 is a sufficiently accurate description. This
coupling could be estimated from background data X (0) for N0 uncorrelated loci via

= ∑α α α +K X Xtanh ˆ
MN i i i

1
,

(0)
( 1)
(0)

0
.

In section 1.2.2, we detailed how optimal values ĥi and Ĵij can be inferred from the
observed moments mi and mij when treating different sites or site pairs independently:

=
−

+ −

( )
( )

h
R m

R m R

atanh ˆ
1 ˆ

1 ˆ 4 ˆ
, (24 )i

i

i
2 2

=
−

+ −

( )
( )

J
R m

R m R

btanh ˆ
1 ˆ

1 ˆ 4 ˆ
. (24 )ij

ij

ij

2

2 2
2 2

As expected, these estimates depend on the assumed intra-chain coupling =R Kˆ tanh ˆ . Ignoring
the phylogenetic correlations between samples (by taking =K̂ 0 and therefore =R̂ 0) would
yield higher ĥi and Ĵij than when using a finite value.

Due to the coherent fluctuations induced by the between-sample correlations, the sample
averages mi and mij can be only poor estimators for the ensemble averages required for accurate
inference. Above, the leading order contribution to the expected inference errors

Δ = 〈 − 〉h h hˆ ( ˆ )i i i
2 2 and Δ = 〈 − 〉J J Jˆ ( ˆ )ij ij ij

2 2 was calculated as

Δ = − +− −
− −

( )h h
M

aˆ e 1
e

, (25 )i i
K K

K K2 2 2( ˆ )
2 2(2 ˆ )

0
0

Δ = − +
⎛
⎝⎜

⎞
⎠⎟J J

K

K

K

M K
bˆ cosh 2

cosh 2 ˆ
1

cosh 2

cosh 2 ˆ
. (25 )ij ij

2 2 0
2

0

2

The first term stems from the error made for the ‘average’ configuration when neglecting or
misestimating ≠K Kˆ 0. It vanishes for perfect knowledge about the intra-chain correlations
( =K Kˆ 0), in which case the estimates for the fields h and couplings J do not incorrectly
account for background correlations. The second term is a finite-size error, coming from
coherent fluctuations of single finite configurations about the average, and it therefore scales as

M1 . Indeed, finite-size errors exist even in the uncoupled case = =h J 0. While the effect of
finite size fluctuations can be reduced by overestimating K̂ , the first term dominates for any
sample of reasonable size, and the total error is minimized at (or very near) =K Kˆ 0.
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To validate these results, we consider a system with N = 2 loci and M = 200 samples,
varying the impact of correlations between the samples by increasing K0. At the same time, we
use an adjusted coupling =J K0.25 cosh 212 0 and fields = −h 0.125 e K

1 2
2 0 to guarantee that

m1, m2 and m12 are roughly independent of K0, while the amplitude of coherent fluctuations
increases with K0. To obtain representative configurations of this system we simulated the
model using a cluster Monte Carlo algorithm [35, 36]. Then we inferred ĥ1 2 and Ĵ12 from each
configuration (separately) via numerical minimization of the entropy  as in section 1.2.1.
Figure 2 shows the mean squared error in our inference across the sampled configurations as
function of K0 or K̂ , respectively, and confirms our expectations from equation (25).
Discrepancies between theory and numerical results for higher K0 are mainly due to frozen
configurations which are affected by regularization. Note that relative inference errors Δh hˆ and
ΔJ Jˆ are dominated by a global trend from our choice of adjusting fields and couplings with K0,
and are therefore less feasible for a comparison of results across K0-values and between
methods.

Intriguingly, to leading order in mi or mij, the estimates in equation (24) become
independent of K̂ if rescaled values ≡ −m m˜ ei i

K2 ˆ and ≡m m K˜ cosh 2 ˆij ij are used. This

suggests that we can simply infer ĥ and Ĵ from these rescaled moments and otherwise ignore
correlations between samples. The triangles in figure 2 validate this procedure for our simulated
data. Indeed, it works even slightly better than numerical minimization, mainly because

Figure 2. Results for samples on a linear chain. Inference errors in fields (A) and
coupling (B) as function of K0. Errors are exponentially smaller when using the correct
estimate =K Kˆ 0 for the coupling between samples. Relative inference errors Δh h (C)
and ΔJ J (D) as function of the assumed intra-chain coupling K̂ , with K0 = 0.6 fixed
(other parameters as in (A) and (B)). For finite M, the optimal K̂ is slightly larger than
K0, and rescaling (triangles) gives similar results as exact inference (crosses). Solid lines
are from equation (25), with Δ Δ=h h2 and Δ Δ=J J 2 in (C) and (D). Error bars
from averaging 1000 configurations are smaller than symbol size.
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singularities due to frozen configurations are entirely avoided, and it is also useful when K̂ is
not precisely estimated.

2.2. Numerical approach for correlations with a tree structure

We now turn to the biologically motivated problem where the interactions between species
follow a tree structure. In contrast to the above first-order analysis, we aim to infer all fields h
and couplings J simultaneously. Our approach is based on maximizing the likelihood of the
model parameters h and J using equation (2), with the Hamiltonian equation (3). Parameters αĝ

and αβK̂ of the phylogenetic background model 0 (equation (4)) are assumed to be known;
they can be separately inferred from appropriate background data (see section 1.3.3). As
detailed in section 1.3, we can in principle evaluate equation (2) by condensing all N values αX
from one species (i.e., one row in figure 1) into a single 2N-state Potts variable. The interaction
graph between these variables has a tree topology, and the partition function can be evaluated in
a time linear inM using belief propagation [20]. The computational cost of this procedure grows
as M2 n2 , which is obviously infeasible for systems with more than a handful of loci (i.e., larger
N). As a solution, we combine this approach with an adaptive cluster expansion method
[21, 22], in order to decompose the system into a collection of clusters of manageably small
size, comprising only strongly interacting members. Fields and couplings are then inferred for
each cluster separately. Briefly, the procedure starts from pairs of loci and tests for correlations
by comparing the entropy (or log-likelihood) of models with and without an interaction term.

Figure 3. Creating phylogenetic trees. (A), (B) Phylogenies are created by sampling
M = 1000 leaves from a perfect binary tree of 12 levels (gray; shown here with nine
levels and M = 100) either in an unbiased (top row) or a skewed way (bottom row) to
mimic sampling bias. Parameters for the new topologies (black) are inferred from
phylogenetic correlations χαβ (shown as heatmaps (C) and (D)). (E), (F) Range of

sequence similarity παβ2 (shaded) and average similarity between most similar
sequences (line). (G), (H) Effective number of independent samples calculated from
the information context of the weights distribution αw .
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This interaction is included, and the procedure is iterated to possibly expand the cluster, only if
it brings a significant improvement in likelihood beyond a predefined threshold.

Tree generation. For the case of phylogenetic correlations we aim to emulate a biological
problem. We create a plausible tree topology by sampling M leaves from an initial perfect
binary tree with homogeneous neighbor couplings ≡αβK K0 (figure 3(A), (B)). The
phylogenetic correlations between the chosen leaves are used to numerically infer the non-
homogeneous parameters of the Hamiltonian 0 on the induced phylogeny just as would be
done with real data. In terms of observables relevant in a biological context, the phylogenetic
correlations are indicative of the sequence identity between two samples (the fraction of
identical spins). For a priori equiprobable binary states (i.e., ≡αg 0), this is calculated from

π μ= +αβ αβ2 ( 1)1

2
, which ranges from 0.5 for perfectly uncorrelated samples to 1 for perfectly

correlated ones. Note that for all values ≲K 10 some of the samples are actually entirely
uncorrelated (see figure 3(E), (F)). Mimicking frequently observed sampling bias leading to a
more heterogeneous correlation structure, we also create ‘skewed’ topologies, where we
preferentially sample leaves from one side of the tree (second row in figure 3).

Figure 4. Results for samples on a tree. Errors in reconstructed fields Δh2 (A), (B) and
couplings ΔJ2 (C), (D) for a system of N = 20 loci for different inference methods as
indicated. The interaction matrix J is sparse with N entries = ±J K0.25 cosh 2ij 0 such
that no more than 3 loci are connected, and fields are uniform random numbers

⩽ −h 0.125 ei
K2 0. For a tree structure this adjustment with K0 does not keep the values

mi and mij entirely constant, but it helps to avoid frozen configurations. Error bars from
averaging over ten configurations each for ten different instances of h and J are smaller
than symbol size.
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Simulation results. Choosing h and J as described in the legend of figures 4 and 5, we
generate configurations ′X for N loci on the induced phylogeny by Monte Carlo sampling
[35, 36]. These simulated configurations are used next to reconstruct values ĥ and Ĵ,
respectively. For a relatively simple inference problem with sparse matrix J, figure 4 shows the
resulting mean squared errors Δ = ∑ 〈 − 〉h h h( ˆ )

N i i i
2 1 2 and Δ = ∑ 〈 − 〉− <J J J( ˆ )

N N i j ij ij
2 2

( 1)
2 , as a

function of the phylogenetic coupling strength K0 on the initial tree from which the leaves were
sampled. We compare our method (‘full inference’) with a ‘naive’ averaging using = 00 ,
where the entropy is given by the familiar expression

∑ ∑= − −
<

 
M

h m J m
1

ln . (26)
i

i i

i j

ij ijuc uc

Here, uc is the partition sum for the Hamiltonian equation (3) for uncorrelated samples
( = 00 ) and the averages mi and mij are obtained as before by averaging over the columns of
X.

Figure 4 demonstrates that the reconstruction errors are systematically and significantly
smaller using the full inference. For better comparison between methods, we select clusters
always based on differential cluster entropies for the full inference. We used a cluster threshold
Θ = − Me K0 chosen after inspection of pair entropies Δij. Otherwise, a method that is unaware
of the phylogeny will always yield more clusters due to larger log-likelihood differences Δ ,
because deviations that are actually due to phylogenetic correlations are ‘explained’ by larger
values for the fit parameters h and J. Similar results are obtained for a different inference
problem (the Sherrington–Kirkpatrick spin glass, figure 5). Since the trends of figure 2 carry
over to the specific correlation structure associated with phylogenies, our analytical results are
useful to understand the global inference problem.

Figure 5. As in figure 4 for N = 20, but for a Sherrington–Kirkpatrick spin glass with
≡h 0i and Jij drawn from a Gaussian distribution with standard deviation

K N0.25 cosh 2 0 .
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Rescaling versus reweighting. Previous work often used a simple reweighting approach to
account for phylogenetic correlations, based on a differential weighting of samples when
calculating moments from empirical observations, such that = ∑α α αm w X˜ i i and

= ∑α α α αm w X X˜ ij i j. For comparing to reweighting schemes, we focused on one method

suitable in our context. Here, the weights χ χ= ∑ ∑α β αβ γδ γδ
− −w 1 1 are calculated from the inverse

of the phylogenetic correlation matrix χ μ μ μ= −αβ αβ α β( )1

4
. This gives the maximum

likelihood estimate for the mean of a sample drawn from a multivariate Gaussian distribution
[26]. The loss of information associated with reweighting can easily be quantified by calculating
the information content = −∑α α αI w w w( ) ln of the weights distribution, and a resulting

effective number of independent sequences =M eI w
eff

( ). This reweighting scheme captures the
heterogeneous structure of the phylogenetic correlations and accounts for the redundancy in the
data (figure 3(G), (H)).

Results for ‘naive’ inference with reweighting are presented as stars in figures 4 and 5, and
indicate significant but comparatively minor improvements, especially for the inferred
couplings Ĵ (see also [9]). This implies that the specific structure of the phylogenetic tree is
much less important than the overall sequence similarity in the sample. The correspondence
between figures 2 and 4 therefore suggests to augment the reweighting method with a heuristic
rescaling scheme, → −m m˜ ˜ ei i

K2 eff and →m m K˜ ˜ cosh 2ij ij eff for ≠i j. The effective coupling
Keff serves to connect correlations on the phylogenetic tree to correlations of a linear chain. We
use a well-known result for the spin–spin correlation function on a tree [37] to calculate an
estimate π= ∑ −α β α αβ≠Ktanh max 2 1

M
2

eff
2 from the average sequence similarity between most

similar sequence pairs (see figure 3(E), (F)). As shown by the triangles in figures 4 and 5, this
simple method of globally removing phylogenetic bias significantly decreases the inference
error down to the level of the full inference, even for correlations with an underlying tree
structure.

3. Discussion

3.1. The mean-field solution

Recent biological applications relied on a simple mean-field approach [8–11], where the
couplings are inferred by inverting the matrix = −C m m mij ij i j of connected correlations:

Figure 6. Results for a larger system with N = 50 nodes and M = 1000 samples from the
skewed phylogeny of figure 4. Here, = ±J K0.25 cosh 2ij 0 has N2 non-zero entries in
clusters of up to 10 connected loci, and fields are as in figure 4. Errors in reconstructed
couplings are shown for the cluster expansion (A) or the mean-field approach (B).
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= − −( )J Cˆ . (27)ij
ij

1

To test the performance of this method in the presence of phylogenetic correlations and to
compare to reweighting and rescaling schemes, we simulated data with the same phylogenies as
before, but a larger system of N = 50 loci. Figure 6 shows results of the inference using the
cluster expansion or the mean-field method (with a pseudocount to handle insufficient
variability), respectively. We did not include the full inference, since for larger systems with
clusters of size n the time complexity scales as M2 n2 and additionally suffers from roundoff
errors in the message passing recursions, leading to slow convergence of the minimization
routines. Without the full inference as standard, we decided to include clusters based on the
naive method, with the cluster threshold Θ = M.1 held fixed. Generally, the mean-field
solution is less accurate than the cluster expansion, but these alternative methods follow similar
trends: rescaling is very effective in removing phylogenetic biases, while reweighting is only
marginally beneficial (due to a different quantitative effect of the pseudocount it actually
performs worse than the naive method for larger K0).

3.2. Connection to standard phylogenetic models

Phylogenetic inference is usually performed using Markov models. For binary data, such
models require −M2 3 parameters (the length of each branch on the associated tree) plus one
value setting the equilibrium frequency (the relative proportion of the two values). These values
are fit to data using recursive algorithms largely equivalent to the ones used here [38]. The
commonly used substitution matrices also imply reversibility of the underlying stochastic
process, and the assumption that the equilibrium frequency does not change along the tree.
However, a simple interpretation of their parameters (e.g., branch lengths as expected
substitutions per time) warrants some caution, since substitutions are not the only cause of
sequence change and their rates or the relevant time unit not necessarily constant along the tree,
and because other assumptions about homology and evolutionary processes enter the
preparation of the alignment in the first place. More cautiously, these models can be seen as
optimal descriptions of the available data within the considered space of models.

Hence we argue that our choice for describing phylogenetic correlations by means of a
phylogenetic Hamiltonian is not a limiting factor, because it is merely a generalization of a
Markov model to a Markov random field, allowing for different equilibrium frequencies on
different leaves [39]. Alternatively, our entire approach could easily be reformulated in the
language of phylogenetic models [40], leading to similar recursions [38]. In any case, apart
from conceptual clarity and straightforward techniques for generating simulation data, we
believe that our non-standard formalism is advantageous under circumstances where the data
are poorly fit by an explicit phylogenetic model. This could be the case due to non-uniform
sequencing quality or alignability between samples, leading to an uneven distribution of gaps in
the alignment. Gaps are often included as additional states, but standard Markov models
prescribe constant gap frequencies along the tree [41] whereas we can use different priors for
each species. Further, our approach could be favorable if the data represent states of larger
genomic regions, such as cis-regulatory elements, whose evolution is best described on a more
coarse-grained scale. We note that exploiting the correspondence between evolutionary
dynamics and Ising models has a long tradition [31]. A similar phylogenetic Ising model has
recently been used to model HIV sequence statistics [42].
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3.3. Inference on protein alignments

Inverse Ising inference has found a powerful application in the prediction of residue contacts
from large protein alignments (where it is often called direct coupling analysis [8–11, 25]).
These analyses use sequences from large protein families spanning considerable evolutionary
distances, such that neutral positions in the alignment can generally be considered as
independent. Still, there are typically subsets of sequences from more closely related species
where this assumption is violated. In principle, our method can be readily adapted to non-binary
data, corresponding to formulating the Hamiltonian equation (3) in terms of Potts variables with
Λ = 21 states (for 20 amino acids and a gap). In this case, we anticipate that it might be difficult
to reliably estimate all associated parameters. Also, the complexity of the cluster expansion
method combined with the message passing grows like ΛM n2 for a cluster of n columns, which
would quickly become prohibitive. Further, published methods for genomics-aided protein
structure prediction [8–11] only require the identification of a small number of putative residue
contacts from the top interacting pairs, and the pair ranking has been observed to be quite robust
with regard to phylogenetic reweighting [5, 9]. However, for more quantitative applications
(see, e.g., [7, 12]), we propose the mean-field approach combined with our rescaling method as
simple yet effective strategy. This mainly involves shifting measured sample averages closer to
the background distribution because deviations are partially attributed to coherent fluctuations.
It ameliorates problems with the proper choice of regularizers, and only requires knowledge of
this background distribution and of the average sequence identity in the sample. Both can
usually be reliably estimated in current sequence data sets.

4. Conclusions

We presented a systematic study of inverse Ising inference for phylogenetically correlated
samples, based on combining belief propagation recursions with an adaptive cluster expansion
method proposed previously [21]. Here, we employed an Ising-like background model that
generates the observed phylogenetic correlations. We then maximize the likelihood of
interaction coefficients between different loci in adaptively chosen small clusters, given the
corresponding data and the background model. Our method significantly reduces the inference
error due to phylogenetic bias. Our focus here was on phylogenetic correlations between
samples, but we note that such correlation may arise from slow dynamical processes in other
contexts unrelated to biology. Finally, we emphasize that there might also be circumstances
where biases due to phylogeny or other processes can safely be neglected, for instance if only
the interaction topology (i.e., non-zero entries of Ĵ regardless of their exact value) is of interest
[24, 33, 34], but this question warrants further research.

Popular approaches for mitigating the effect of phylogenetic bias are based on down-
weighting highly similar samples, but we show here that this has only marginal benefits. In
contrast, we propose a simple rescaling of observed averages by the expected contribution
attributed to excess sequence similarity, and show that it can be highly effective. Importantly,
this undemanding approach is very useful even when the inference is based on simple (and
computationally inexpensive) mean-field inference, which is now frequently used in the field of
protein folding.
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