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Classical Hodgkin lymphoma (HL) is a common lymphoid malignancy that displays 

unique features with respect to morphology, tumor biology and clinical presentation. 

Histologically, cHL is characterized by large mononuclear Hodgkin and multinucleated Reed-

Sternberg (HRS) cells. A hallmark of HL cells is the highly inflammatory phenotype. Typically, 

the malignant HRS cells represent only a minor fraction of the affected lymph nodes and are 

surrounded by numerous benign reactive cells, including lymphocytes, macrophages and 

granulocytes. These inflammatory cells are attracted by cytokines and chemokines secreted 

by the malignant cell population.1,2 The complex interactions between HRS cells and 

bystander cells create a specific microenvironment that is thought to be critical for growth 

and survival of HRS cells. A detailed analysis of signals evoked by these interactions does 

not only contribute to a better understanding of HL pathogenesis, but might also provide a 

basis for the development of new treatment strategies. Here, we describe an aberrant 

expression and activity of the interleukin 15 (IL-15) cytokine/cytokine receptor system in HL, 

resulting in mitogenic and anti-apoptotic signals as well as the enhanced expression of 

inflammatory factors by HRS cells. IL-15 is a pro-inflammatory cytokine that was originally 

identified through its ability to induce T cell proliferation, displaying IL-2-like properties.3 

Indeed, both cytokines act through a heterotrimeric receptor that shares the IL-2 receptor 

(IL-2R , also referred to as IL-15R , CD122) and the common  chain (IL-2R , CD132). 

However, high affinity binding specificity for each ligand is conferred by a unique subunit, 

namely IL-2R  and IL-15R , respectively.3 Functionally, IL-15 plays a pivotal role in the 

differentiation and/or survival of natural killer (NK) cells, NK T cells as well as intraepithelial 

lymphocytes (IELs) and is critical for the maintenance of CD8+ memory T cells.4  

To identify factors that are involved in the formation of the HL-specific tumor 

microenvironment, we screened microarray gene expression profiles of HRS and B non-

Hodgkin cell lines with a special focus on cytokines and cytokine receptors. In addition to 

several factors known to be highly expressed by HRS cells, such as IL-6, IL-13 and IL-13R , 

we identified an up-regulation of IL-15 and the corresponding receptor components IL-15R , 
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IL-2R /IL-15R  and IL-2R  in Hodgkin-derived cell lines (Supplementary Figure 1). Given the 

role of IL-15 as a prominent pro-inflammatory cytokine and its growth-supporting effects on 

several lymphoid cell populations, we decided to investigate the role of IL-15 in HL in more 

detail. First, we examined the expression status of IL-15 and its receptor components in a 

broad panel of lymphoma-derived cell lines. As determined by quantitative PCR, most HL cell 

lines showed a strong up-regulation of IL-15 mRNA compared to non-Hodgkin B cell lines 

(Figure 1a). For IL-15R  and IL-2R /IL-15R  mRNA, we observed a similar overexpression 

in HL cell lines, whereas the mRNA for the common  chain (IL-2R ) was ubiquitously 

expressed in all cell lines tested (Figure 1a). Subsequently, the expression of the IL-15 

receptor components was analyzed on protein level by flow cytometry, corroborating 

enhanced expression of IL-15R  and IL-2/IL-15R  on HRS cell lines (Figure 1b).  

To investigate the expression of IL-15 in primary HL cases, we performed 

immunohistochemical staining on frozen sections of control and HL tissue samples. 

Immunohistochemistry of non-malignant reactive tonsils demonstrated specific staining for 

IL-15 predominantly in cells displaying macrophage or dendritic cell morphology, a feature 

that was particularly apparent in germinal centers, most likely corresponding to follicular 

dendritic cells,5 whereas GC B cells themselves were negative (Figure 1c). Moreover, 

immunohistochemistry revealed IL-15 expression in HRS cells in a series of 8 primary HL 

cases with variable percentages of positive cells (Figure 1c; Supplementary Table 1). In 

addition, cells of the tumor microenvironment stained positive for IL-15, including cells with 

monocytic/dendritic morphology and endothelial cells, which is in accordance with previous 

studies describing IL-15 expression in these cell types.6-8 These observations suggest that 

two sources of IL-15 exist in HL-affected lymph nodes which might act either in an autocrine 

or paracrine manner on HRS cells.    

Next, we investigated the functional role of IL-15 signaling in HRS cells. To this end, 

HRS cell lines were stimulated with recombinant human (rh) IL-15 and the activation status 

of intracellular signaling pathways, which have been described to respond to IL-15 in other 
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cellular systems,9 was monitored in a time- and dose-dependent manner. Stimulation with 

rhIL-15 induced the phosphorylation of the MAP kinases ERK1/2 as well as STAT5 in HRS 

cell lines, showing the most pronounced effects on STAT5 activation (Figure 2a). 

Furthermore, we observed an increased proliferation of KM-H2 and L591 HRS cells after IL-

15 stimulation as determined by [3H]-thymidine incorporation (Figure 2b). Next, we analyzed 

whether IL-15 mediates survival signals for HRS cells, especially in the context of cellular 

stress evoked by treatment with chemotherapeutic agents. For this purpose, KM-H2 cells 

were pre-stimulated with rhIL-15 and subsequently treated with etoposide or doxorubicin, 

which are part of HL treatment regimens, or geldanamycin, a pharmacologic inhibitor of heat 

shock protein 90 (HSP90) and NF- B signaling.10 Measuring the percentage of viable and 

apoptotic cells by annexin V-FITC/propidium iodide (PI) staining and flow cytometry, we 

observed that pre-treatment with rhIL-15 is able to mitigate drug-induced cell death in the 

KM-H2 HRS cell line (Figure 2c). Furthermore, cells were stained in parallel with an antibody 

that recognizes active caspase 3, which is an indicator of ongoing programmed cell death, 

revealing a lower percentage of apoptotic cells in rhIL-15 pre-treated KM-H2 cells (Figure 

2c).  

To gain insight into the molecular mechanisms of IL-15 signaling in HRS cells, we 

performed oligonucleotide microarray analysis of KM-H2 cells following rhIL-15 stimulation. 

Gene expression profiles of KM-H2 cells were determined at 0, 4, 10 and 24 hours of rhIL-15 

treatment and normalized to profiles of PBS-treated KM-H2 cells that were analyzed in 

parallel to control for expression changes induced by growth in cell culture per se. This 

approach identified a specific set of genes that showed a significant regulation by rhIL-15 at 

the respective time points, with 43 genes being differentially expressed at 24 hours (with a 

fold change of at least log20.75; Supplementary Table 2). To identify biological processes 

regulated by IL-15, we used the DAVID classification tool that classifies gene lists into 

functionally related gene groups. In accordance with our functional data, we observed a 

significant enrichment of gene ontology (GO) terms associated with cellular proliferation and 

survival within our set of rhIL-15-regulated genes (Supplementary Table 3). Remarkably, we 
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also found a prominent enrichment of clusters related to inflammatory processes, such as 

cytokine production and activity, receptor-ligand or cell-cell interactions and lymphocyte 

activation (Supplementary Table 3). A number of genes that were differentially expressed in 

the microarray experiments were selected from the functional groups for verification by 

quantitative PCR. Indeed, we could corroborate a significant regulation for the cell-cycle 

regulator CCND2 (cyclin D2), for the transcription factors ETV5 and BCL6 as well as for 

several cytokines/chemokines, including IL-1 , IL-6, IL-9, IL-12 , CCL3 (MIP-1 ) and the 

receptor IL-2R  (Figure 2d), supporting the notion that IL-15 has a significant impact on 

mediators of inflammatory responses.  

Taken together, our data demonstrate that the IL-15 cytokine/cytokine receptor system 

is up-regulated in HL and that stimulation of Hodgkin cells with rhIL-15 results in activation of 

MAP kinase and JAK/STAT5 signal transduction pathways. In addition, functional studies 

indicate that IL-15 promotes proliferation and apoptosis resistance of Hodgkin tumor cells, 

thereby extending previous reports that have described mitogenic and anti-apoptotic effects 

of IL-15 on lymphoid tumor cells of different entities, e.g. multiple myeloma, T cell large 

granular lymphocyte leukemia and cutaneous T cell lymphomas.11-13 A role of IL-15 signaling 

in HL tumor biology is further supported by published gene expression data demonstrating 

that IL-15 and the corresponding receptors are not only up-regulated in primary HRS cells 

compared to various non-malignant and malignant B cell populations (Supplementary Table 

5), but are also prominent components of deregulated functional pathways in HRS cells.14,15 

As a major feature of the cellular response to IL-15 stimulation, we identified a significant 

induction of cytokines and chemokines in HRS cells. Several of these factors, such as IL-6, 

IL-9 and CCL3, in turn may have the potential to mediate growth and survival signals for 

HRS cells as well as to attract or stimulate cells of the tumor microenvironment.1,2 In 

summary, our study identifies IL-15 as part of the complex interactions between tumor cells 

and the microenvironment in HL that provides growth and survival signals for HRS cells.  
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Figure legends 

 

Figure 1. Expression of IL-15 and IL-15 receptor subunits in human B cell-derived cell lines 

and primary HL tissue. (a) Quantitative PCR analysis of IL-15, IL-15R , IL-2R /IL-15R  and 

IL-2R  (common gamma chain, c) mRNA in HRS (L428, L1236, KM-H2, L591, HDLM-2, 

L540, L540Cy) and B-ALL/B-NHL cell lines (Reh, Blin, Namalwa, Daudi, SU-DHL-4). GAPDH 

mRNA expression served as input control. Relative expression values were calculated using 

the 2-ΔΔCt  method with the cell line Reh defined as 1. Error bars show 95% confidence 

intervals. For statistical analysis, P-values were determined by a two-sided Welch’s t-test 

using the Ct values of the two groups (HRS vs. non-Hodgkin). n.s. denotes not significant; 

** P<0.01; *** P<0.001. (b) Protein expression of IL-15R , IL-2R /IL-15R  and IL-2R  on 

HRS and B-ALL/B-NHL cell lines was determined by flow cytometry. Cells were stained with 

anti-IL-15R , anti-IL-2R /IL-15R  and anti-IL-2R  antibodies, respectively, and primary 

antibodies were detected with PE-conjugated secondary antibodies (open histograms). Filled 

histograms indicate isotype-matched controls. (c) Immunohistochemistry for IL-15 in fresh 

frozen samples of reactive tonsils and primary HL tissue. Antigen detection was carried out 

with an anti-IL-15 mouse monoclonal antibody or a corresponding isotype control. Bound 

antibody was detected with polyclonal rabbit anti-mouse immunoglobulin and visualized 

using the alkaline phosphatase anti-alkaline phosphatase (APAAP) method.  

 

Figure 2. Functional activity of the IL-15/IL-15 receptor system in HRS cell lines. (a) HRS cell 

lines (L428, L1236, KM-H2, L591) were starved in medium with 1 % FBS overnight and 

treated with rhIL-15 (25 ng/ml or 50 ng/ml) or PBS control. Cells were harvested and 

analyzed for phosphorylation of ERK1/2 and STAT5 by Western blotting. Expression levels 

of total ERK1/2 and STAT5 protein were determined to control for equal loading. The IL-2/IL-

15 responsive cutaneous T cell lymphoma cell line Se-Ax was used as positive control. (b) 

KM-H2 and L591 cells were treated with rhIL-15 (50 ng/ml) or PBS control, and [3H]-
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thymidine incorporation was determined for 24 hours after stimulation. Measurements were 

performed in triplicates and data are indicated as means ± s.d. One representative out of five 

independent experiments is shown. P-values were determined by a one-sided Welch’s t-test. 

* P<0.05; ** P<0.01 (c) KM-H2 cells were pre-stimulated with rhIL-15 or PBS for 18 hours 

and subsequently treated with dimethyl sulfoxide (DMSO) or H2O control, etoposide, 

doxorubicin or geldanamycin, as indicated. The percentage of viable cells, defined by flow 

cytometry as double-negative for annexin V-FITC and PI, is shown after treatment for 72 

hours (upper panel). Measurements were performed in triplicates and data are indicated as 

means ± s.d. One representative out of three independent experiments is shown. P-values 

were determined by a one-sided Welch’s t-test. n.s., not significant; * P<0.05; ** P<0.01. In 

parallel, KM-H2 cells were stained with an anti-active caspase 3-PE antibody (lower panel). 

The percentage of active caspase 3-positive cells is indicated. One out of three independent 

experiments is shown. (d) HRS KM-H2 cells were stimulated with rhIL-15 or PBS, harvested 

after 4, 10 and 24 hours of stimulation before being subjected to gene expression profiling 

using Illumina HumanHT-12 v4 Expression BeadChips. To verify the differential expression 

of selected genes following rhIL-15 treatment, quantitative PCR was performed for CCND2 

(encoding cyclin D2), ETV5, BCL6, IL-1 , IL-6, IL-9, IL-12 , CCL3 (MIP-1 ) and IL-2R . 

Relative expression levels were calculated using the 2-ΔΔCt  method with the respective 

control sample (0 hours, PBS control) defined as 1. Error bars show 95% confidence 

intervals. P-values were determined by a one-sided Welch’s t-test using the Ct values of 

time-matched rhIL-15- vs. PBS-treated samples. n.s., not significant; * P<0.05; ** P<0.01; *** 

P<0.001. Primer sequences are listed in Supplementary Table 4.   
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