
 
Repository of the Max Delbrück Center for Molecular Medicine (MDC) 
Berlin (Germany) 
http://edoc.mdc-berlin.de/14439/ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Novel RNA modifications in the nervous system: form 
and function. 

 
Satterlee, J.S., Basanta-Sanchez, M., Blanco, S., Li, J.B., Meyer, K., Pollock, J., Sadri-Vakili, G., 
Rybak-Wolf, A. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This is a copy of the original article, published in final edited form as: 
Journal of Neuroscience. 2014 Nov 12 ; 34(46): 15170-15177 |  
doi: 10.1523/JNEUROSCI.3236-14.2014 
Society for Neuroscience ► 
 
 
6 months after publication the work becomes available to the public to copy, distribute, or display 
under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. 

http://edoc.mdc-berlin.de/14439/
http://dx.doi.org/10.1523/JNEUROSCI.3236-14.2014
http://www.sfn.org/
https://creativecommons.org/licenses/by/4.0/


Symposium

Novel RNA Modifications in the Nervous System: Form and
Function

John S. Satterlee,1 X Maria Basanta-Sanchez,2 X Sandra Blanco,3 Jin Billy Li,4 Kate Meyer,5 Jonathan Pollock,1

Ghazaleh Sadri-Vakili,6 and Agnieszka Rybak-Wolf7

1National Institute on Drug Abuse, Bethesda, Maryland 20892, 2RNA Institute, State University at Albany, Albany, New York 12222, 3Wellcome Trust,
Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, United Kingdom, 4Stanford University,
Department of Genetics, Stanford, California 94305, 5Department of Pharmacology, Weill Medical College, Cornell University, New York, New York 10065,
6MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Boston, Massachusetts 02129-4404, and 7Max-Delbrück-Centrum
für Molekulare Medizin, 13092 Berlin, Germany

Modified RNA molecules have recently been shown to regulate nervous system functions. This mini-review and associated mini-
symposium provide an overview of the types and known functions of novel modified RNAs in the nervous system, including covalently
modified RNAs, edited RNAs, and circular RNAs. We discuss basic molecular mechanisms involving RNA modifications as well as the
impact of modified RNAs and their regulation on neuronal processes and disorders, including neural fate specification, intellectual
disability, neurodegeneration, dopamine neuron function, and substance use disorders.

Introduction
Chemical modifications play a crucial role in the regulation of
biological processes. For example, the function of a protein is
often modulated by its stable tagging with different chemical
groups (phosphates, sugars, or lipids), whereas specific chemical
marks made along the chromatin (the DNA and/or its packaging
proteins) can influence gene expression. A variety of post-
transcriptional modifications of RNA are also found in all organ-
isms. The RNA Modification Database indicates that there are at
least 65 RNA modifications that arise in eukaryotic cells (Cantara
et al., 2011). Historically, transfer RNA (tRNA) and ribosomal
RNA (rRNA) have been shown to be heavily modified, but some
of these modifications also occur in messenger RNA (mRNA)
(Meyer et al., 2012; Li and Church, 2013; Russell and Limbach,
2013; Wang et al., 2014c). Most recently, RNA modifications
have also been found in noncoding RNAs (ncRNAs) (Storz, 2002;
Matera et al., 2007; Yu and Chen, 2010; Meyer et al., 2012; Squires
et al., 2012).

A few covalent RNA modifications, such as 5�mRNA capping,
alternative splicing, and polyadenylation, have been studied ex-
tensively. To date, however, most RNA modifications have not
been well characterized for two major technical reasons. The first
reason is that many modified RNA bases are recognized by re-
verse transcriptases the same way as their unmodified counter-
parts. Because a common step in many RNA experiments is to

reverse transcribe the RNA into cDNA, this effectively “erases”
any information concerning the types and locations of RNA
modifications that might have been present (Behm-Ansmant et
al., 2011). A second reason is that our technical ability to detect
and quantitate RNA modifications has been limited until recently
(Yan et al., 2013; Kullolli et al., 2014). Both of these issues have
severely impaired our ability to systematically characterize the
“epitranscriptome,” which can be defined as all of the chemical
modifications of RNA molecules (both coding and noncoding)
(Saletore et al., 2012; Hussain et al., 2013a; Li and Mason, 2014;
Meyer and Jaffrey, 2014). Thus, the functional roles of many
post-transcriptional RNA modifications remain unknown, al-
though they could potentially influence parameters, such as RNA
stability, translation, trafficking, localization, enzymatic or sens-
ing activity, regulatory capabilities, or patterns of interactions
with other molecules.

The purpose of this mini-review and the associated SFN mini-
symposium is to highlight the types and known functions of sev-
eral novel modified RNAs in the nervous system. We will discuss
the two most well-studied mammalian mRNA modifications, in-
cluding N6-methyladenosine (m 6A) and 5-methylcytosine
(m 5C) as well as evolving technologies to identify and quantify
other less well-characterized RNA modifications in mRNA and
regulatory RNA. We will also discuss the role of adenosine to
inosine-edited RNAs in brain function as well as the properties of
a new topological class of RNA (circular RNA). The known and
postulated functional roles of these modifications in neuronal
processes and diseases including neural fate specification, dopa-
mine neuron function, neurological disorders, intellectual dis-
ability, and substance use disorders, will be described.

m 6A
m 6A is an RNA modification that was recently discovered to be a
widespread feature of mammalian mRNAs (Dominissini et al.,
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2012; Meyer et al., 2012). Although m 6A has been found in
mRNAs from diverse tissue types, the brain is among the tissues
with the highest levels of m 6A. This finding, coupled with the fact
that m 6A is known to be dynamically regulated (Dominissini et
al., 2012; Schwartz et al., 2013), suggests that adenosine methyl-
ation could potentially mediate the intracellular response to neu-
ronal signaling events by regulating the function of neuronal
mRNAs. Additionally, recent studies have identified two mem-
bers of the 2-oxoglutarate-dependent dioxigenase family of pro-
teins as m 6A demethylases (Jia et al., 2011; Zheng et al., 2013).
One of these, FTO, has been linked to a variety of human
diseases, including cancer (Garcia-Closas et al., 2013; Iles et
al., 2013), obesity (Tung and Yeo, 2011), attention-deficit/
hyperactivity disorder (Choudhry et al., 2013), and Alzheimer’s
disease (Keller et al., 2011; Reitz et al., 2012). Additionally, hu-
mans with a nonsynonymous mutation in the FTO enzymatic
domain exhibit brain malformation and impaired brain function
(Reitz et al., 2012), and intronic FTO single nucleotide polymor-
phisms have been associated with abnormal brain volumes in
both adolescents (Melka et al., 2013) and healthy elderly subjects
(Ho et al., 2010). These findings suggest that FTO-mediated m 6A
demethylation might contribute to neuronal signaling pathways
that regulate brain development and function.

FTO is highly expressed within the brain, and its expression
level and subcellular localization within distinct brain regions are
susceptible to dynamic regulation (Boender et al., 2012; Vujovic
et al., 2013). Thus, targeted m 6A demethylation directed by FTO
is a potential mRNA regulatory mechanism through which neu-
rons might regulate their response to various signaling events.
Indeed, recent studies have shown that FTO knock-out mice have
an abnormal behavioral and electrophysiological response to co-
caine (Hess et al., 2013). Targeted deletion of FTO in dopaminer-
gic neurons revealed impaired presynaptic dopamine receptor
signaling, suggesting that FTO is necessary for the proper presyn-
aptic response to extracellular dopamine levels (Hess et al., 2013).
Additionally, analysis of mRNA methylation in dopaminergic
neurons following FTO loss of function identified a subset of
mRNAs whose m 6A levels were influenced by FTO. Many of
these transcripts encode proteins involved in the response to do-
pamine, suggesting that FTO-mediated dynamic methylation of
neuronal mRNAs is necessary for proper dopaminergic signaling.
Given the multitude of neuronal pathways that involve dopami-
nergic transmission, it is likely that fine-tuning of neuronal m 6A
levels regulates a variety of pathways contributing to mental
health and disease. Further research into the mechanisms
through which m 6A regulates mRNAs in response to neuronal
signaling events will likely reveal additional roles for this wide-
spread modification in neuronal function.

m 5C
Although the existence of m 5C in DNA and RNA was described
over 5 decades ago, its precise regulatory functions in RNA re-
main unclear (Gold et al., 1963; Garcia-Closas et al., 2013). Re-
cent advances in high-throughput techniques to globally map
m 5C in RNA and the association of mutations in genes encoding
m 5C methyltransferases with intellectual disability in humans
have provided important insights into the function of this mod-
ification. Bisulfite sequencing was the first methodology adapted
to globally detect m 5C in RNA (Schaefer et al., 2009; Squires et al.,
2012). The development of three more transcriptome-wide ap-
proaches followed (Hussain et al., 2013a). Using these high-
throughput methods, m 5C has been identified in coding as well
as noncoding RNAs, such as vault RNAs (vRNAs) and tRNAs

(Motorin et al., 2010; Squires et al., 2012; Amort et al., 2013;
Edelheit et al., 2013; Hussain et al., 2013a, b; Khoddami and
Cairns, 2013). Functionally, m 5C has been shown not only to
affect degradation and stress-induced ribonuclease cleavage of
tRNAs but also to change global protein translation (Alexandrov
et al., 2006; Chow et al., 2007; Chernyakov et al., 2008; Schaefer et
al., 2010; Chan et al., 2012; Tuorto et al., 2012; Metodiev et al.,
2014). In addition, hypomethylation of vRNAs alters their pro-
cessing into microRNA-like RNAs (Hussain et al., 2013b). In
rRNA, m 5C is also thought to play a role in translation (Chow et
al., 2007; Metodiev et al., 2014). m 5C modification has been pro-
posed to affect mRNA stability; however, its function is still con-
troversial (Zhang et al., 2012; Hussain et al., 2013a).

The two best described m 5C RNA methyltransferases in
higher eukaryotes are DNMT2 and NSUN2 (Brzezicha et al.,
2006; Frye and Watt, 2006; Goll et al., 2006). Although no gross
phenotype has been observed in DNMT2-deficient mice or
plants (Goll et al., 2006; Tuorto et al., 2012), DNMT2 loss-of-
function mutant flies show increased sensitivity to oxidative
stress, and DNMT2 loss in zebrafish affects liver, retina, and brain
development (Rai et al., 2007; Schaefer et al., 2010). Studies per-
formed in NSUN2-deficient mice, flies, and cell lines, suggest
roles for m 5C RNA modification in cellular signaling, stem cell
biology, tissue development, differentiation, and cancer (Frye
and Watt, 2006; Sakita-Suto et al., 2007; Hussain et al., 2009; Frye
et al., 2010; Blanco et al., 2011; Abbasi-Moheb et al., 2012; Tuorto
et al., 2012; Hussain et al., 2013c). NSUN2 is highly expressed
during mouse embryogenesis and is specifically enriched in the
brain (Blanco et al., 2011). Most remarkably, human whole ex-
ome sequencing studies recently have correlated NSUN2 gene
mutations with a syndromic form of autosomal-recessive intel-
lectual disability, as well as a Dubowitz-like syndrome, and a
Noonan-like syndrome (Abbasi-Moheb et al., 2012; Khan et al.,
2012; Martinez et al., 2012; Fahiminiya et al., 2014). Dubowitz-
like syndrome includes an intellectual disability phenotype as
well as microcephaly, and facial dysmorphism, whereas individ-
uals affected by Noonan-like syndrome present developmental
delay as well as facial dysmorphism. The described substitutions
result in truncation and degradation of NSUN2 transcript lead-
ing to complete loss or mislocalization of NSUN2 protein into the
cytosol. Similar to patients, NSUN2 knock-out mice are smaller
than their littermates and have microcephaly and behavioral and
memory deficits (Blanco et al., 2014).

Together, these data suggest that NSUN2-mediated RNA
methylation plays an essential role in brain development. But
how loss of this methylation causes the disease symptoms de-
scribed above is not yet fully understood. Loss of tRNA methyl-
ation could be the main defect leading to these complex
intellectual disorders because the vast majority of NSUN2 targets
are tRNAs (Squires et al., 2012; Hussain et al., 2013b; Khoddami
and Cairns, 2013). It is known that loss of DNMT2-mediated
m 5C methylation increases tRNA stress-induced cleavage in flies,
and cleavage of tRNAs and repression of protein translation is a
conserved response to several stress stimuli in eukaryotes
(Thompson et al., 2008; Fu et al., 2009; Yamasaki et al., 2009;
Emara et al., 2010; Schaefer et al., 2010; Spriggs et al., 2010;
Ivanov et al., 2011; Gebetsberger et al., 2012; Sobala and Hutvag-
ner, 2013). Furthermore, neurodevelopmental disorders are
commonly associated with oxidative stress (De Felice et al., 2012;
Lintas et al., 2012) and increased tRNA cleavage has been recently
directly linked to neurodevelopmental and neurodegenerative
conditions (Karaca et al., 2014; Schaffer et al., 2014). Addition-
ally, in recent studies performed by Sandra Blanco and colleagues
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in Dr. Michaela Frye’s laboratory, loss of NSUN2-mediated
tRNA methylation-induced angiogenin-mediated tRNA cleavage
and led to accumulation of 5� tRNA fragments. These tRNA frag-
ments activate stress response pathways leading to reduced rates
of protein translation, decreased cell size, decreased synaptogen-
esis, and increased cell death. These phenotypes can be rescued by
inhibition of angiogenin and stress pathways during mouse em-
bryogenesis (Blanco et al., 2014). This study shows the first asso-
ciation between m 5C regulation during cellular stress responses
and noncanonical functions of tRNAs in neurodevelopment and
in human diseases.

Identifying novel RNA modifications in the nervous system
We have just described the known functions of two of the most
well-characterized mammalian RNA modifications; however,
many others exist and some have recently been found in ncRNAs
(Storz, 2002; Matera et al., 2007; Yu and Chen, 2010; Squires et
al., 2012). Current technologies, such as immunoprecipitation
followed by RNA-sequencing, have allowed us to monitor a select
number of modifications, including m 5C, m 6A, and inosine (I).
This advance has enabled researchers to test whether specific
RNA modifications are associated with genes related to brain
function and the development of neurological disorders (Meyer
et al., 2012; Squires et al., 2012; Li and Church, 2013). However,
many of these post-transcriptional modifications are not present
on RNA at high levels and consequently little is known about the
extent to which they are found in individual RNAs, classes of
RNAs (e.g., ncRNAs or mRNAs), or cell types. Thus, highly sen-
sitive and accurate technologies are needed to monitor and quan-
tify RNA modifications that occur in low abundance RNA
species, such as certain mRNAs, snoRNAs, miRNAs, siRNAs, and
lncRNAs. Mass spectrometry (MS) in combination with high
resolution separations, such as ultra-high performance liquid
chromatography, can provide these sensitive, accurate, and ro-
bust measurements.

ncRNAs are highly expressed in the brain and play an essential
role in neural functions, brain development, and evolution (Sat-
terlee et al., 2007; Im and Kenny, 2012; Qureshi and Mehler,
2012; Ng et al., 2013; Petri et al., 2014; Roberts et al., 2014).
Recently, robust methods have been developed to produce me-
dial frontal cortex cells from human pluripotent stem cells in a
highly efficient and reproducible manner (van de Leemput et al.,
2014). This system enables the monitoring of modifications of
ncRNAs and mRNAs during the different stages of brain devel-
opment that may be important for differentiation. The chemical
composition and physical properties of the modified nucleosides
allow for individual characterization using chromatography in
combination with collision-induced fragmentation and tandem
MS (Quinn et al., 2013; Su et al., 2014). Ultra-high performance
liquid chromatography-MS analysis of total RNA extracted from
medial frontal cortex cells reveals low femtomole to attomole
levels of 33 of 112 currently known RNA modifications (unpub-
lished data). Increases in the levels of certain modifications, such
as m 5C, m 7G, m 1A, and m 6A, are highly indicative of the level
of transcription during cortical differentiation. Less common
modifications, not as directly related to transcription (e.g.,
2-thiocytidine (s 2C) and I), were also found to increase during
cortical differentiation, whereas pseudouridine (�) and 2�-O-
methylcytidine (Cm) remained fairly constant. Ongoing efforts
are focused on the separation of individual RNAs types, such
ncRNAs and mRNAs, to investigate the level of modifications
more accurately. Complementary RNA-seq data will be used to
determine the existence of the corresponding modifying enzymes

and to work towards understanding the biological pathways in-
volved. Ultimately, these new methods will yield insights into
which RNA modifications are present in brain ncRNAs and
mRNAs and how they change during cortical differentiation.
These studies will be the first step toward better understanding
the functions of messenger and regulatory RNAs and their mod-
ifications in human brain disorders.

A-to-I RNA editing in the nervous system
Adenosine-to-inosine (A-to-I) editing is a cotranscriptional phe-
nomenon that occurs at the pre-mRNA level. It is catalyzed by
adenosine deaminases acting on RNA (ADARs), which bind
double-stranded RNA and deaminate adenosine to form inosine,
which is recognized as guanosine during translation (Nishikura,
2010; Rosenthal and Seeburg, 2012; Li and Church, 2013). Thus,
RNA editing can contribute to the diversity of the transcriptome
by changing the amino acid sequences of proteins, altering the
locations of start or stop codons, influencing alternative splicing
patterns, and affecting the ability of miRNAs to bind to their
target sites (Rueter et al., 1999; Kawahara et al., 2007; Nishikura,
2010). Dysregulation of A-to-I RNA editing can lead to severe
consequences. For example, ablation of editing in the glutamate
receptor gene GluA2 Q/R site results in excess influx of calcium
into neurons leading to postnatal death in mice (for further de-
tails, see below) (Brusa et al., 1995). Importantly, abnormal edit-
ing levels have been observed in a variety of diseases, such as
depression and suicide, epilepsy, amyotrophic lateral sclerosis,
and several cancers (Tariq and Jantsch, 2012; Slotkin and Nishi-
kura, 2013).

Although previous work has shown that ADAR expression
levels are generally higher in brain than other tissues, we lack
comprehensive studies examining how RNA editing is spatio-
temporally regulated in mammals. With the recent expansion of
RNA editing sites in mouse and human, there is an immediate
need to comprehensively characterize the extent of editing at
individual sites in different biological contexts (Geiger et al.,
1995; Melcher et al., 1996; Chen et al., 2000; Li et al., 2009; Bahn
et al., 2012; Danecek et al., 2012; Peng et al., 2012; Ramaswami et
al., 2012, 2013; Ramaswami and Li, 2014).

Transcriptome-wide profiling of A-to-I RNA editing in a large
number of human and mouse samples has been performed using
a recently developed targeted RNA sequencing method (Zhang et
al., 2014) as well as publicly available data. Differences in RNA
editing levels between tissue types, developmental stages, and
species were observed, leading to findings that agree with previ-
ous, small-scale studies (Wahlstedt et al., 2009), as well as find-
ings that are novel and unexpected. At an unprecedented scale,
this study underscores the unexpected complexities of A-to-I
RNA editing and paves the way for future studies aimed at un-
derstanding this important gene regulatory mechanism.

A-to-I RNA editing: glutamate receptors and addiction
Glutamate receptors are among the most well-studied edited
mRNAs. Glutamate is the major excitatory neurotransmitter in
the nervous system, and it mediates its fast synaptic action
through the activation of three types of ionotropic glutamate
receptors, including �-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptors (Choi, 1995; Dingledine et al.,
1999). AMPA receptors (AMPARs) are tetrameric protein com-
plexes comprised of GluA1-GluA4 subunits. Although all
AMPARs are permeable to sodium and potassium (Song and
Huganir, 2002), some AMPARs are also calcium permeable (CP).
The synaptic incorporation of CP-AMPAR is highly regulated
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and important for the enhanced synaptic strength associated with
neuronal plasticity (Isaac et al., 2007; Liu and Zukin, 2007). CP-
AMPARs are altered by different pharmacological agents, dem-
onstrate greater single-channel conductance, and demonstrate
inward rectification due to voltage-dependent blockade by en-
dogenous polyamines. Calcium-impermeable AMPARs are com-
prised of GluA2 subunits that have undergone RNA editing,
which involves the enzymatic deamination of an adenosine resi-
due in GluA2 pre-mRNA before splicing by the enzyme ADAR2
(Rueter et al., 1995; Melcher et al., 1996; Bass, 2002). ADAR2
specifically targets the glutamine (Q) codon, deaminating an
adenosine residue to an inosine that is read as guanosine (CAG¡
CGG), by reverse transcriptase. Thus, ADAR2 converts the glu-
tamine (Q) to arginine (R) at amino acid 607 changing a critical
residue within the ion channel and thus generating AMPA
receptors comprised of calcium-impermeable AMPARs with
GluA2(R) subunits (Sommer et al., 1991; Geiger et al., 1995;
Wright and Vissel, 2012). Although there is strong evidence that
AMPARs lacking GluA2 contribute to normal brain function as
well as disease, the functional significance of unedited GluA2(Q)
containing AMPA receptors in the brain is unclear (Isaac et al.,
2007; Wiltgen et al., 2010; Wright and Vissel, 2012). Recent stud-
ies demonstrate that unedited GluA2(Q) can play a role in both
neurologic as well as psychiatric disorders (Morabito and Eme-
son, 2009). Unedited GluA2(Q) has been shown to regulate ex-
citotoxic neuronal cell death in ischemia and neurodegenerative
disease (Akbarian et al., 1995; Kawahara et al., 2004; Kwak and
Weiss, 2006; Peng et al., 2006; Aizawa et al., 2010; Hideyama et al.,
2010). Additionally, ADAR2 levels and GluA2 Q/R editing are
decreased in the brains of patients with major depressive disorder
and schizophrenia (Akbarian et al., 1995; Silberberg et al., 2012;
Kubota-Sakashita et al., 2014).

Although a role for GluA2 Q/R site editing in excitotoxicity
and neuronal death is becoming clear, its role in normal and
aberrant behavioral phenotypes is largely unknown. Specifically,
there are no studies that have yet examined a potential role for
GluA2 editing in animal models of addiction. Recently, the Sadri-
Vakili group, together with Drs. Christopher Pierce and Heath
Schmidt (University of Pennsylvania), has begun to elucidate the
role of ADAR2-mediated GluA2 Q/R site editing in the nucleus
accumbens (NAc) of rats following cocaine self-administration.
It is now clear that AMPAR activation in the NAc promotes the
reinstatement of cocaine-seeking behavior (Schmidt and Pierce,

2010). Although administration of an AMPAR agonist directly
into the NAc reinstates cocaine seeking, intra-accumbal admin-
istration of an AMPAR antagonist decreases the reinstatement of
drug seeking (Cornish and Kalivas, 2000; Di Ciano and Everitt,
2001; Backstrom and Hyytia, 2007; Conrad et al., 2008; Famous
et al., 2008). Additionally, cocaine seeking is associated with in-
creased synaptic expression of CP-AMPARs in the accumbens
(Anderson et al., 2008; Conrad et al., 2008; Famous et al., 2008).
Given that the majority of GluA2 subunits in the adult brain are
edited GluA2(R), it has been speculated that cocaine-induced
increases in NAc CP-AMPARs may reflect decreased expression
of GluA2-containing AMPARs (Burnashev et al., 1992; Kawahara
et al., 2003; Schmidt and Pierce, 2010; Pierce and Wolf, 2013).
Alternatively, CP-AMPARs containing unedited GluA2(Q) sub-
units also could contribute to this process. The Sadri-Vakili lab-
oratory is focused on addressing this issue by determining the
effects of cocaine on ADAR2-mediated GluA2 Q/R site editing in
a rat self-administration model.

Circular RNAs (circRNAs)
The final class of modified RNA we will discuss are the circular
RNAs. circRNAs are a newly discovered class of stable, naturally
occurring noncoding RNAs, with widespread expression in eu-
karyotic cells. Their extraordinary stability, due to their resistance
to exonucleolitic RNA decay, offers the ability to efficiently se-
quester miRNAs or RNA-binding proteins and thereby affect
their function. Although thousands of circular RNAs have been
identified and many of these were shown to be the predominant
transcript isoforms, little is known about their biogenesis, degra-
dation, or function (Salzman et al., 2012, 2013; Jeck et al., 2013;
Memczak et al., 2013; Wang et al., 2014a).

The Rajewsky laboratory has obtained evidence for numerous
circRNAs with high expression in mammalian brain. Many of
these circRNAs map to the exons of genes crucial for neuronal
function. The best-characterized circRNA transcript CDR1as,
antisense to cerebellar degeneration-related protein 1 (CDR1as/
ciRS-7), is densely bound by miRNA effector complex and har-
bors 63 conserved miR-7 binding sites (Hansen et al., 2013;
Memczak et al., 2013). Gain-of-function experiments demon-
strate that CDR1as acts as a natural miR-7 antagonist in neuronal
tissues. Expression of CDR1as in zebrafish results in severe im-
pairment of midbrain development, similar to miR-7 depletion,
which indicates the ability of CDR1as to regulate miRNA-7

Table 1. Selected RNA modifications and their potential nervous system functions

Modified RNA Enzyme(s) Potential nervous system function

m 6A Methyltransferase:
METTL3/METTL14/WTAP (Liu et al., 2014; Ping et al., 2014)
Demethylase:
FTO (Jia et al., 2011)
ALKBH5 (Zheng et al., 2013)

RNA splicing (Dominissini et al., 2012)
RNA stability (Wang et al., 2014b)
Nuclear export (Dominissini et al., 2012)
Activity of dopaminergic neurons (Hess et al., 2013)
Hypothalamic response to nutrient status (Boender et al., 2012; Vujovic et al., 2013)

m 5C Methyltransferase:
DNMT2 (Goll et al., 2006)
NSUN2 (Brzezicha et al., 2006; Frye and Watt, 2006)
NSUN4 (Metodiev et al.,. 2014)
Demethylase:
unknown

tRNA stability (Tuorto et al., 2012)
tRNA and ncRNA processing and cleavage (Schaefer et al., 2010; Hussain et al., 2013b; Blanco et al, 2014)
Gene silencing (Hussain et al., 2013b)
Protein translation (Tuorto et al., 2012; Blanco et al., 2014)
Stress response (Schaefer et al., 2010; Blanco et al., 2014)
Differentiation and development (Blanco et al., 2011; Tuorto et al., 2012; Hussain et al., 2013c)

Inosine ADARs (Nishikura, 2010) RNA editing (Slotkin and Nishikura, 2013)
Generation of nongenomically encoded proteins (Rueter et al., 1995; Wahlstedt et al., 2009)

circRNAs Unknown MicroRNA sponge (Hansen et al., 2013; Memczak et al., 2013)
Modulation of gene expression (Zhang et al., 2013)
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levels (Memczak et al., 2013). Interestingly, miR-7 targets
have been previously linked to Parkinson’s disease etiology,
and circCDR1as was shown to be strongly downregulated in the
hippocampi of patients with Alzheimer’s disease (Junn et al.,
2009; Lukiw, 2013). This work suggests that maintenance of bal-
ance between CDR1as and miR-7 may be crucial for the preven-
tion of neurodegenerative disease. The function of circRNAs is
not necessarily limited to miRNA regulation. The biochemical
heterogeneity and wide expression range of circRNAs suggest
potential functions, such as delivery vehicles, RNA-binding pro-
tein sponges, assembly of RNA-binding protein factories, or as
potential templates for translation (Hentze and Preiss, 2013;
Memczak et al., 2013). Dr. Rybak-Wolf and her colleagues in the
Rajewsky laboratory have investigated changes in circRNA ex-
pression during embryonic stem cell differentiation into neurons
and have characterized some neuron-specific circRNAs with
possible functions in the control of neuronal identity and
development.

Future exploration
Research into RNA modifications is undergoing the beginnings
of a renaissance thanks to improved tools and technologies for
detecting these modifications. Table 1 summarizes the RNA
modifications discussed in this mini-review and provides a brief
description of their current known functions in the nervous sys-
tem. These exciting discoveries will spur further investigations of
the role of modified RNAs in a myriad of nervous system pro-
cesses. Moving forward, it is evident that a few key obstacles must
be overcome to achieve maximal progress in this area. These
include the generation of improved affinity reagents to monitor
specific modified RNAs, as well as improved assays that enable
determination of specific RNA modifications at single base reso-
lution. Additionally, a global survey of the RNA modifications in
diverse neuronal and glial subtypes would be of great value in
understanding the extent to which these modifications permeate
the nervous system. It would also be important to identify and
characterize the proteins that write, erase, or interact with these
RNA modifications. If research in this field flourishes, an Epi-
transcriptome Catalog of RNA species and their modifications
from a variety of key mammalian nervous system cell types or
tissues will be of great use, as would computational approaches
for predicting the presence of modifications in a given RNA.
Certainly, additional mechanistic studies will be required for a
more in-depth investigation of the mechanisms by which modi-
fied RNAs are generated and how these impact neurobiological
and disease processes. Finally, genetic and pharmacological tools
will need to be developed to enable temporal and cell-type-
specific manipulation of RNA modifications and the proteins
involved in their functions.
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