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Adoptive T cell therapy using chimeric antigen receptor-modified T cells (CAR-T 

therapy) has shown dramatic efficacy in patients with circulating lymphoma. 

However, eradication of solid tumors with CAR-T therapy has not been reported yet 

to be efficacious. In solid tumors, stroma destruction, due to MHC-restricted cross-

presentation of tumor antigens to T cells, may be essential. However, CAR-Ts 

recognize antigens in an MHC-independent manner on cancer cells but not stroma 

cells. In this report, we show how CAR-Ts can be engineered to eradicate large 

established tumors with provision of a suitable CD28 costimulatory signal. In a HER-

2-dependent tumor model, tumor rejection by HER-2-specific CAR-Ts was 

associated with sustained influx and proliferation of the adoptively transferred T cells. 

Interestingly, tumor rejection did not involve NK cells, but was associated instead 

with a marked increase in the level of M1 macrophages and a requirement for IFNγ 

receptor expression on tumor stroma cells. Our results argue that CAR-T therapy is 

capable of eradicating solid tumors through a combination of antigen-independent 

stroma destruction and antigen-specific tumor cell targeting. 

 

 

Precis  

This preclinical study shows how the inability of engineered T cell therapies to 

eradicate solid tumors can be overcome by enabling antigen-independent stroma 

destruction along with antigen-specific tumor cell targeting, providing possible 

insights into how to dramatically expand the use of these therapies beyond 

circulating blood tumors where they are currently useful.  
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Introduction 

T cells can be redirected with new antigen specificity and used for adoptive T cell 

therapy (ATT) by introducing either a T cell receptor (TCR), or chimeric antigen 

receptor (CARs). The CAR consists of an antigen (Ag)-binding single chain variable 

fragment (scFv) antibody domain and a signaling domain, most often the CD3ζ 

endodomain (1). While T cells with CARs (CAR-Ts) containing CD3ζ had a moderate 

anti-tumor effect and poor persistence in vivo (2), addition of costimulatory signals as 

provided by dual signaling domains (e.g. CD28-CD3ζ) has improved the therapeutic 

effects of CAR-Ts in experimental models (3) and in clinical trials targeting CD19 on 

B cell malignancies (4,5).  

Tumor transplantation models can be of clinical relevance if large established tumors 

grown for at least two weeks are treated (6). Such solid tumors are difficult to reject, 

but can be successfully eradicated if the target antigen is recognized through the 

TCR (7-11). On the other hand, CAR-mediated recognition leads to regression but 

not complete eradication (3). This could be due to the sub-optimal affinity of the CAR 

to the target antigen or the different mode of antigen recognition of CARs versus 

TCRs. In contrast to TCRs, which recognize peptide antigen presented by MHC 

class I (MHC I), CARs recognize the cognate cell surface antigen by an antibody 

domain independently of the MHC I. This can be an advantage since tumors escape 

TCR-mediated ATT by MHC I down-regulation (12), but it can also be a 

disadvantage because tumor stroma cells cross-presenting surrogate tumor antigen 

on MHC I needs to be recognized by T cells in order to prevent tumor escape (7). 

However, it appears that direct recognition of the tumor stroma is less important for 

tumor rejection if cancer-driving antigens (CDAs) are targeted by TCR-mediated ATT 

(10,11). CDAs are arguably the best targets because cancer cell proliferation/survival 

often depends on its continuous expression, as is the case for the human cell line 

SKOV3 and HER-2 (epidermal growth factor receptor-2) (13), which is termed 

oncogene addiction (14). HER-2 is normally an overexpressed self-antigen, but in 
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this study we utilized a mouse model where human HER-2 was expressed only on 

the SKOV3 tumor cells and not on mouse cells, which makes it a relevant model for 

tumor-specific antigens targetable by CAR-Ts (e.g. mutant epidermal growth factor 

receptor (EGFRvIII) or the chaperon Cosmc) (15,16).  

Previous studies employing CARs for treatment of xenografted solid human tumors 

used polyclonal human T cells as recipient cells for the CAR (3,17), a model 

containing several confounding factors (Supplementary Fig. S1). Human CAR-Ts 

were allogeneic with regard to the tumor and xenogeneic with regard to the host. In 

this setting, it is difficult to exclude allo-MHC T cell responses (through the TCR) 

contributing to therapy effects. Conversely, lack of overt graft-versus-host reactions 

to the xenogeneic mouse tissues indicates that human T cells perform poorly in mice. 

An unknown number of species-specific factors necessary for survival and 

proliferation may impair the function of human T cells in mice. For example, IFNγ 

function is species-specific (18), so that human T cell-derived IFNγ cannot act on 

mouse tumor stroma cells, which had been shown in syngeneic models to be critical 

in order to prevent tumor recurrence (8,11). To avoid confounding factors with 

polyclonal human T cells in mice and better dissect the mechanism of tumor 

eradication by CAR-Ts, we used mouse monoclonal CD8+ T cells with tumor-

unrelated specificity as CAR recipients (OVA-specific OT-1 cells derived from Rag-/- 

mice). This ensured that the CAR-Ts could act only through their CAR but not TCR, 

that IFNγ could act on the tumor stroma but not the human cancer cells and also 

excluded a potential contribution of CD4+ T cells on the therapeutic outcome 

(Supplementary Fig. S1). Here, we first established that eradication of large 

established tumors can be achieved by HER-2-specific CAR-Ts if provided with 

costimulatory CD28 signaling (28-ζ-CAR) (19). This rejection was associated with 

sustained accumulation, proliferation and differentiation of CAR-Ts to effector 

memory (TEM) cell type at the tumor site. We finally demonstrated that tumor
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rejection by CAR-Ts involved destruction of tumor stroma through IFNγR, 

independently of NK cell contribution.  

 

 

Materials and Methods  

Mice 

All mouse studies were in accordance with institutional, state, and federal 

(Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit, Berlin) 

guidelines. Albino Rag1-/- or Rag2-/- (Rag-/-) mice, OT-1/Rag1-/- and ChRLuc/OT-

1/Rag1-/- mice were recently described (9). IFNγR-/- and Fas-/- mice were obtained 

from Jackson Laboratory (003288 and 000482, respectively) and bred at the MDC 

animal facility to Rag1-/- mice to obtain IFNγR-/-/Rag1-/- and Fas-/-/Rag1-/- mice.  

 

Retroviral vectors and cells 

HER-2 specific ζ-CARs constructs with scFv of different affinities and the 9-28-ζ-CAR 

of the intermediate affinity (20) were introduced into the MSCV expression plasmid 

as earlier described (21). pMSCV vector encoding for GFP (pMIG) was used as 

mock control. Retroviral supernatants were generated by cotransfecting HEK-T cells 

with different MSCV-CAR constructs and gag, pol and env encoding pCL-eco vector 

(Imgenex) as described previously (21). Virus supernatants were collected 48 and 

72h post transfection and used for transducing T cells. Human ovarian carcinoma 

cell line SKOV3 expressing CBG luciferase was described earlier (21). It was 

authenticated by flow cytometry as described below.  

Expansion of T cells and retroviral transduction 

Spleens were isolated from OT-1/Rag-/- or ChRLuc/OT-1/Rag-/- mice and prepared as 

a single cell suspension with 0.8% NH4Cl mediated lysis of red blood cells. 1-2x106 

cells were cultured in 24 well plates in 1 ml of complemented RPMI media (10% 

FCS, PAN Biotech; 50 μg/ml gentamicin, Gibco; and 50 μM mercaptoethanol, Gibco)
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supplemented with 1 μg/ml anti (a)-CD3, 0.1 μg/ml a-CD28 antibody (Ab) (BD 

Bioscience) and 10 IU/ml IL-2 (Proleukin, Prometheus Laboratories) for 24h at 37°C 

in 5% CO2 humidified incubator. Virus supernatants of different CAR constructs and 

mock control produced by HEK-T cells were collected, filtered (0.45 μm pore size) 

and either used directly for transduction or stored at -80°C. After 24h activation, 

media was removed from the splenocytes and replaced with 1 ml/well virus 

supernatant containing 10 μg/ml polybrene (Sigma-Aldrich). The cells were 

spinoculated for 2h at 800xg and 32°C. Virus supernatant was removed and replaced 

with 1 ml RPMI containing 10 IU IL-2. Cells were transduced twice, with an interval of 

24h. The level of surface CAR expression was measured 24 or 48h after the last 

transduction. 

 

Flow cytometry  

Surface expression of the CARs was measured by staining with the F(ab)2 fragment 

from goat anti-human Ig polyclonal Ab conjugated to PE, APC or Dylight 649 

(Southern Biotech or Jackson). Additionally cells were stained with a-CD8-APC (or 

FITC) (clone 53-6.7, BD Bioscience) and a-CD3-FITC Ab (clone G4.18, BD 

Bioscience). CAR-Ts were also analyzed for activation markers using a-CD44-FITC 

(clone IM7, BD Bioscience) and a-CD62L-PE (clone MEL-14, BD Bioscience), and 

for proliferation markers by a-KI-67 (Alexa Flour 488 clone B56, BD Bioscience) and 

Propidium Iodide staining Solution (BD Bioscience). NK cells were analyzed using a-

NK1.1-APC (clone PK136, Biolegend) and a-CD49b-PE (pan-NK-cells, clone DX5, 

Biolegend) Ab. Macrophages were identified using a-F480-BV421 (clone BM8, 

Biolegend), a-CD11b-PE (clone M1/70, Biolegend) and additionally stained with a-IA-

IE-PeCy7 (clone M5/114.15.2, Biolegend). Tumor samples were additionally 

analyzed by a-CD45.2-APC (clone 104, Biolegend) and a-Her2neu-PE (clone Neu 

24.7, BD Bioscience) Ab. SKOV3 cells were stained with a-Her2neu-PE and with a-

HLA-ABC (clone G46-2.6, BD Bioscience) as described earlier to confirm the species 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 
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origin and HER-2 expression (21). Data acquisition was performed on a FACS 

Calibur (BD Biosiences), MACSquant (Miltenyi Biotec) or FACSCanto (BD 

Biosiences), and the analysis was done by FlowJo (Tree Star) software.  

 

Tumor digestion and cytokine release assay 

A third or a half of the isolated tumor was sliced into small pieces and incubated for 1 

hour at 37°C in 10 ml digestion solution (complete RPMI medium with collagenase II 

(1 mg/ml, Gibco), Dispase II (1 mg/ml, Roche) and DNAse I (10 μg/ml, Roche). 

Tumor cells were passed through a cell strainer (40 µm), washed with PBS and 

treated with ACK lysis buffer. Counted cells were prepared for flow cytometry 

analysis by incubation with a-FC receptor Ab (TruStain fcX, Biolegend) for 15 min at 

4°C. CD8 T cells were purified from tumor cells by using a-CD8a (Ly-2) Microbeads 

(Miltenyi Biotec) according to the manufacturer’s protocol.  

To measure cytokine release, CAR-Ts were mixed with mock transduced T cells to 

equalize the CAR+ cells between the different constructs in total of 2x105 cells per 

construct, from which 1x104 were CAR+. The CAR-Ts were then cocultured with 

titrated numbers of target SKOV3 tumor cells in 96-well flat bottom plates and 24-48h 

later IFNγ and IL-2 levels were measured in the supernatants by ELISA (BD 

Biosciences) according to the manufacturer’s protocol.   

Tumor challenge and adoptive T cell transfer 

Age and sex matched mice were injected with 5x106 SKOV3-CBG tumor cells 

subcutaneously. On the day of treatment mice received i.v. injection of (unless 

otherwise indicated) 2x106 CAR-Ts or mock T cells, resuspended in 100 μl PBS. 

Tumor size was measured by an electronic caliper and the average tumor diameter 

was calculated from the measurements of length, width and the depth of the tumor 

(9). Mice were sacrificed when the tumors reached 15 mm in any one dimension. To 

confirm the complete tumor rejection, at the end of the treatment experiments (at 

least 60 days after no palpable tumor was detected), tumor free mice were imaged 

ipts have been peer reviewed and accepted for publication but have not yet been edited. 
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for CBG luciferase signal emitted by any potentially remaining SKOV3 cells as 

described (21). NK cell depletion was achieved by weekly i.p. injection of 160 

μg/mouse of a-NK1.1 Ab (clone PK136, BioXCell) or isotype control (IgG2a, 

BioXCell) throughout the experiment. NK cell depletion was confirmed several times 

over the time-course of the experiment. Tumor free mice from this experiment were 

observed for at least one week following tumor rejection and the rejection was 

confirmed by BLI.  

 

Bioluminescence imaging 

In vivo imaging was performed using a Xenogen IVIS 200 (Caliper Lifescience). A 

maximum of five anaesthetized mice were imaged at once. Each mouse received an 

i.v. injection of freshly prepared coelenterazine (Biosynth) that was dissolved in 

DMSO (Sigma) and diluted in PBS (100 μg/100 μl per mouse) as earlier described 

(9). Images were acquired for 1 min using small binning, unless saturated signal was 

obtained, in which case the acquisition was repeated using 10s imaging time. All 

data were analyzed using Living Image analysis software (Caliper Lifescience). The 

region of interest (ROI) for the measured signal was drawn at the tumor site 

identically for all mice and was set anew for each experiment. 

 

 

Results  

Increasing the affinity of a ζ-CAR does not improve the T cell function 

HER-2 specific CARs were cloned into the pMSCV retroviral vector resulting in five 

CARs with CD3ζ signaling domain (ζ-CARs) with the affinities of their scFv’s between 

10-7 and 10-11 M (Figure 1A), and one CAR with CD3ζ and CD28 signaling domains 

(28-ζ-CAR) with the affinity of 10-9 M (Figure 1A). Following retroviral transduction of 

mouse splenocytes, the percentage of CAR+ CD8+ T cells was generally lower for the 

ζ-CARs (8.5%; SD ± 5%) when compared to the 9-28-ζ-CAR (18.5%; SD ± 13%) 
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(Figure 1B and Supplementary Fig. S2). Human T cells targeted with these same ζ-

CARs responded at a very similar level above the affinity threshold of 1.6x10-8 M 

(20). Similarly, 8-ζ-CAR-Ts responded by secreting more IFNγ compared to 7-ζ-CAR-

Ts and levels of IFNγ did not increase with CARs of higher affinity, including the 9-

28-ζ-CAR (Figure 1C). CAR-Ts can secrete IL-2 when stimulated through their 

endogenous CD28 receptor (22) or the chimeric CD28-ζ receptor (19). Accordingly, 

we found that CAR-Ts engineered with 9-28-ζ but not ζ-CARs secreted IL-2 (Figure 

1C). 

We next investigated the ability of ζ-CAR-Ts to reject SKOV3 tumors in vivo and 

whether an increase in scFv affinity influences therapeutic outcome. Rag-/- mice were 

subcutaneously (s.c.) injected with 5x106 SKOV3 cells. About 3 weeks later when the 

tumors were 6.6 mm (SD ± 1.1 mm) in average diameter, the mice were treated 

intravenously (i.v.) with 2x106 CAR-Ts transduced with mock (GFP) retrovirus or the 

different affinity ζ-CARs. Tumors in mice that received 7-ζ-CAR-Ts progressed 

unimpaired comparable to mock-treated mice (Figure 2 and Table 1). Similarly, ζ-

CAR-Ts of the other affinities (including the highest affinity 11-ζ-CAR) did not reject 

SKOV3 tumors and, if at all, only slightly delayed tumor progression (Figure 2 and 

Table 1).  

 

Costimulation by the 28-ζ-CAR leads to rejection of large established tumors 

To determine if addition of an costimulatory CD28 signaling to the CAR molecule 

would lead to rejection of SKOV3 tumors, tumor-bearing mice were treated with 

CAR-Ts expressing either 9-ζ- or 9-28-ζ-CAR, which contain the same scFv domain 

(KD: 1x10-9 M) but different signaling domains. As before, tumors grown for ∼3 weeks 

(average tumor diameter 7.1 mm, SD ± 0.4 mm) progressed in mice receiving 9-ζ-

CAR-Ts or mock treatment, but were long-term rejected by 9-28-ζ-CAR-Ts (mice 

remained tumor free 60 days post rejection) (Figure 3A and Table 1). Although both 

groups received 2x106 transduced CD8+ T cells, due to the different transduction
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efficiency, 9-28-ζ-CAR-Ts treated mice received more CAR-Ts (5.6x105) than 9-ζ-

CAR-Ts treated mice (1.4x105). To account for that and exclude that the different 

therapeutic outcome was due to transferring different numbers of CAR-Ts, tumor-

bearing mice were treated with titrated numbers of 9-28-ζ-CAR-Ts. Either 2x105 or 

5x104 CD8+ T cells were transferred, which equals to 5.6x104 or 1.4x104 CAR+ T 

cells, respectively. In both cases, tumors were again long-term rejected (Figure 3B 

and Table 1). To further confirm these results, mice with large established tumors 

(average tumor diameter 10.5 mm, SD ± 1.8 mm) received the same number of 

CAR+ T cells; either mock treated or injected with 2x106 CAR-Ts with similar 

percentage of 9-28-ζ- or 9-ζ-CAR+ cells (8% and 10%, respectively). Once again, 9-

28-ζ-CAR-Ts rejected the tumors (n=2), while tumors in mock-treated and 9-ζ-CAR-

Ts treated mice progressed (Figure 3C and Table 1).  

CAR-Ts require costimulation to accumulate at the tumor site and persist in 

vivo 

To visualize the in vivo dynamics of the CAR-Ts associated with tumor rejection 

compared to CAR-Ts associated with failed therapy, we introduced CARs into T cells 

derived from renilla luciferase transgenic mice (ChRLuc/OT-1/Rag-/-) (9) and imaged 

tumor-bearing mice by bioluminescent in vivo imaging (BLI) at various time points 

following T cell transfer. The BLI background signal was set at 1x105 p/s/cm2/sr, 

which is the highest signal emitted at the tumor site by mock-treated mice, probably 

reflecting the homeostatic expansion of transferred T cells (Figure 4A). Similar to 

TCR-mediated tumor rejection (9), the presence and persistence of the CAR-T signal 

was associated with tumor regression as only 9-28-ζ-CAR-Ts accumulated at the 

tumor site (Figure 4A and B). Typically the signal appeared and reached its peak 

during the second week post ATT (Figure 4B), where it persisted for 2-3 weeks and 

then gradually declined (Figure 4A and B). The signal from the in vivo imaging of 9-

28-ζ CAR transduced T cells indicate that this population contracted in a fast kinetic 

following 3 cycles of expansion. This is similar to what we have earlier observed 
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during the rejection of large established tumors by adoptively transferred TCR 

transgenic T cells (9). It is likely that, following the expansion, the T cells contracted 

due to the consumption of the limited amount of the homeostatic cytokines required 

for T cells persistence. In line with this, a similar pattern has been shown in a study 

with repeated T cells expansion and contraction during the treatment of 1-week-old 

B16 melanoma by adoptive T cell therapy (23). Interestingly, in that study, this 

pattern was replaced by a continuous T cell expansion and persistence pattern when 

the mice also received IL-15 precomplexed with soluble IL-15 receptor α and IL-21. 

The last and most substantial contraction phase coincided with tumor rejection. This 

indicates that during successful adoptive T cell therapy a new cycle of T cell 

expansion is repeatedly initiated as long as the cognate antigen is available.  

Since the SKOV3 cells used in this study were transduced with a click beetle 

luciferase (CBG) expressing retrovirus (21), we confirmed complete tumor rejection 

by showing that no remaining tumor cells could be detected by BLI (Figure 4C). The 

values for the ζ-CAR-T imaged-signals did not vary much between the different 

treatment groups and only a slight increase over background was observed during 

the BLI time period of 50 days (Figure 4A). By calculating the maximal T cell signal 

from mock as compared to 9-28-ζ-CAR-T treated mice (9), we estimated that 

homeostatic expansion contributed to about 5% of Ag-driven proliferation. 

Decreasing the lower scale to 2x104 p/s/cm2/sr to visualize the homeostatic 

expansion of the transferred T cells showed that the signal of ζ-CAR-Ts was similar 

to control treated mice, suggesting these cells were largely ignorant, which was in 

contrast to the large signal increase of 9-28-ζ-CAR-Ts treated mice (Supplementary 

Fig. S3).   

 

Costimulation by the 28-ζ-CAR leads to T cell differentiation and proliferation 

at the tumor site  
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Using BLI, we observed that 9-28-ζ-CAR-Ts expanded in the tumor-bearing mouse 

and accumulated preferentially at the tumor site (Supplementary Fig. S4). Although 

BLI allowed us to visualize this accumulation, we could not address the question of 

whether these cells were also able to proliferate inside the tumor or to evaluate their 

differentiation status. Since retroviral transduction required antigen-independent T 

cell activation, 9-ζ-CAR-, 9-28-ζ-CAR- and mock-transduced CAR-Ts contained 

similar numbers of similarly activated T cells. This was confirmed by the high (hi) 

expression of CD44 and CD62L (CD44hi, CD62Lhi, Figure 5A), which is typical for 

memory phenotype. Nevertheless, additional in vivo activation by costimulation was 

required as only 9-28-ζ-CAR-Ts rejected the tumors while 9-ζ-CAR-Ts did not. Since 

TCR-mediated tumor rejection favors TEM phenotype (24), we analyzed whether 

CAR-mediated tumor rejection involved 28-ζ-CAR-Ts differentiation into TEMs. 

Approximately four weeks post tumor challenge, mice received 2x105 CAR+ cells 

from total 1x106 CAR-Ts per mouse (numbers were equalized for all treatments by 

adding mock cells to CAR transduced T cells). The percentage of CAR+ T cells 

following transduction was 20% for 9-ζ-CAR-Ts and 40% for 9-28-ζ-CAR-Ts. Similar 

to the earlier experiments, mice treated with 9-28-ζ-CAR-Ts but not those treated 

with 9-ζ-CAR-Ts rejected the tumor. By analyzing the tumor infiltrating lymphocytes 

(TILs) we found that the majority of these cells from the mock- and the 9-ζ-CAR-Ts-

treated mice of the CD8+/CD44+ population were CD62Lhi. Interestingly, the majority 

of the TILs from the 9-28-ζ-CAR-Ts treated mice shifted towards the CD62L low (lo) 

phenotype, which is typical for TEM cells (Figure 5B). There was no difference in the 

phenotype of the T cells from the spleens of the mice treated with any of the three T 

cell therapies, which had similar percentages of the CD62Lhi population (data not 

shown). To investigate whether 9-28-ζ-CAR-Ts not only accumulated at the tumor 

site but also proliferated there, we isolated CD8+ cells from the tumors (Figure 5C) 

and measured the expression of the Ki-67 proliferation marker. Indeed, compared to 

mock and 9-ζ-CAR-Ts, only 9-28-ζ-CAR-Ts proliferated at the tumor site. This Ki-67 

http://cancerres.aacrjournals.org/
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positive population was present in the G2/M phases of the cell cycle, as determined 

by the PI staining for DNA content (Figure 5C).  

 

CAR-mediated rejection depends on IFNγR expression on the tumor stroma 

By analyzing the tumors for the cancer cells and stroma cells content, we found that 

large established SKOV3 tumors contained ∼15% of HER-2+ cancer cells while the 

other 85% were stroma cells (Supplementary Fig. S5A). The majority of the stroma 

cells in the SKOV3 tumors were of non-hematopoietic origin (>90% CD45.2 negative, 

Supplementary Fig. S5A). To investigate whether CAR-mediated tumor rejection 

requires targeting of the tumor stroma by IFNγ, we treated Rag-/- and IFNγR-/-/Rag-/- 

mice bearing ∼3 weeks old SKOV3 tumors (6.6 mm; SD ± 1.5 mm) with mock or 9-

28-ζ-CAR-Ts. In Rag-/- mice, tumors were again rejected following treatment with 9-

28-ζ-CAR-Ts (Figure 6A and Table 1). However, following treatment with 9-28-ζ-

CAR-Ts, tumors progressed in IFNγR-/-/Rag-/- mice at a comparable kinetic to that 

seen in mock-treated mice (Figure 6A and Table 1).   

In the current settings, IFNγ secreted by the transferred T cells could have 

contributed to tumor eradication either by direct stroma destruction (10,31) or 

indirectly by activating NK cells and M1 macrophages (21,25). To answer this 

question, we compared the NK cells and macrophages infiltration in the tumors of 

mock, 9-ζ-CAR-T and 9-28-ζ-CAR-T treated tumor-bearing mice. Tumors from the 

mice that received 9-28-ζ-CAR-Ts had a high percentage of infiltrating NK cells 

(30%) compared to tumors from 9-ζ-CAR-T (10%) and mock (4%) treated mice 

(Figure 6B). Tumors isolated from 9-ζ-CAR-T treated mice contained about 2x more 

NK cells then tumors from mock treated mice (Figure 6B), which is not surprising 

since we showed that 9-ζ-CAR-Ts secrete IFNγ upon antigen recognition. The 

numbers of tumor infiltrating macrophages (F4/80/CD11b double positive) did not 

vary much between 9-28-ζ-, 9-ζ-CAR-T and mock treated mice (Figure 6C). 
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Nevertheless, macrophages in tumors from 9-28-ζ-CAR-T treated mice had a 

marked increase in MHC class II expression (80%) which is typical for M1 

macrophage population, while the percentages were much lower for 9-ζ-CAR-T 

(43%) and mock (28%) treated mice (Figure 6C). These findings indicate that the 

IFNγ secreted by 9-28-ζ-CAR-Ts activated NK cells and M1 macrophages. To 

investigate the role of NK cell activation in tumor rejection, we performed an in vivo 

NK cell depleting experiment. Tumor bearing mice received a-NK 1.1 antibody or 

isotype (iso) control weekly over the period of 85 days (starting two days before ATT) 

which depleted the NK cells in the blood (Supplementary Fig. S5B). Mock treated 

mice did not receive any additional treatment and tumors progressed (Figure 6D). 

Mice that were treated with a-NK 1.1 antibody and isotype control received 9-28-ζ-

CAR-Ts, and during the observation time of 82 days post ATT majority of the tumors 

were rejected for both groups (2/3 for isotype control and 4/5 for NK depleted) 

(Figure 6D). This indicates that NK cells were not necessary for the CAR-mediated 

tumor rejection.  

 

 

Discussion  

Our study showed for the first time that CAR-Ts were able to reject large solid tumors 

exclusively by CAR-mediated CD8+ T cell effector function and independent of CD4+ 

T cell or B cell contribution. Costimulation provided by the CD28 signaling domain of 

the 9-28-ζ-CAR was essential for tumor rejection in our model and could not be 

compensated for by increasing the affinity of the scFv domain of the ζ-CARs. The 

inability of ζ-CAR-Ts to secrete IL-2 may have contributed to their failure to 

proliferate, differentiate into TEM and accumulate at the tumor site to mediate HER-

2-specific tumor rejection. Another reason for therapy failure might have been the 

tumor burden; perhaps ζ-CAR-Ts would have been more effective against smaller 

tumors (26). 
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Both antigen-dependent and -independent mechanisms can contribute to stroma 

destruction as a requirement for cancer eradication (27). Previous studies of TCR-

mediated ATT consistently reported that tumor stroma targeting was critical to 

prevent tumor recurrence and that T cell-produced IFNγ needed to act on the tumor 

stroma (8,11). However, likely due to the use of different experimental models, 

different mechanisms were suggested to explain this. When using a surrogate 

antigen expressed at a high level, antigen cross-presentation by stroma cells was 

essential for bystander elimination of antigen loss variants (7,8), while targeting a 

CDA (like SV40 large T antigen) did not require antigen cross-presentation for tumor 

eradication in a H-2 mismatched host (10,11). Excluding that cross-dressing by the 

peptide-MHC (28) could have contributed to stroma recognition in the H-2 

mismatched host, it appeared but was not formally proven that antigen recognition 

only on the cancer cells was sufficient for tumor rejection. This could have resulted 

from the induction of IFNγ production by the T cells, which then acted on stroma cells 

in an antigen-independent fashion either by direct stroma destruction or indirectly by 

activating the non T cell immune compartment (10,11,29,30). We proved the initial 

assumption in our current study because CAR-Ts recognized HER-2 exclusively on 

the cancer cells but not tumor stroma, yet IFNγ responsiveness by the stroma was 

essential for tumor rejection. There was a correlation between increase in the M1 

macrophage numbers and tumor rejection in our model, however, it is not clear 

whether the macrophages directly contributed to tumor rejection, or whether simply 

the increase was due to higher number of T cells secreting IFNγ in the tumors. 

Similarly, IFNγ led to NK cell activation, but despite the increased numbers of NK cell 

infiltrates in tumors of 28-ζ-CAR-T treated mice, the CAR-mediated tumor rejection 

was not dependent on NK cells. In accordance with our previous studies (10,31), it is 

possible that the mechanism of IFNγ acting on tumor stroma has a direct effect 

involving destruction of tumor vasculature. However, we cannot completely exclude 

that direct targeting of some stroma cells may have been mediated by recognition of 
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acquired tumor-derived microvesicles containing HER-2, since such acquisition was 

observed for some surface receptors (32).  

Due to species-specific binding, the IFNγ secreted by the mouse T cells could only 

act on the tumor stroma but not on the cancer cells, which might explain the 

prolonged rejection time required in our model. Simultaneous cancer and stroma cell 

targeting would have probably accelerated tumor rejection, as is the case in other 

models where both tumor compartments were targeted by IFNγ (7,9,10). 

Furthermore, the inability of 9-28-ζ-CAR-Ts therapy to induce initial tumor regression 

in IFNγR-/-/Rag-/- mice could be attributed to this specific setting, in which both cancer 

and stroma cells were not responsive to IFNγ (11). 

Although targeting stroma cells by IFNγ was essential for tumor rejection in our 

model, we cannot exclude that stroma cell targeting would have been dispensable in 

a setting where also cancer cells responded to IFNγ. However, in the cases when 

human CAR-Ts were used for therapy and cancer cells responded to IFNγ, 

established tumors could not be completely rejected (3,17), further implying at the 

relevance of IFNγ-stroma cell targeting for tumor rejection. Therefore, it will be 

important in future studies to elucidate the relative contribution of antigen-dependent 

(7,8) and -independent (10,11) destruction of tumor stroma and whether our data are 

related to targeting a CDA.  

Despite the effectiveness of tumor rejection by 9-28-ζ-CAR, we do not suggest using 

HER-2-CARs in the clinic, because we did not address potential toxicity in regard to 

HER-2 expression on normal cells. However, our data are clinically relevant because 

tumor-specific antigens accessible for CARs have been described (15,16) and will be 

evaluated for clinical use (33). Taken together, our results show that antigen-

independent tumor stroma destruction is required for CAR-mediated cancer 

eradication.   
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Figure Legends 

Figure 1. Mouse T cells express the HER-2-specific CARs and secrete IFNγ when 

stimulated with SKOV3 target cells, but only recognition by 9-28-ζ-CAR leads to 

production of IL-2. A, HER-2-specific ζ-CAR constructs of five different affinities (KD: 

3.2x10-7-1.5x10-11 M) and HER-2-specific 28-ζ-CAR construct of intermediate affinity 
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(KD; 1x1-9) were cloned into pMSCV vector. The resulting retroviral vectors were 

designated as pMSCV-7-ζ-CAR for the lowest affinity (KD: 3.2x10-7 M), pMSCV-8-ζ-

CAR for the wild type construct (KD: 1.6x10-8 M), followed by pMSCV-9-ζ-, pMSCV-

10-ζ- and pMSCV-11-ζ-CAR constructs with the increasing affinities of KD: 1x10-9, 

1.2x10-10 and 1.5x10-11 M, respectively. pMSCV-9-28-ζ-CAR is the resulting retroviral 

vector for the dual signaling CAR with intermediate affinity of KD: 1x10-9 M. B, 

splenocytes derived from ChRLuc/OT-1/Rag-/- mice were transduced with different 

CAR constructs. Untransduced (-) and CAR transduced T cells were stained with a-

CD8 and a-hIgG Abs and analyzed by flow cytometry. C, splenocytes derived from 

OT-1/Rag-/- mice were transduced with different ζ-CARs and with the 9-28-ζ-CAR. 

The average expression for ζ-CARs was 6% (SD ± 3%) and 5% for the 9-28-ζ-CAR. 

Mock and CAR transduced T cells were cocultured with titrated numbers of SKOV3 

cells for 24h and levels of secreted IFNγ and IL-2 were measured by ELISA. Data 

represent mean values of triplicates and one representative experiment of two is 

shown. 

 

Figure 2. Engineering T cells with high affinity ζ-CARs does not lead to tumor 

rejection. Rag-/- mice were challenged with 5x106 SKOV3 cells. Approximately three 

weeks post tumor inoculation, tumor-bearing mice were treated with 2x106 

ChRLuc/OT-1/Rag-/- ζ-CAR-Ts or mock T cells. The percentage of CAR expression 

for 7-, 8-, 9- 10- and 11-ζ-CAR was 5, 8, 7, 7 and 5%, respectively. Indicated is mean 

tumor diameter over the time period of the experiment for each mouse (each line), 

n=2 for mock, n=3 for 7-, 8- 10- and 11-ζ-CAR, and n=4 for 9-ζ-CAR. Each line 

represents a mean tumor diameter in a single mouse. Shown is one representative 

experiment out of two.  

 

Figure 3. CAR-Ts expressing 9-28-ζ-CAR reject large established SKOV3 tumors in 

Rag-/- mice. A, Rag-/- mice bearing three weeks old SKOV3 tumors received 2x106 
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CAR-Ts derived from ChRLuc/OT-1/Rag-/- expressing expressing CARs of the same 

affinity but different signaling molecules (9-28-ζ-CAR (n= 3), 9-ζ-CAR (n= 3)) or mock 

transduced (n= 2). The percentage of CAR+ T cells was 28% and 7% for 9-28-ζ-CAR 

and 9-ζ-CAR, respectively. B, depicted are mice (n= 3 for each treatment) from the 

same experiment as in (A), which were treated with lower numbers of 9-28-ζ-CAR-Ts 

(2x105 or 5x104). In total three experiments were performed for ATT with 2x106 T 

cells, two with 2x105 and one with 5x104 T cells. C, four weeks post SKOV3 tumor 

challenge Rag-/- mice were treated with 2x106 CAR-Ts (ChRLuc/OT-1/Rag-/-) 

expressing 9-ζ-CAR, 9-28-ζ-CAR or mock T cells (n= 2 for each treatment). The 

percentage of CAR+ cells was similar for the 9-ζ- and 9-28-ζ-CAR-Ts (10% and 8%, 

respectively). Each line represents a mean tumor diameter of a single mouse. Data 

are representative of 2 independently performed experiments. 

 

Figure 4. CAR-Ts expressing ζ-CAR fail to expand and to accumulate specifically at 

the tumor site while 28-ζ CAR-Ts do. A, T cell signal at the tumor site of the 

adoptively transferred CAR-Ts (derived from ChRLuc/OT-1/Rag-/- mice) was followed 

over time. The shaded box represents the background signal, which was set to 1x105 

photon/s/cm2/steradian. Each line represents the signal emitted at the tumor site from 

a single mouse (n=2 for mock, n=3 for the all five ζ-CARs, n=4 for the 9-28-ζ-CAR). 

B, T cell signal for one representative mouse is shown on different indicated days 

post ATT for mice receiving mock, 9-ζ- or 9-28-ζ-CAR-Ts. C, shown are mice with 

tumor rejection imaged to detect FLuc signal emitted by the tumor cells. Data are 

representative of 2 independently performed experiments.  

 

Figure 5. 9-28-ζ-CAR-Ts differentiate into effector memory T cells and proliferate at 

the tumor site. A, splenocytes from ChRLuc/OT-1/Rag-/- mice were either left 

untreated (naïve) or were transduced with mock, 9-ζ-CAR or 9-28-ζ-CAR 

retroviruses. Two days after last transduction, cells were stained with a-CD3, a-CD44 
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and a-CD62L antibodies and analyzed by flow cytometry. Shown are CD3 gated 

cells. B, single tumor cells (day 16 post ATT) were labeled with a-CD8, a-CD44 and 

a-CD62L antibodies. Shown are CD8/CD44 gated cells of one representative tumor 

sample per group out of two. C, shown are CD8+ cells that were MACS sorted with 

85% purity from two pooled tumor samples for each treatment (mock, 9-ζ-CAR or 9-

28-ζ-CAR) and labeled with PI and a-Ki-67 antibody (day 31 post ATT). 

 

Figure 6. 9-28-ζ-CAR-mediated rejection of SKOV3 tumors requires IFNγR 

expression by the tumor stroma, and is NK cell independent. A, Rag-/- and IFNγR-/-

/Rag-/- mice were challenged with SKOV3 cells. Approximately three weeks post 

tumor challenge, mice received OT-1/Rag-/- 9-28-ζ-CAR-Ts (n=4 for A, B and C) or 

mock T cells (n=2 for A, B and C). A, indicated are mean tumor diameters over time 

of individual mice from one representative experiment out of two. B, shown are single 

tumor cells labeled with a-NK 1.1 and a-CD49b (DX5) Ab gated on the lymphocytes 

for one representative out of two mice analyzed for mock treated tumors and one out 

of total four for 9-ζ-CAR and 9-28-ζ-CAR treated tumors (combined from days 8 and 

16 post ATT). C, single cell suspensions of tumors from mice receiving mock T cells, 

9-ζ-CAR-Ts or 9-28-ζ-CAR-Ts were labeled with a-F4/80, a-CD11b and a-IA-IE Ab. 

Data are gated on live cells (top panels). Histograms indicate MHC class II 

expression on F4/80/CD11b double positive cells. Same numbers of tumor samples 

per treatment are shown as in B. D, Approximately four weeks post tumor challenge 

mice received 2x106 9-28-ζ-CAR-Ts (40% CAR+). Two days before ATT mice were 

treated with either a-NK 1.1 (n=5) or isotype control (iso) (n=3) Ab, which was 

followed by weekly Ab administration throughout the duration of the experiment. 

Mock treated mice (n=2) did not receive Ab treatment. Indicated are mean tumor 

diameters of individual mice over time from a single experiment.  
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Tables 

construct recipient T cell # rejection 
# of 

experiments 
p value 

7-ζ-CAR Rag
-/- 

2x10
6

0/6 2 1 

8-ζ-CAR Rag
-/- 

2x10
6

0/6 2 1 

9-ζ-CAR Rag
-/- 

2x10
6

0/13 4 1 

10-ζ-CAR Rag
-/- 

2x10
6

0/6 2 1 

11-ζ-CAR Rag
-/- 

2x10
6

0/6 2 1 

 
mock 

Rag
-/- 

2x10
6

0/15 6 1 

IFNγR
-/-

/Rag
-/-

2x10
6

0/4 2 1 

9-28-ζ- Rag
-/- 

2x10
6

21/21 6 0 
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CAR 2x10
5

 7/7 2 0.000006 

5x10
4

 3/3 1 0.001225 

IFNγR
-/-

/Rag
-/-

 2x10
6

0/10 2 1 

 

Table 1. Total mice numbers. Indicated are numbers of mice that rejected the tumors 

from total mice in all experiments form different constructs and conditions. P value 

was calculated in comparison to mock treated group using Fisher’s exact test.  
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Supplementary Figure Legends 
 
 
Supplementary Fig. S1. Schematic representation of species-specific molecular 

interactions in models of CAR-mediated tumor rejection. Depicted are T cell effector 

mechanisms targeting either cancer cells or tumor stroma showing that IFNγ/IFNγR 

interaction is species-specific. The antigen (Ag) is recognized by CAR-Ts directly on 

the cancer cells but not cross-presented on the tumor stroma. A, previous models 

utilized human polyclonal T cells as CAR recipients that were allogeneic to the tumor 

and xenogeneic to the mouse (TCR recognition of mouse and human MHC I). B, our 

current model surpasses the limitations of the previous models by the use of 

monoclonal T cells which are syngeneic to the host, and although xenogenic to the 

tumor there is no TCR recognition of human MHC I because the T cells are OVA-

specific. 

 

Supplementary Fig. S2. 9-28-ζ-CAR expression on mouse T cells compared to ζ-

CARs. The graph shows the percentage of CAR transduced T cells from seven 

independently performed experiments (all constructs included in each experiment) 

based on staining with a-hIgG Ab and measured by flow cytometry. The black line 

indicates the average expression for each of the CAR constructs. P value was 

calculated in comparison to 9-28-ζ-CAR with one sided t-test (*P < 0.05, n.s; not 

significant).  

 

Supplementary Fig. S3. Mice treated with ζ-CAR-Ts have a slight increase in total 

body signal when compared to mock treated control mice but less than 9-28-ζ-CAR-

T. Depicted are the same mice from Fig. 4 with the scale set from 2x104 to 5x106 

photon/s/cm2/steradian to visualize the homeostatic expansion of mock T cells, 9-ζ- 

and 9-28-ζ-CAR-Ts.  

 



Supplementary Fig. S4. 9-28-ζ-CAR-Ts accumulate at the tumor site. Mice bearing 

four weeks old SKOV3 tumors received 1x106 T cells (2x105 CAR+) or 1x106 mock 

transduced T cells. Shown is one mouse with indicated regions of interest where T 

cell signal (Total Flux) was measured over time and is shown for each region in a 

separate chart. Each line indicates the average T cell signals from 4 mock, 7 9-ζ-

CAR-T, and 7 9-28-ζ-CAR-T treated mice.  

 

Supplementary Fig. S5. Non-hematopoietic cells compose the majority of the 

SKOV3 tumor stroma. A, shown are live cells from single tumor cell suspension 

labeled with a-Her2-Neu and a-CD45.2. Cells gated on the HER-2 negative 

population are shown on the right. One representative tumor out of two is shown. B, 

Depicted is the analysis of NK cell depletion in blood from a-NK 1.1- or iso-treated 

mice shown in Figure 6D. Cells were labeled with a-NK 1.1 and a-CD49b (DX5) Ab.  

 

 

 

 

 



Previous models 
Human CAR+ T cells 
(allo/xenogeneic, polyclonal) 

TCR MHC I 

CAR Ag 

IFNγR IFNγ 

Human cancer cells Mouse stroma cells 

MHC I TCR 

Ag CAR 

IFNγ IFNγR 

Current model 
Mouse CAR+ T cells 
(non-specific, monoclonal) 

TCR MHC I 

CAR Ag 

IFNγR IFNγ 

Human cancer cells Mouse stroma cells 

MHC I TCR 

Ag CAR 

IFNγ IFNγR 

A 

B 

Interaction No interaction 



* * * n.s n.s 
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