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The pig has emerged as an important large animal model in biomedical and pharmaceutical research. 

We describe a protocol for high-efficiency germline transgenesis and sustained transgene expression 

in pigs by using the Sleeping Beauty transposon system. The protocol is based on co-injection of a 

plasmid encoding the SB100X hyperactive transposase together with a second plasmid carrying a 

transgene flanked by binding sites for the transposase, into the cytoplasm of porcine zygotes. The 

transposase mediates excision of the transgene cassette from the plasmid vector and its permanent 

insertion into the genome to produce stable transgenic animals. This method compares favorably in 

terms of both efficiency and reliable transgene expression to classic pronuclear microinjection or 

somatic cell nuclear transfer, and offers comparable efficacies to lentiviral approaches, without 

limitations on vector design, issues of transgene silencing as well as the toxicity and biosafety 

concerns of working with viral vectors. Microinjection of the vectors into zygotes and transfer of the 

embryos to recipient animals can be performed in one day; generation of germline-transgenic lines by 

using this protocol takes approximately one year.  
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INTRODUCTION 

The pig has emerged as an important large mammalian model in biomedical and pharmaceutical 

research1-3. Pigs have been widely applied for studying infectious diseases, cardiovascular disease, 

atherosclerosis, wound healing, diabetes, ophthalmology, cancer and cell therapies, as well as for 

assessing the suitability of porcine xenotransplants for humans2,4. In recent years, improved methods 

for transgenesis have made this model even more valuable5. Humanized pig models include those for 

retinitis pigmentosa6, cystic fibrosis7, Alzheimer´s disease8, Huntington´s disease9, familial 

adenomatous polyposis10, and immunodeficiency11. However, transgenesis in the pig, most commonly 

achieved by pronuclear DNA injection (PNI) or by somatic cell nuclear transfer (SCNT), is an 

inefficient and expensive process, hampered by poor predictability of levels and patterns of transgene 

expression2,3,12-14. Gene targeting by homologous recombination is extremely inefficient in porcine 

somatic cells3, and porcine embryonic stem cells (ES) have not yet been established15. Recently, 

several groups described the derivation of porcine induced pluripotent cells (iPS)16-20, however, only 

low chimerism has been found after blastocyst complementation experiments21,22. The employment of 

porcine iPS cells in the SCNT method resulted in extremely low rates of born piglets23. 

 

Germline transgenesis in pigs 

PNI into porcine zygotes is inefficient (overall success rate of ~1 % per treated embryos) and 

cumbersome. In contrast to rodent species, porcine zygotes are opaque and the pronuclei are not 

readily visible. To visualize porcine pronuclei, a high speed centrifugation (12000-15000 x g) is 

required, which may have a negative impact on embryonic development. Successful injection of 

foreign DNA into a porcine pronucleus requires experienced technical skills, and results in a high ratio 

of lysed zygotes due to the particular vulnerability of the pronuclei. SCNT is currently the most 

commonly applied method for porcine transgenesis. The procedure includes gene transfer into primary 

somatic cells, screening of cells carrying the desired genetic modification, introduction of a genetically 

modified cell into an enucleated porcine oocyte and activation of the reconstructed embryo to initiate 

cleavage divisions3,7,8. The transfer of >100 reconstructed embryos to one surrogate animal is required 
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to establish a pregnancy in the pig7,8 and success rates of only 1-3 % per reconstructed embryos have 

been achieved7,8. Furthermore, SCNT protocols are associated with a high workload, and partial 

genome reprogramming during SCNT commonly results in high rates of abortion and neonatal deaths.  

In addition to PNI and SCNT, lentiviral transduction of zygotes24,25 and intracytoplasmatic 

sperm injection (ICSI)26,27 have been employed for transgenesis in the pig. Lentiviral transduction can 

produce high ratios of transgenic offspring (20-30 % transgenic offspring per treated embryos), but this 

technique frequently results in cell mosaicism and thus reduced germline transmission; the maximal 

cargo of foreign DNA with lentiviral vectors is about 7 kbp; and epigenetic silencing of the virally 

integrated constructs has been observed13. Another limitation is that a laboratory with biosafety level 2 

is required for lentivirus production and handling. ICSI of membrane-damaged (dead) spermatozoa 

incubated with foreign DNA has been used to produce transgenic piglets; however, this method is 

technically demanding and the reported success rates are low (<1 % transgenic offspring per treated 

oocytes)26.  

 

Transgenesis using the Sleeping Beauty transposon  

Transposons are non-viral, mobile DNA elements with a relatively simple composition. They contain a 

gene encoding for a transposase, flanked by inverted terminal repeats (ITRs) that carry binding sites 

for the transposase. For research purposes the transposase and the transposon are provided 

separately to allow controlled transposition. In such a bi-component vector systems a DNA sequence 

of interest (here, a transgene) can be cloned in place of the original transposase gene between the 

transposon ITRs, and mobilized by supplementing the transposase enzyme in trans as an expression 

plasmid or as in vitro synthesized mRNA (Fig. 1a). During transposition, the transposase excises the 

transposon from its donor plasmid and integrates it into a chromosomal locus (Fig. 1b). Based on 

fossil record of transposons that were active >10 million years ago in fish genomes, an ancient 

transposon was “awakened” (molecularly reconstructed) and named Sleeping Beauty (SB) after the 

Grimm brothers’ fairy tale28. SB was the first transposon shown to be capable of efficient transposition 

in vertebrate cells, thereby opening new avenues for genetic engineering in animal models (reviewed 
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in ref. 29). In addition to SB, the piggyBac and Tol2 transposons have also been developed for use in 

transgenic procedures29. 

 The SB system combines the advantages of retroviral vectors - permanent gene insertion into 

recipient genomes, with those of naked DNA molecules - simple and safe production and application. 

Because transposition is a cut-and-paste mechanism that does not involve reverse transcription, 

transposon-based vectors can tolerate larger and more complex transgenes and the SB system is not 

strictly limited by the size of expression cassettes30. Indeed, inserts as large as bacterial artificial 

chromosomes (BAC) were recently shown to transpose with SB at reasonable efficiencies in mouse 

ESCs31. When performing transgenesis, a single copy transgene insertion, which is not disturbing 

endogenous gene functions is desirable. Chromosomal integration of SB transposons is nearly 

random at the genome level resulting in ~60 % of the SB transposon integrations being intergenic32-35. 

Furthermore, transposons have been shown to efficiently deliver a wide variety of transgene cassettes 

(reviewed in refs. 29, 36 and 37).  

 Because the transposase is only transiently present in the cell, the integrated transposable 

element is stable (i.e., will not undergo further rounds of transposition), thereby rendering transposons 

easily controllable, conditional DNA delivery tools that can be used for versatile applications, including 

germline gene transfer. We have recently developed a hyperactive variant of the SB transposase, 

called SB100X, by in vitro evolution38. SB100X supports efficient germline transgenesis in mice38-40, 

rats39,40, rabbits39,41 and pigs42. We optimized the SB100X-mediated protocol by carefully titrating the 

relative amounts of transposase and transposon to obtain optimal rates of transgenesis to generate 

founders, and extensively evaluated it for efficacy, toxicity, mosaicism, germline transmission, 

insertion site preferences, transgene copy number and silencing. One of the most important aspects of 

using this protocol is that no major mosaicism was observed, and transgene expression was 

maintained for several generations in all species tested. This lack of mosaicism is in sharp contrast to 

current PNI or viral approaches to transgenesis. This is likely due to the very nature of transgene 

integration: transposition results in precise (i. e., the ends of the integrating DNA are well defined) 
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genomic integration of monomeric transgene units within a short timeframe following administration. 

Furthermore, unlike retroviral vectors43-46, SB100X transposase-catalyzed transgene integration does 

not seem to trigger transcriptional silencing34,39. Importantly, SB transposon-tagged genomic loci are 

suitable for recombinase-mediated cassette exchange (RMCE)47, allowing targeted genome 

engineering5,42.  

Transposase-catalyzed DNA integration seems to favor transcriptionally permissive loci, and 

all transgenic pigs we have examined, from the founder to the F2 generation showed the expected 

expression patterns42,48. Thus, transposition-mediated transgenesis compares favorably to current 

alternatives, particularly if the overall success rates of 6-8 % (ratio of transgenic animals with desired 

phenotype per treated zygotes) and the success rates of 40-60 % of transgenic founders per born 

animals are taken into account. The application of the Sleeping Beauty transposon system described 

here will significantly enhance the porcine genomic toolbox, and is expected to be adaptable to other 

farm animal species, including cattle. 

 

Limitations 

DNA transposons, including SB, are regulated by overproduction inhibition, which means that 

overexpression of the transposase has a negative effect on transposition34,49. The practical 

consequence of this phenomenon is that an optimal ratio of transposon donor plasmid and 

transposase mRNA needs to be established. As a rule of thumb, the injection mixture should contain 

10 ng/µl transposon and 5 ng/µl transposase plasmids for an SB vector of a total size of ~6.1 kb 

containing a ~2.5 kb transgene cassette38. For larger transgenes, the concentration of the donor 

plasmid in the microinjection mixture has to be increased to maintain optimal molar ratios between 

transposon and transposase.  

 Although transposition in ovo does not allow pre-screening for potential transgenics, the high 

ratio of transgenic offspring compensates for this limitation. As an alternative to the direct embryo 

injection described here, both the SB50-52 and the piggyBac53 transposon systems have been used to 
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genetically modify porcine cells in vitro, which were subsequently used as donors in SCNT for pig 

transgenesis.  

 

Experimental design 

We provide a comprehensive protocol for the generation of germline transgenic pigs. We describe the 

use of Sleeping Beauty transposon vectors, animal breeding protocols, cytoplasmic microinjection to 

introduce plasmids into fertilized oocytes, and PCR-based genotyping protocols for the identification of 

transgenic animals.  

The generation of transgenic pigs is achieved through the co-injection of a vector carrying a 

gene of interest cloned between the ITRs of SB and an expression vector that produces the 

transposase (Fig. 1) into the cytoplasm of a zygote5,42. Cytoplasmic injection (CPI) (Fig. 2a, b) is a 

relatively gentle injection method that avoids high-speed centrifugation of porcine zygotes and 

invasive removal of metaphase plates from porcine oocytes, which is an essential step of SCNT. The 

developmental competence of mammalian zygotes is not or only minimally affected by CPI54,55, thus 

allowing for the reduction of animal numbers used.  The protocol consists of the following major parts: 

• Preparation of plasmids for microinjection (Steps 1-7). These steps include molecular cloning 

of a GOI into SB transposon vectors and purification of the plasmids; and preparation of a 

mixture consisting of the purified transposon plasmid and the plasmid that expresses the 

transposase. One useful way to detect transgene integration and expression is to employ a 

fluorescent reporter protein, such as Venus, which is an optimized (brighter) derivative of the 

enhanced yellow fluorescent protein (EYFP). We have previously demonstrated that an SB 

transposon carrying a CAGGS (CMV enhancer, chicken beta actin promoter)-driven Venus 

transgene (pT2-RMCE-Venus) facilitates the detection of transgenic animals38,39,48.  

• Transgenesis with SB in pigs (Steps 8-77). These steps include superovulation of sows and 

collection of zygotes, microinjection of the plasmid mixture into zygotes, surgical embryo 

transfer to recipient sows followed by after-care of recipient animals and ultrasound scanning 

for implantations. To set up the CPI method, it may be helpful to start with in vitro culture of 
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microinjected embryos to allow the assessment of ratios of successful injections and viable 

embryos54. In vitro culture for 5 days should lead to development of blastocyst stages, 

consisting of an inner cell mass, the trophoblast and a central, fluid-filled cavity54. The Venus 

transposon allows a direct assessment of successfully injected embryos by fluorescence 

microscopy. In addition, mock injections of zygotes with buffer or a non-transposon plasmids 

can be performed as controls. However, due to scarcity of porcine zygotes, it is recommended 

to perform the injections only with the transposon plasmids mix. Finally, phenotyping and 

imaging of Venus-expressing transgenic pigs are described. 

• Genotyping of transgenic animals (Steps 78-106). These steps include PCR-based analysis of 

F0 as well as F1 offspring to establish founders and germline transmission. A simple, quick 

PCR test can be applied to determine the presence of integrated transposon sequences from 

genomic DNA samples. The PCR primers amplify sequences in the left ITR of SB; thus, this 

protocol can be universally applied irrespective of the gene of interest that was cloned in the 

SB vector. In order to assess copy numbers of integrated transposons and map the genomic 

integration sites, a ligation-mediated PCR procedure is applied56. The procedure consists of a 

restriction enzyme digest of the genomic DNA, ligation of an oligonucleotide adapter to the 

ends of the fragmented DNA, PCR amplification of a transgene/genomic DNA junction in two 

rounds of nested PCR with primers specific to the adapter and to the ITRs of the SB 

transposon, and sequencing of the junctions to map the insertion to the reference genome57. 

Finally, a locus-specific PCR is applied to distinguish and track the individual integrations in the 

F1 and later generations.  

 

Another issue to consider is the level of expertise needed to implement the protocol. The protocol 

requires access to a pig animal quarter, equipped with a surgical room. The animal caretaker must be 

trained in methods of reproductive biology, animal welfare and dealing with genetically modified 

organisms. For surgical embryo transfer a surgical team consisting of a surgeon, a technician for 



 9 

sterile assistance, a technician for non-sterile assistance, a technician for anesthesia, and a technician 

for pre- and post-operative care of the animals is required.  

 

MATERIALS 

Reagents 

Animals 

The animals are provided by the institutional pig quarter. Donors: 5 sows (German landrace, 6 

months old, before first heat). Surrogate mothers: 3 sows (German landrace, 7-9 months old, after 

first heat). Boars: 1-2 trained boars (9-36 months old) for collection of semen; alternatively, boar 

semen can be ordered from a commercial supplier (for example: Besamungsstation Weser-Ems, 

Cloppenburg). 

! Caution Animals have to be maintained and handled according to the national and institutional laws 

for animal welfare, and genetically modified organisms. Approval for the planned experiments may 

have to be obtained from an external ethics committee. 

! Caution All animal requisitions, housing, treatment and procedures must conform to all national and 

institutional laws, guidelines and regulations. 

 

Molecular biology reagents and animal work 

• Agarose (DNase, RNase none detected) (Sigma–Aldrich, cat no. A4718) 

• Ethidium bromide (10 mg/ml) (Sigma–Aldrich, cat no. E1510) ! Caution This is a hazardous 

chemical. Avoid contact with skin, eyes and airways.  

• BfaI restriction endonuclease (New England Biolabs, cat. no. R0568S)  

• DpnII restriction endonuclease (New England Biolabs, cat no. R0543S) 

• Taq DNA polymerase, provided with PCR buffer (10x) and MgCl2 (25 mM) (New England Biolabs, 

cat no. M0267S) 

• dNTP (10 mM) (New England Biolabs, cat no. N0447S) 

• T4 DNA ligase, provided with ligase buffer (10x)  (New England Biolabs, cat no. M0202S) 
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• Sodium acetate 3 M pH 5.5 (RNase-free) (Invitrogen/Ambion, cat no. AM9740) 

• Ethanol (RNase-free) (MERCK, cat no. 108543) 

• 100-bp DNA Ladder (Thermo Scientific, cat no. SM0242)  

• 100-10.000-bp DNA Ladder (Thermo Scientific, cat no. SM0331) 

• Phenol/chloroform/isoamyl alcohol, Roti®-Phenol/C/I (ROTH, cat no. A156.2) ! Caution This is a 

hazardous chemical. Avoid contact with skin, eyes and airways.  

• Chloroform/isoamyl alcohol, Roti®-C/I (ROTH, cat no. X984.2) ! Caution This is a hazardous 

chemical. Avoid contact with skin, eyes and airways.  

• 5x TBE buffer, Nuclease-free (Sigma–Aldrich, cat no. 93306) 

• TE buffer (Sigma–Aldrich, cat no. 93283) 

• QIAqick Gel Extraction kit (Qiagen, cat no. 28706)  

• Plasmid Maxi DNA preparation kit (Qiagen, cat no. 12165) 

• pGEM-T Vector Systems (Promega, cat no. A3600) 

• Transposon plasmids: pT2/BH (http://www.addgene.org/26556/) or pT2/HB 

(http://www.addgene.org/26557/) are available from Addgene. The pT2RMCE-Venus construct 

carries an expression cassette of CAGGS promoter and Venus cDNA, flanked by the SB 

ITRs38,39,48. 

• Transposase expression plasmid: pCMV(CAT)T7-SB100X (http://www.addgene.org/34879/) is 

available from Addgene. 

• Altrenogest (Regumate, 4 mg/ml) (MSD Tiergesundheit, cat no. 98920) ! Caution Anesthetic agent; 

avoid exposure, avoid skin contact, wear gloves. 

• Pregnant mare´s serum gonadotropin (PMSG) (MSD Tiergesundheit, cat no. 020913)  ! Caution 

Anesthetic agent; avoid exposure, avoid skin contact, wear gloves. 

• Human chorionic gonadotropin (hCG) (MSD Tiergesundheit, cat no. 020979) ! Caution Anesthetic 

agent; avoid exposure, avoid skin contact, wear gloves.  

http://www.addgene.org/26556/
http://www.addgene.org/26557/
http://www.addgene.org/34879/
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• Stresnil (Azaperon, 40 mg/ml) (WDT das Tierarztunternehmen, cat no. 04451), dose 1 ml/40 kg 

body weight 

• Novacen (Metamizol, 500 mg/ml) (WDT das Tierarztunternehmen, cat no. 21416), dose 1 ml/10 kg 

body weight 

• Ursotamin (Ketamine, 100 mg/ml) (Selectavet, cat no. 25ml), dose 1 ml/10 kg body weight ! 

Caution Ketamine anesthesia is only allowed in combination with a sedative (Azaperon) and an 

analgesic (Novacen) 

• Procapen (Benzylpenicillin-procain, 300 mg/ml) (WDT das Tierarztunternehmen, cat no. 23636), 

dose 1 ml/15 kg body weight 

• Mediferan (200 mg/ml) (WDT das Tierarztunternehmen, cat no. 24328), dose 1 ml/piglet 

• Oxytocin (10 U/ml) (WDT das Tierarztunternehmen, cat no. 00442), dose 1–4 ml/sow 

• Phosphate buffered saline (PBS) (Applichem, cat no. A0964,9050) 

• Newborn calf serum (NBCS) (Thermo Scientific, cat no. SH30118.02) 

• Fetal calf serum (Thermo Scientific, cat no. SH30084.03) 

• NaCl (Sigma-Aldrich, cat no. S5886-500g) 

• LiCl (Merck, cat no. 1.05673.0250) 

• Sucrose (Fluka, cat no. 84100-1kg) 

• EDTA (Roth, cat no. 8043.1) 

• BSA (Sigma-Aldrich, cat no. A7030-10g) 

• Na-pyruvate (Applichem, cat no. A3912,0100) 

• 2-propanol (Roth, cat no. 6752.2) 

• Tris buffer (Roth, cat no. 4855.3) 

• MgCl2 x 6 H20 (Roth, cat no. 2189.2) 

• HEPES (Roth, cat no. HN781) 

• Na-lactate (Sigma-Aldrich, cat no. 71718) 

• Penicillin (Applichem, cat no. A1837,0100) 
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• Streptomycin (Applichem, cat no. A1852,0250) 

• Gentamycin (Roth, cat. no. 0233-2) 

• CaCl2 x 2 H2O (Sigma-Aldrich, cat no. C5080) 

• NaH2PO4 (Sigma-Aldrich, cat no. 71507) 

• KCl (Sigma-Aldrich, cat no. P5405) 

• KH2PO4 (Sigma-Aldrich, cat no. 229805) 

• MgSO4 x 7 H2O (Sigma-Aldrich, cat no. 63138) 

• NaHCO3 (Sigma-Aldrich, cat no. S-4019) 

• Ca-lactate x 5 H2O (Sigma-Aldrich, cat no. C8356) 

• L-glutamine (Sigma-Aldrich, cat no. G1251) 

• Hypotaurine (Sigma-Aldrich, cat no. H1384) 

• Minium essential medium (MEM) (PAA, cat no. E15-832) 

• Silicon oil (DL200 fluid) (Serva, cat no. 35135) 

• Hyaluronidase (Sigma-Aldrich, cat no. 3506)  

• Androhep (Minitube, cat no. 13529/5010) 

• Frozen colostrum (50 ml aliquots, derived from sows directly after parturition) 

• Milk replacement (Ferkelmilch) (Bewital-agri, cat no. 1110) 

• 35-mm Petri dishes (Greiner Bio-One, cat no. 627102) 

• 90-mm Petri dishes (Greiner Bio-One, cat no. 632161) 

• 10-ml syringe (VWR, cat no. TERUSS-10ES1) 

• Quicktip flexitube (Minitube, cat no. 13452/0391) 

• Insemination catheter (Minitube, cat no. 17106/5077) 

• DH5 alpha bacteria (Lifetechnologies, cat no. 18265017) 

 

EQUIPMENT 

• Refrigerated centrifuge capable of high speed (12000 × g) (Thermo Scientific, cat no. 75008162) 
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• Water bath, 37 °C (Thermo Scientific, cat no. 2824) 

• NanoDrop® ND-2000 Spectrophotometer (Thermo Scientific, cat no. 91-ND-2000) 

• Milli-Q Water Purification System (Merck Millipore, cat no. ZRXQ003T0) 

• 1.5-mL tubes, free of DNase and RNase (Eppendorf, cat no. 0030123.328) 

• Pipette tips, free of DNase and RNase (Eppendorf, cat no. 0030077.504 [0.1– 10 µl tips], 

0030077.539 [2–20 µl tips], 0030077.555 [2–200 µl tips], cat no. 0030077.571 [50–1000 µl tips]) 

• Thermal cycler capable of temperature increments for touchdown PCR (Thermo Scientific, cat no. 

TCA0001) 

• Electrophoresis apparatus for agarose gels including running chamber, well combs, gel tray and 

power supply (BioRad, cat no. 164-5050) 

• Micromanipulation microscope: Zeiss Axiovert 35 M microscope with differential interference 

contrast (DIC), 10x oculars and 5x, 10x and 40x objectives and epifluorescence optics 

• Eppendorf micromanipulators and injection control (Eppendorf TransferMan and Eppendorf 

transjector 5246) 

• Siliconized glass plate (7.5 cm x 5.0 cm) 

• Stereo microscope for zygote collection (Olympus SZ16) 

• Needle (injection microcapillary) puller (Sutter Instruments, Model P-87) 

• Micro-forge (Bachofer) 

• Holding and handling glass pipettes, 90 x 1.5 mm (Assistant, cat no. 3005), used as transport 

pipettes as well as for the preparation of holding pipettes. 

• Glass filaments for injection pipette production, borosilicate glass capillaries GC100TF-10, 1.0 mm 

O.D. and 0.78 mm I.D. (Harvard apparatus, cat no. 30-0038) 

• Embryo transfer straw, sterile supercristal (IMV, cat no. 005592) 

• Stereomicroscope: for imaging of tissue biopsies or fetuses an Olympus SZ16 stereomicroscope 

with epifluorescence optics, equipped with an appropriate fluorescence filter block (excitation: 450-

http://www.millipore.com/catalogue/item/ZRXQ003T0
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490 nm, dichroic mirror: 505 nm and emission: 520-550 nm) for Venus (excitation maximum: 515 

nm, emission maximum: 529 nm) is used.  

• Hemostatic forceps, curved (Lehnecke Tierärztebedarf, cat no. 381-858) 

• Hemostatic forceps, straight (World Precision Instruments, cat no. 501715) 

• Operating scissor (World Precision Instruments, cat no. 501754) 

• Knee-scissor (Lehnecke Tierärztebedarf GmbH, cat no. 783-9103) 

• Scalpel handle (Lehnecke Tierärztebedarf, cat no. 371-509) 

• Scalpel blades (Lehnecke Tierärztebedarf, cat no. 597-9992) 

• Tissue forceps, 6 inch (Roboz, cat no. RS-7561) 

• Tissue forceps, 7 inch (Roboz, cat no. RS5270 

• Fixation clamps (Bulldog clamps) (Roboz, cat no. RS-7587) 

• Artery forceps, Halstead Mosquito with teeth (Lehnecke Tierärztebedarf, cat no. 310-502) 

• Artery forceps, Halstead Mosquito (Lehnecke Tierärztebedarf, cat no. 310-498) 

• 1 ml syringe (Becton Dickinson, cat no. 309628) 

• Cutting needles (Lehnecke Tierärztebedarf, cat no. 442-331) 

• Needle holder (Lehnecke Tierärztebedarf, cat no. 424-715) 

• Suture material (Lehnecke Tierärztebedarf, cat no. 442-287) 

• Fenestrated drape (Lehnecke Tierärztebedarf, cat no. 530-0650) 

• Adhesive foil (Lehnecke Tierärztebedarf, cat no. 403-316) 

• Surgical clothing for surgeon and sterile assistance (Lehnecke Tierärztebedarf, cat no. 700-862) 

• Headgear (Lehnecke Tierärztebedarf, cat no. 371-071) 

• Buttoned cannula for flushing of zygotes from isolated oviducts (Lehnecke Tierärztebedarf, cat no. 

370-132) 

• Portable incubator (Minitube, cat no. 19180/000) 

• Ultrasound scanner (WDT das Tierarztunternehmen, cat no. 9300vet) 

• Microladder (Eppendorf, cat no. 5242 956.003) 
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• Mouth pipette  

• Pipette controller (Brand GmbH,  cat no. 25900) 

• Blue LED flood light, FL24 floodlight spot (Musikhaus Korn, cat no. 2181195) 

• Lee emission filter, foil filter (Lee, cat no. 105) 

• Electronic camera (e. g., Canon Powershot) 

• Video camera 

• Insulated thermo container (Gastro24, cat no. 3766400) 

 

REAGENT SETUP 

Hepes+Calcium stock medium. Dissolve 6.6 g NaCl, 0.238 g KCl,  0.294 g CaCl2 x 2 H20 , 0.055 g 

NaH2PO4, 0.1016 g MgCl2 x 6H2O, 0.168 g NaHCO3, 2.383 g HEPES, 1.8667 g Na-lactate, 0.06 g 

penicillin (100 U/ml), and 0.05 g streptomycin (50 µg/ml) in 900 ml of ultrapure water. Adjust pH to 

7.34, and volume to 1 L with water. After sterile filtration, store 100 ml aliquots at 4 oC for up to three 

months.  

 

100 mM Na-pyruvate. Dissolve 11 g Na-pyruvate in 1 L of ultrapure water to obtain a 100 mM 

solution. Sterilize by filtration, and store at 4 oC for up to three months. 

 

Hepes+Calcium working medium. Warm up a 100 ml aliquot of the Hepes+Calcium stock medium 

to room temperature (21 oC) directly before use, add 250 µl of 100 mM Na-pyruvate, 1.056 g sucrose 

and 0.4 g BSA and dissolve by stirring. The Hepes+Calcium working medium needs to be prepared 

freshly. 

 

Hyaluronidase stock solution. Dissolve 50 mg hyaluronidase in 1 ml Hepes+Calcium stock medium 

to obtain a 5 % (wt/vol) stock solution. Store frozen as 50 µl aliquots at -20 oC for up to 6 months.  To 

obtain a 0.125 % (wt/vol) hyaluronidase working solution, thaw a 50 µl aliquot and dilute to 2 ml with 

Hepes+Calcium working medium. Prepare freshly. 
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NBCS solution. Dissolve 1 ml of NBCS in 99 ml sterile PBS. Store frozen in 10 ml aliquots at -20 oC. 

Prewarm to 37 oC before use. 

 

PZM medium. Dissolve 0.63 g NaCl, 0.0746 g KCl, 0.0048 g KH2PO4 ,  0.01 g MgSO4 x 7 H2O, 

0.2106 g NaHCO3, 0.0022 g Na-pyruvate, 0.0617 g Ca-lactate x 5 H2O, 0.0146 g L-glutamine, 0.0546 

g hypotaurine, 1 ml MEM, 0.005 g gentamycin and 0.3 g BSA in a final volume of 100 ml ultrapure 

Milli-Q water (pH 7.3). Sterilize by filtration. Fill 2-3 wells of a 4-well plate with 300 µl of PZM medium 

and store in a 39 oC incubator (atmosphere of 5 % C02 in air) for 2-3 hours before use. 

 

1 M Tris. Dissolve 121.14 g Tris in 900 ml ultrapure Milli-Q water. Adjust pH to 7.5, and volume to 1 L 

with Milli-Q water. Sterilize by autoclaving, and store at room temperature for up to one year.  

 

0.5 M EDTA. Dissolve 186.12 g EDTA by stirring in ultrapure Milli-Q water, adjust pH to 8.0, and fill-up 

with Milli-Q water to 1 L to obtain a 0.5 M solution. Sterilize by filtration, and store at room temperature 

for up to one year. 

 

Injection buffer. Mix 100 µl of 1 M Tris pH 7.5, 25 µl of 0.5 M EDTA pH 8.0 and 99.875 ml of 

ultrapure Milli-Q water. Sterilize by filtration, and store frozen (-20 oC) in 1 ml aliquots for up to two 

years. Thaw an aliquot directly before use. 

 

DNA injection solution. Dilute transposon (transgene) plasmid to 20 ng/µl in 100 µl sterile injection 

buffer. Dilute transposase expression plasmid pCMV(CAT)T7-SB100X to 10 ng/µl in a volume of 100 

µl of injection buffer. Mix both plasmid solutions to obtain 200 µl of injection solution, containing 10 

ng/µl transposon and 5 ng/µl transposase plasmids. 
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NaCl solution for oligonucleotide annealing. Prepare a 500 mM NaCl stock solution in Milli-Q 

water, and sterilize by autoclaving or filtration. Prepare the working solution by diluting the stock 10x in 

sterile TE buffer. Keep frozen at -20 °C. 

 

 

EQUIPMENT SETUP 

Preparation of micropipettes. Prepare the injection micropipettes directly before use, otherwise they 

may be clogged due to dust contamination. The injection pipettes are made with a micropipette-puller, 

with the following adjustments: Heat: 910; Pull: 90; Velocity: 90; Time: 115; Pressure: 330. 

Alternatively, commercial suppliers of micromanipulation products, such as Eppendorf (Hamburg) may 

be considered as source of customized injection micropipettes. This may be more cost-effective for 

laboratories, which have no access to a pipette puller and a micro-forge. 

 

Preparation of holding pipettes. Pull the glass pipettes (90 x 1.5 mm) over a flame, break them at 

around 225 µm outer diameter (80 µm inner diameter) employing a micro-forge, and fire-polish the 

ends. For transportation of zygotes use the holding and handling pipettes connected to a pipette 

controller or a standard mouth piece. 

 

Micromanipulator. Place the micromanipulation microscope equipped with injection- and holding 

pipette manipulators on a vibration-damped table. CRITICAL No vibration from the surrounding should 

be allowed to transmit to the micromanipulation unit.   

 

Surgical devices and surgical clothing. Heat sterilize (160 oC, 4 h) surgical devices and autoclave 

surgical clothing. 

 

PROCEDURE 

Preparation of plasmids for microinjection λ TIMING 2-8 weeks 
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CRITICAL Plasmids for CPI must be of high purity and should be prepared by good laboratory 

practices to avoid co-purification of bacterial genomic DNA, RNA or endotoxins. The 260 nm/280 nm 

ratio of the purified DNA should be between 1.8-2.0, and the 260 nm/230 nm ratio should be between 

2.2-2.4, otherwise the plasmid DNA should be discarded. 

1 Clone your gene of interest between the ITRs of an SB transposon donor plasmid by standard 

molecular cloning procedures (www.protocol-online.org).  

2 Transform plasmids (the transgene-containing plasmid from Step 1 and pCMV(CAT)T7-SB100X) 

into DH5 alpha bacteria, and isolate DNAs using the Plasmid Maxi kit according to the 

manufacturer’s instructions.  

3 Adjust plasmid DNA concentrations to 1 µg/µl in a total volume of 100 µl. 

4 Precipitate the plasmids by adding 10 µl (1/10 volume) of 4 M LiCl and 250 µl (2.5 volumes) of 2-

propanol to 100 µl of plasmid solution, mixing, and freezing at -80 oC for 1 h.  

5 Centrifuge at 12000 x g for 30 minutes at 4 oC, wash the pellet in 70 % (vol/vol) ethanol, discard 

the ethanol and air-dry at room temperature for 10 minutes. 

6 Resuspend the pellet in 100 µl ultrapure H2O and determine DNA concentration in a NanoDrop® 

spectrophotometer. 

7 Confirm supercoiled conformation and purity of the plasmids by agarose gel electrophoresis (Fig. 

2c): digest 4 µg of plasmid DNA with a restriction enzyme that is predicted to cut the plasmid 

only once (www.protocols-online.org) and run the DNA on a 0.7 % (wt/vol) agarose gel. In 

parallel, load 4 µg of undigested plasmid. The undigested plasmid should mainly consist of a 

supercoiled band and a weak band indicating nicked plasmids. The digested (linearized) plasmid 

should run at the calculated size. The absence of high molecular weight DNA confirms the lack 

of contamination of the sample by bacterial genomic DNA (Fig. 2c). 

Pause Point Plasmids can be stored at -20 oC for up to one year.  

 

http://www.protocols-online.org/
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Superovulation of donor sows and flushing of zygotes λ TIMING 4 days 

8 Five pre-pubertal (before first heat) donor sows at an age of approximately six months are 

required. Optionally, if only older animals are available, a 12-14 days pre-treatment with 

regumate (see surrogate animals, Step 23) is necessary (Fig. 3). Cage the sows individually, 

and add 4 ml regumate to the morning fodder for 14 days (Fig. 3). 

9 Inject the donor sows with 1500 I.U. PMSG intramuscularly (i.m.) one day after completion of 

regumate feeding or, in case no regumate feeding was required, four days before the calculated 

insemination time (Fig. 3, day 0) at 9:00.  

10 Inject the donor animals with 500 I.U. hCG i.m. at 9:00 three days after the PMSG injection. 

11 Check the animals for signs of estrus, such as swollen and reddened vulva one day after hCG 

injection. 

12 Inseminate sows of the donor group with semen ordered from a commercial supplier; 

alternatively, semen samples can be obtained from trained boars housed at a boar center by the 

gloved hand technique. Dilute the sperm-rich fraction with prewarmed (37 0C) Androhep (1:1). 

Determine sperm counts under a microscope with a 100x objective. 

13 Dilute semen with Androhep to a final concentration of 108 sperm cells/ml, and fill a quicktip 

flexitube with 100 ml of this semen solution. 

14 Artificially inseminate the donor sows 24 h after hCG injection for the first time (Fig. 3) and 8 

hours later for the second time, employing a conventional insemination catheter for pigs. 

Connect the quicktip flexitube to the insemination catheter, and carefully insert the tip of the 

catheter into the vulva (approximately 50 cm deep). Fix the tip by a gentle counterclockwise 

turning, allowing the semen to flow into the uterus. 

15 Sacrifice the zygote donor sows 24 h after the first insemination. 

16 Excise the urogenital tract, and transport them to the lab in an insulated thermo container.  

17 Dissect the oviducts from the ovaries and uterus (Fig. 4a).  
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18 Examine the ovaries and count the ruptured follicles to estimate the number of zygotes in the 

oviduct (Fig. 4b). About 60-150 zygotes can be expected to be obtained from 5 donors.   

? TROUBLESHOOTING 

19 Flush the oviducts from the infundibulum tubae uterinae employing a 10 ml syringe with a 

buttoned cannula (Ø1,4 mm) twice with pre-warmed (37 °C) 1 % (vol/vol) NCBS solution into a 

Petri dish (Ø 90 mm) (Fig. 4c-e).  

20 Repeat the flushing (Step 19) with 10 ml 1 % (vol/vol) NCBS solution. 

21 Screen the collected flushing fluid for the presence of zygotes under a stereomicroscope. 

Porcine zygotes have a diameter of 120 µm, are coated with a zona pellucida, and appear dark-

colored (Fig. 2a)58. Collect the presumptive zygotes with a transport pipette with the help of a 

pipette controller. Remove remaining cumulus cells by incubation of the zygotes in 0.125 % 

hyaluronidase for 3-5 min. 

22 Transfer intact zygotes (check for the presence of two polar bodies; Fig. 2a, b) in 80 µl droplets 

of flushing solution covered with silicone oil, and store them at 37 °C in a humidified atmosphere 

for up to 1 h. The zygotes are pipetted with a transport pipette connected to a pipette controller. 

10–30 zygotes can be expected per donor sow. 

 

Treatment of surrogates  λ TIMING 18 days 

23 Synchronize the surrogate sows in parallel to the donor sows (Step 8). Add 5 ml regumate to the 

morning fodder of the sows for 14 days (Fig. 3). As recipients of microinjected zygotes, three 

sows at the age of eight months are needed. The three animals need to be separated from each 

other to make certain they all get their individual dose of regumate.  

CRITICAL STEP Choose animals that have undergone at least one cycle of natural heat.   

24 Inject 1000 I.U. PMSG i.m. per sow one day after the last day of regumate treatment at 9:00. 

25 Inject 500 I.U. hCG i.m. three days after the PMSG treatment at 9:00. 

26 Check the animals for signs of estrus, such as swollen and reddened vulva one day after hCG 

treatment.  
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Injection of plasmid DNA into zygotes λ TIMING 1-3 hours 

27 Immediately before CPI, dilute transgene-transposon and transposase plasmids in sterile 

injection buffer to a final concentration of 10 ng/µl (transposon) and 5 ng/µl (transposase) (see 

Reagent Setup). 

28 For CPI of zygotes (Step 22), place a siliconized glass plate on the microscope table of the 

micromanipulation microscope. 

29 Assemble the left (holding) micromanipulator by connecting the holding pipette with soft tubing 

to a 1-ml syringe. 

30 Back-fill the injection pipette with the plasmid solution prepared in Step 27. 

31 Connect the injection pipette to the Eppendorf transjector and fix it on the right (injection) 

micromanipulator. 

32 Add 500 µl 1 % (vol/vol) NCBS on the siliconized glass plate. 

33 Break the tip of the injection pipette by moving it quickly against the siliconized glass plate. 

34 Heat up the microscope stage to 34 °C. This temperature is recommended to reduce 

evaporation. Porcine zygotes tolerate this temperature well for short periods (~5 minutes); 

depending on the skills of the experimenter 5-15 zygotes can be injected within this time. 

35 Adjust the holding pipette on the siliconized glass plate in a 500 µl droplet of 1 % (vol/vol) NCBS 

solution. 

36 Place up to ten zygotes (from Step 23) with a transport pipette in the 1 % (vol/vol) NCBS drop. 

37 Fix one zygote at the tip of the holding pipette (Fig. 2a) by applying gentle suction with the 

connected 1-ml syringe. Use a 20x magnification. 

38 Use the joy stick control of the Eppendorf transjector to move the tip of the injection pipette close 

to the equatorial zone of the fixed zygote (opposite to the holding pipette). Use 40x 

magnification. 
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39 Push the injection pipette through the zona pellucida and the plasma membrane (Fig. 2a, b).  

40 Microinject the plasmid solution (Step 27) directly into the opaque cytoplasm. Apply an injection 

pressure between 0.5 and 0.8 hPa, depending on the opening size of the injection pipette. The 

injection pressure can be set at the Eppendorf transjector. An estimated volume of 10 picoliter 

plasmid solution is injected by this procedure. 

CRITICAL STEP Change the drop of 1 % (vol/vol) NCBS on the glass plate every 15 minutes to avoid 

concentration by evaporation.  

CRITICAL STEP Change the injection pipette if the tip gets dirty, or clogged with remnants of 

cytoplasm or cell membrane.  

41 After all zygotes of a group have been injected, transfer them to a drop of Hepes+Calcium 

medium covered with silicone oil, and store them at 39 oC for up to 3 hours. Typically, the 

injection of ~90-120 zygotes will take 2-3 hours. This step can be completed by 13:00 at the 

injection day. Check the zygotes 15 minutes before embryo transfer to surrogates sows for signs 

of lysis - up to 20 % of the injected zygotes may lyse after being injected and are to be 

discarded. Lysed zygotes show an uneven cell membrane, and cytoplasm may leak out of the 

injection site. 

42 Load each transfer straw with 30-40 zygotes, sufficient for embryo transfer into one recipient. 

Place only intact zygotes in the transfer straw. Load the transfer straw as follows: medium> air> 

medium with zygotes > air> medium (Fig. 5). 

43 Transport the transfer straws to the surgery room in a portable incubator at 39 oC.  

 

(Optional) Culture of microinjected zygotes λ TIMING 30 minutes 

44 Culture 10-30 microinjected embryos in 50 µl drops of PZM medium in 35 mm Petri dishes 

overlayed with silicone oil at 39 oC, 5 % CO2 in order to assess the functionality of a new 

transgene-transposon construct by fluorescence (in case the transposon has a fluorescent 

marker in addition to a gene-of-interest). In case of the pT2RMCE-Venus transposon, 

expression of Venus is expected to start from 4-8 cell stages onwards.  
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CRITICAL STEP Porcine embryos require an incubation temperature of 39 oC and are sensitive to 

temperature changes. To achieve the best development rates in vitro, dishes with porcine embryos 

should be left untouched in the incubator during the 5-day period. 

45 Assess Venus expression in blastomeres at day 5 of culture with a fluorescence microscope. 

CRITICAL STEP Expression of the Venus reporter in blastocysts is a good indicator for gene transfer, 

but alone no proof for SB-catalyzed transposition, as episomal plasmids will also be transcribed54,55. 

To prove integration, embryo transfer to surrogates and the analysis of offspring is recommended. 

 

Embryo transfer (ET) into synchronized surrogates λ TIMING 2 hours 

46 Fasten the surrogate sows at least 12 h prior to surgery with access to water. Do not feed the 

surrogates on the day of surgery. 

47 Weigh the animals at around 14:00 on the day of microinjection and surgery, to allow calculation 

of the dose of anesthetics. 

48 Treat the sows with Azaperon (1 mg/kg i.m. = 1 ml/40 kg body weight) 45 minutes before 

surgery.  

49 Place a venous access in an ear vein, and anesthesize the sow i.v. with Ursotamin (10 mg/kg = 

1 ml/10 kg) and Metamizol (50 mg/kg = 1 ml/10 kg).  

50 Place and fix the anesthetized animal in a dorsal position on a surgery table.  

51 After washing and cleaning the sow, sterilize the skin with 70 % (vol/vol) ethanol.  

52 Cover the surgery field with an adhesive foil to ensure sterile conditions. 

53 Cut the skin with a scalpel at the linea alba at a length of about 10-12 cm, further handling is 

done by manual preparation by the surgeon and the sterile assistant wearing sterile surgical 

gloves. 

54 Gently move away the intestines to allow access to one uterus horn. 

55 Gently pull out one uterus horn. 

56 Examine the connected ovary for the presence of ovulated follicles (Fig. 6a, b). If the ovary 

contains more than five ovulated follicles, this side is used for embryo transfer. If less than five 
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ovulation sites are counted, pull out the other uterus and inspect the ovary. If this ovary also has 

less than five ovulation sites, the animal is not used for embryo transfer. If five or more ovulated 

follicles are counted, the embryo transfer is continued. 

57 Take out the transfer straw from the portable incubator (Step 43). 

58 Carefully insert the soft transfer straw through the infundibulum into the oviduct (Fig. 5c, d and 

Fig. 6b).  

59 Flush the embryos into the oviduct by applying slight pressure with a mandrin (Fig. 5d and Fig. 

6c). Care has to be taken to avoid injuries to the infundibulum and bleedings. 

60 Pull out the transfer straw, and gently place back the uterus horn. 

61 Dampen the uterus with 50-100 ml sterile, prewarmed (37 oC) PBS to avoid bonding.  

62 Stitch the wound in three layers (Fig. 6d) and cover it with a duct tape.  

63 Finally, inject the sow i.m. with Procapen (20 mg/kg), and transport it back into the animal 

quarter.  

64 Examine the animals every hour until they stand up.  

 

Confirming the establishment of a pregnancy λ TIMING  30 minutes 

65 Starting from day 25 after embryo transfer, inspect the recipient sows by ultrasound (Fig. 6e) for 

implantation and developing fetuses. Depending on the purpose of the experiment, pregnant 

recipients can be sacrificed to obtain fetal matter of different developmental stages, or are 

allowed to give birth.  

? TROUBLESHOOTING 

66 Check the surrogates daily for symptoms of natural heat (swollen and reddened vulva), which 

may indicate that the transferred embryos have been resorbed. 

 

Establishment of transgenic pig lines λ TIMING 10-12 months 
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CRITICAL Breeding to homozygous transgenic lines often causes inbreeding problems in pigs, such 

as extreme small litters of 1-3 pups. Therefore, it is advisable to maintain desired transgenes in 

hemizygous lines. 

! Caution All F0 animals and all of their offspring are, by definition of the gene law, putative gene 

modified organisms (GMOs). It has to be ensured that the pigs are maintained in a registered S1-

animal quarter and that the animals and their fate are documented. 

67 Pregnancy and delivery: pregnancy in pigs lasts for 115-117 days. In the last week of gestation, 

cage the sows individually and inspect them daily for signs of birth, i.e. swelling and reddening of 

the vulva, and milk production in the mammary glands.  

68 Allow the sows to give birth spontaneously, which typically occurs during night time.  

? TROUBLESHOOTING 

69 Check sows during delivery, because in case of a small litter size (2-4 piglets) the birth process 

may stop or may be delayed.  

70 If the time interval between delivered piglets is longer than 30 minutes, an i.m. injection of 

oxytocin (10-30 U/sow) is recommended, otherwise piglets may die in the uterine channel due to 

suffocation.  

71 Check if the afterbirth is coming on time (within the next 16 hours), otherwise another oxytocin 

treatment is recommended.  

72 Control the health status of sow and piglets.  

73 If the sow is nervous and did not lie down, an injection (i.m.) of Azaperon (0.2 mg/kg) is 

recommended. This will calm down the sow, and allow the piglets to suckle colostrum. 

CRITICAL STEP It is important that all piglets suck colostrum milk. Small or weak piglets may require 

hand feeding with colostrum, before they start suckling themselves. Colostrum is important to support 

the piglets with maternal antibodies as the epitheliochorial organization of the porcine placenta 

effectively prevents any transfer of antibodies.  

74 In case permanent hand feeding is required, keep the piglet(s) in a small box below an infrared 

warming bulb.  
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75 Feed the piglets at 4 h intervals with 50-200 ml pre-warmed milk replacement (volume depends 

on age and size). At the age of three weeks they will start grabbing solid pellets. 

76 Administer iron injections to all piglets (1 ml/animal Mediferan, i.m.) on the second day. 

77 For detection of fluorescence, collect the piglets in a small box and transport them into a 

dimmed room.  

CRITICAL To avoid false positive detections and to set up the system it is important to compare  

transgenic piglets expressing the fluorescent marker with non-transgenic littermates (alternatively, 

aged-matched wild-type piglets). This allows for the assessment of the amount of scattered and 

reflected light.  

78 Excite with a blue floodlight LED and identify the fluorescent piglets by using goggles with 

specific emission filters (Fig. 7a, b). Images and videos can be obtained by using an electronic 

camera equipped with the proper emission filter (Supplementary Video 1). 

79 (Optional) Hair phenotyping: collect hair samples for fluorescence analysis under a 

microscope59. In transgenic pigs carrying the CAGGS-Venus transposon, the Venus protein is 

deposited in the hair and maintains its fluorescent properties. The hair samples can be stored 

under ambient conditions (e.g. in Petri dishes) without loss of fluorescence for more than 6 

months. Genotyping by Southern blotting can be performed to determine the copy number of 

genomically integrated transposons (Fig. 7c, d)42. The expression pattern can be confirmed by 

Western blotting with a transgene-specific antibody (Fig. 7e, f)59.  

 

Genotyping of transgenic animals: Confirming transgene insertions by PCR λ TIMING 2.5 hours 

CRITICAL If the transposon includes a visibly expressed fluorescent marker, early embryos and F0 

offspring can be identified by fluorescence emission (Steps 77-79, Fig. 7a, b and Supplementary Video 

1). However, transgene integration and germline transmission must be confirmed by DNA analysis. 

80 Isolate genomic DNA of F0 animals from tail or ear biopsies. A simple and reliable protocol for 

DNA isolation from tissue samples is available at The Jackson Laboratory page: 
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http://jaxmice.jax.org/support/genotyping/tail_phenol.html. Include a positive control (DNA from 

an established transgenic animal) in the subsequent PCR tests. 

81 Set up a PCR reaction in a 25 μl volume containing the following components: 

Component  Amount per reaction Final  

PCR buffer (10x) 

MgCl2 (25 mM) 

dNTP (10 mM) 

Primer SB short (10 pmol/μl) (Table 1) 

Primer Tbal rev (10 pmol/μl) (Table 1) 

Genomic DNA  

Taq DNA polymerase 

H2O 

2.5 μl 

1.5 μl 

0.5 μl 

0.8 μl 

0.8 μl 

1 μl                

0.4 μl 

17.5 μl 

1x 

1.5 mM 

0.2 mM 

8 pmol  

8 pmol  

~200 ng 

2 U  

- 

 

CRITICAL STEP Include the transgene plasmid DNA in a separate reaction as a positive control for 

the PCR. 

82 Run the PCR reaction using the following conditions:  
 
 

 

 

 

 

 

83 Run a 5-μl aliquot of the PCR product on a 1 % (wt/vol) agarose gel. A PCR product of 201 bp in 

length indicates the presence of genomically integrated SB transposons. An example result is 

shown in Supplementary Fig. 1a. 

? TROUBLESHOOTING 

 

Identification of individual transgene integrations by ligation-mediated PCR (LMPCR) λ TIMING 

1-2 weeks 

Cycle number Denature Anneal Extend Hold 

1 

2–31 

32 

33 

94 °C, 5 min 

94 °C, 1 min 

  

55 °C, 30 s 

  

72 °C, 30 s 

72 °C, 7 min 

  

 

 

4 °C 

http://jaxmice.jax.org/support/genotyping/tail_phenol.html
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84 Digest 1 μg of genomic DNA isolated from F0 animals with BfaI and in a separate reaction 1 μg 

with DpnII (Supplementary Fig. 1b), in 50 μl volumes. Include a negative control sample 

(genomic DNA isolated from a non-transgenic animal) as well. Follow the instructions of the 

enzyme supplier. To reach complete digestion, incubate the reaction for 3 hours at 37 oC.  

CRITICAL Always use high quality genomic DNA as template for genotyping PCR. Good quality 

genomic DNA runs on an agarose gel as a dominant, high molecular weight band (Supplementary 

Fig. 1c). 

85 Add 50 μl phenol/chloroform/isoamyl alcohol to each tube. ! Caution This is a hazardous 

chemical. Avoid contact with skin, eyes and airways.  

86 Vortex for 10 s and leave on the bench for 2 min. Repeat this step 3 times. 

87 Centrifuge the samples at 12000 × g for 5 min at room temperature. 

88 Transfer the top layer (~50 μl) to a new 1.5 mL tube, and add 5 μl (1/10 volume) of sodium 

acetate and 125 μl (2.5 volumes) of ethanol, shake well, and let the digested DNA precipitate for 

30 min at -20 °C. 

89 Spin down at 12000 × g for 15 min at 4 °C, and discard the supernatant.  

CRITICAL STEP The pellet is barely visible. To avoid loss of DNA, remove the liquid using a 200 μl 

pipette tip by touching only the wall of the tube that faced the inner side of the rotor.  

90 Wash the pellet in cold 70 % (vol/vol) ethanol. Keep the ethanol on the pellet for 10 min. 

91 Spin down at 12000 × g for 15 min at 4 °C, and discard the supernatant.  

CRITICAL STEP The pellet is barely visible. To avoid loss of DNA remove the liquid using a 200 μl 

pipette tip by touching only the wall of the tube that faced the inner side of the rotor.  

92 Air-dry the pellet for 5-10 minutes and resuspend it in 20 μl sterile Milli-Q water.  

93 Measure the concentration of the digested DNA using a a NanoDrop® spectrophotometer. The 

typical yield is between 30-50 ng/μl.   

94 To check digestion run 200 ng of each sample on 1 % (wt/vol) agarose gel. The digested 

samples should run as a smear centered between 0.5-1 kb in size (Supplementary Fig. 1d). 

Pause Point  The digested genomic DNA samples can be stored at -20 °C for up to 1 year. 
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95 Prepare the double-stranded linkers by mixing the Linker(+) oligo with the Linker(-)BfaI or with 

the Linker(-)DpnII oligo (Table 1) in separate tubes at a final concentration of 10 pmol/μl each in 

100 μl TE buffer containing 50 mM NaCl.  

96 Place the tubes containing the oligonucleotide solutions into a boiling water bath for 2 min, 

switch off heating and leave the tubes in the bath overnight to allow slow cool down and 

hybridization of the two single-stranded oligonucleotides to form the double-stranded linker.  

Pause Point  The annealed double-stranded oligonucleotides can be stored at -20 °C for up to 1 year. 

97 Ligate the BfaI linkers and the DpnII linkers to the corresponding BfaI- and DpnII-digested 

genomic DNA samples, respectively (Supplementary Fig. 1b). Set up the ligation reaction 

containing the components below, and incubate overnight at 16 °C. 

 

Component  Amount per reaction Final  

Ligase buffer (10x) 

BfaI- or DpnII-digested genomic DNA  

Annealed BfaI or DpnII linker (10 pmol/μl) 

T4 DNA Ligase  

H2O 

5 μl 

X μl 

2 μl 

3 μl 

X μl 

1x 

150 ng  

20 pmol 

18 U 

to final volume of 50 μl  

 

98 Set up the 1st PCR in a 50 μl reaction volume containing the components below: 
      

Component  Amount per reaction Final  

PCR buffer (10x) 

MgCl2 (25 mM) 

dNTP (10 mM) 

Linker Primer (10 pmol/μl) (Table 1) 

Primer Tbal rev3s (10 pmol/μl) (Table 1) 

Ligated DNA (Step 97) 

Taq DNA polymerase 

H2O 

5 μl 

3 μl 

1 μl 

1 μl 

1 μl 

2 μl 

0.5 μl 

36.5 μl 

1x 

1.5 mM 

0.2 mM 

10 pmol 

10 pmol 

- 

2.5 U 

- 
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99 Run the 1st PCR reaction using the following conditions:  

 
 

 

 

 

 

 

100 Set up the 2nd PCR in a 50 μl reaction volume containing the components below: 
 

Component  Amount per reaction Final  
PCR buffer (10x) 
MgCl2 (25 mM) 
dNTP (10 mM) 
Nested Primer (10 pmol/μl) (Table 1) 
Primer Tbal (10 pmol/μl) (Table 1) 
100x diluted 1st PCR sample 
Taq DNA polymerase 
H2O 

5 μl 
3 μl 
1 μl 
1 μl 
1 μl 
1 μl 
0.5 μl 
37.5 μl 

1x 
1.5 mM 
0.2 mM 
10 pmol 
10 pmol 
- 
2.5 U 
- 

 
 
 
101 Run the 2nd PCR reaction using the following conditions: 

 
 

 

 

 

 

 

 

102 Run a 10-μl aliquot of the PCR product on a 1 % (wt/vol) agarose gel. An example result is 

shown in Supplementary Fig. 1e. Each band represents a transposon (transgene) genomic 

integration.   

? TROUBLESHOOTING 

Cycle number Denature Anneal Extend Hold 

1 

2–11 

12-36 

37 

38 

96 °C, 2 min 

92 °C, 40 s 

92 °C, 40 s 

  

60 °C -1 oC/cycle, 40 s 

50 °C, 40 s 

  

72 °C, 2 min 

72 °C, 1 min 

72 °C, 10 min 

  

 

 

 

4 °C 

Cycle number Denature Anneal Extend Hold 

1 

2–7 

8-21 

22 

23 

96 °C, 2 min 

92 °C, 40 s 

92 °C, 40 s 

  

66 °C -1 oC/cycle, 40 s 

59 °C, 40 s 

  

72 °C, 1 min 

72 °C, 1 min 

72 °C, 10 min 

  

 

 

 

4 °C 
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103 If strong, distinct bands are visible, isolate them from the gel using the QIAquick Gel Extraction 

Kit according to the manufacturer’s instructions, and sequence them. Multiple bands often 

represent multiple insertions, and lower intensity bands may represent mosaic integrations, all of 

which need to be isolated from the gel, subcloned and sequenced. One should be able to 

identify the TA target dinucleotides immediately flanking the ITR in the genomic sequence, the 

BfaI and/or DpnII recognition sites and the linkers that had been ligated to the DNA ends. The 

PCR amplifications applied in parallel on the BfaI- and DpnII-digested DNA methods help the 

user to recover all integrations.  

104 Map the insertion sites by a BLAT or BLAST search of the DNA sequence directly flanking the 

transposon, at the UCSC Genome Bioinformatics website (http://genome.ucsc.edu/cgi-

bin/hgBlat) or at the NCBI website (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 

Tracking individual transgene integrations by locus-specific PCR λ TIMING 1 week  

105 Design primers matching the integration loci mapped in the founder animals (Step 104). Avoid 

designing primers that would bind to repetitive elements and thus amplify non-specific PCR 

products. The BLAT search at the UCSC Genome Bioinformatics website directly provides a 

RepeatMasker annotation of the genomic loci where the SB transposons have integrated. When 

using BLAST at the NCBI website select “map viewer” for a given BLAST hit, then select “maps 

& options” and choose “repeats” to see the RepeatMasker annotation.  After identification of a 

genomic region free of repetitive sequences in the neighborhood of the SB ITR, design the 

locus-specific primer so that its Tm is between 55-60 oC and its length is between 20-25 

nucleotides. Run a BLAT or BLAST search with the new primer sequences to make sure that 

they do not bind to other genomic locations. In addition, general rules for PCR primer design can 

be found for example at http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html.  

106 Perfom the locus-specific PCR with the primer designed in Step 105 and primer Tbal (Table 1) 

to trace specific transgene integrations by the presence or absence of an amplified product. To 

maximize specificity of primer annealing to the genomic target, the use of touchdown PCR is 

http://genome.ucsc.edu/cgi-bin/hgBlat
http://genome.ucsc.edu/cgi-bin/hgBlat
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.premierbiosoft.com/tech_notes/PCR_Primer_Design.html
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recommended consisting of 5-10 touchdown cycles stepwise decreasing the annealing 

temperature by 1 oC per cycle down to the final annealing temperature, at about 2 °C below the 

Tm of the lower Tm primer, and 25 additional standard cycles. Supplementary Fig. 2 shows an 

example of locus-specific PCR test of a rat founder and its F1 descendants.  

 

? TROUBLESHOOTING 

Troubleshooting advice can be found in Table 2. 

[Table 1 is in the bottom of the manuscript.] 

Table 2| Troubleshooting table. 

Step Problem Possible reason Possible solution 
Step 18 Poor superovulation 

results: no or only 
few (<10 per donor) 
zygotes obtained 

Hormonal synchronization failed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bad sperm quality.  

Age of sows is important for 
success of hormonal 
synchronization and 
superovulation. The donor sow for 
zygote production should be pre-
pubertal (~6 months of age). 
Check sows for heat signals, red 
swollen vagina and immobile 
standing after stimulating the sow 
in the back, or else 
synchronization did not work.  
 
The recipients for embryo transfer 
should have undergone 1-2 
cycles of natural estrus and be 7-
9 months old. 
 
Sperm quality should be checked 
by microscopic analysis. More 
than 50% (better >80%) of 
spermatozoa should be motile, 
and the ejaculate should be free 
of blood and bacteria. A regular 
semen collection twice per week 
may improve the semen quality. 
In case of bacterial 
contamination, an antibiotic 
treatment of the boar is required.  

Step 65 No implanted 
embryos at day 25 
post-embryo 
transfer.  

Decreased viability of the injected 
zygotes may be due to high 
amount of bacterial DNA due to 
improper plasmid purification 
(Steps 3-7), or the presence of 
endotoxins in the injection 
mixture.  

Check plasmids by gel 
electrophoresis for the presence 
of bacterial DNA by loading at 
least 4 µg of plasmid DNA in one 
lane. If DNA of high molecular 
weight (>30 kb) is detectable, 
prepare a new batch of plasmid.  
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Step 68 No offspring. Failure of implantation.  If the ultrasound analysis at day 
25 post-embryo transfer indicates 
the establishment of a pregnancy, 
yet no offspring are delivered at 
term, it may be worthwhile to 
sacrifice a recipient around day 
25 of gestation and to analyze the 
implantation sites and fetuses. 
Normally developed implantation 
should have an outer diameter of 
about 10 cm, a normal embryo 
should be about 1.8 cm in length, 
and inner organs and extremities 
are already developed (e. g., 
heart beating can be detected if 
intact embryos are observed 
under a stereo microscope). 

Step 83 
 
 
 
 
 
 

Low frequency of 
transgenic founders 
per born litter 

Larger transgenes may cause a 
drop of transgenic rates. 
 
 
 
 
 
Apparent low transgenic rates 
may be due to transgene 
detection problems, e. g.,  
because the genomic DNA 
template used in the PCR tests is 
degraded. 

Increasing the amount of 
transposon donor plasmid (up to 
20 ng/µl) in the final injection 
mixture may help to increase the 
efficiency in case of larger 
transgenes.  
 
Always use high-quality genomic 
DNA for PCR.  
 
Include a positive control (DNA 
from an established transgenic 
animal) in the PCR tests. 

 

TIMING   

Steps 1-7, preparation of plasmids for microinjection: 2-8 weeks 

Steps 8-22, superovulation of donor sows and flushing of zygotes: 4 days 

Steps 23-26, treatment of surrogates: 18 days 

Steps 27-43, injection of plasmid DNA into zygotes: 1-3 hours 

Steps 44-45, culture of microinjected zygotes: 30 min-5 days 

Steps 46-64, embryo transfer into synchronized surrogates: 2 hours 

Steps 65-66, confirming the establishment of a pregnancy: 30 min 

Steps 67-79, establishment of transgenic pig lines: 10-12 months 

Steps 80-83, genotyping of transgenic animals: Confirming transgene insertions by PCR: 2.5 hours 

Steps 84-104, identification of individual transgene integration events by LMPCR: 1-2 weeks 

Steps 105-106, tracking individual transgene integrations by locus specific PCR: 1 week 
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Anticipated results 

The co-injection of Sleeping Beauty transposon plasmids into the cytoplasm of porcine zygotes is 

expected to result in 40-60 % germline transgenesis per born piglet. This corresponds to the 

generation of transgenic founders at a frequency of 6-8% per microinjected zygote. As the 

developmental competence of porcine zygotes is not or only minimally affected by the cytoplasmic 

injection, it is sufficient to transfer about 30 embryos per recipient sow, thus allowing for the reduction 

in the number of animals used. Cytoplasmic injection avoids high-speed centrifugation of opaque 

zygotes5,54, which is necessary when using pronuclear injection, and it avoids invasive removal of 

metaphase plates from oocytes, which is an essential step of porcine SCNT. The majority of 

transgene integration events represent specific transpositions of monomeric transposon units 

(Supplementary Fig. 1c), and the majority of founders will carry 1-3 transposon copies42. Cross-

breeding of two lines of transposon-transgenic pigs (each with 3 monomeric transposons) resulted in 

piglets carrying up to five Venus-transposons; these pups showed transposon copy number-

dependent fluorescence intensity (Supplementary Video 1). In the present protocol, extra sows are 

used to produce zygotes. In the future, the use of zygotes derived from in vitro fertilization may result 

in a further reduction of use of experimental animals.  
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FIGURE LEGENDS 

 

Figure 1. Application of Sleeping Beauty transposons for gene delivery. (a) A bi-component 

transposon system for delivering transgenes in plasmids. One component contains a gene of interest 

(GOI) cloned between the transposon inverted terminal repeats (ITR, black arrows) encoded by a 

plasmid. The other component is either a transposase expression plasmid, or synthetic mRNA 

encoding the transposase. (b) The transposon carrying a GOI is excised from the donor plasmid and 

is integrated at a chromosomal site by the transposase (purple spheres). 
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Figure 2. Injection of circular transposon plasmids into the cytoplasm of porcine zygotes. (a) In 

opaque porcine zygotes the pronuclei are not discernible. The mixture of SB100X the transposase and 

transgene-transposon plasmids is “blindly” deposited in the cytoplasm. (b) Schematic drawing of CPI 

into a porcine zygote. (c) Gel electrophoretic analysis of a plasmid sample for supercoiled 

conformation and purity; M) DNA ladder; 1) non-treated plasmid samples; 2) linearized plasmid 

sample. The plasmid samples are “overloaded” (4 µg per lane) to check for the absence of 

contaminating bacterial genomic DNA.  
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Figure 3. Timeline flowchart for animal treatment and cytoplasmic injection. Timelines for 

parallel treatment of donor (white arrows) and surrogate animals (light blue arrows) are shown. The 

timepoint of insemination of donor animals is day 0. Donor animals are sacrificed on day 1, the 

isolated zygotes are microinjected with plasmid DNA and transferred to recipient animals on the same 

day. Purple arrows indicate steps of in vitro handling. 
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Figure 4. Isolation of porcine zygotes from the oviduct. (a) Uterine tract of an artificially 

inseminated sow. Black arrows, ovaries; white arrow, oviduct. (b) Isolated porcine ovary at high 

magnification. Ruptured follicles (some are labeled with white arrows) indicate the number of ovulated 

oocytes. (c) Porcine oviduct with outspread infundibulum. (d) A buttoned cannula is inserted into the 

infundibulum. (e) The oviduct is flushed with 10 ml pre-warmed NBCS solution. The flushing medium 

is collected in a plastic dish. Animal experiments were carried out under the appropriate institutional 

regulatory board permission. 

 

 

Figure 5. Loading of transfer straw with embryos and embryo transfer. (a) An empty transfer 

straw, one end is closed by a colored cotton plug. (b) The transfer straw is connected to a pipette 
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controller and loaded in the following order: medium, air bubble, medium with zygotes, air bubble, 

medium. (c) For embryo transfer the transfer straw is inserted through the infundibulum into the (d) 

oviduct. The embryos are then flushed into the oviduct by pressing the cotton plug slowly forward with 

a mandrin. 

 

 

Figure 6. Embryo transfer of microinjected zygotes to synchronized surrogates. (a) The 

anesthetized recipient is placed in dorsal position on a surgery table. One uterus horn is pulled out. (b) 

An embryo transfer straw, containing 30-40 treated zygotes, is inserted into the infundibulum. (c) The 

embryos are flushed into the oviduct. (d) A stitched surgery wound. (e) Ultrasound image obtained 

from a pregnant recipient at day 60 post-embryo transfer. The backbone of one fetus is in focus (white 

arrows). Animal experiments were carried out under the appropriate institutional regulatory board 

permission. 
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Figure 7. Live imaging of piglets transgenic for a Venus-tagged SB transposon. (a) Venus-

transposon transgenic founder boar (F0) shown under specific excitation. (b) The same animal from 

the front. Note the homogenous fluorescence of all body surfaces. Animal experiments were carried 

out under the appropriate institutional regulatory board permission. (c) Genotyping of F1 offspring by 

Southern blotting. Genomic DNA was restricted with NcoI, resulting in a constant (internal) fragment 

(black arrow) of the Venus transposon and a flanking fragment of variable size (red arrows) per each 

transgene integration. (d) Schematic of a genomically integrated SB transposon carrying a CAGGS-

Venus expression cassette. The approximate positions of the NcoI restriction endonuclease cleavage 

sites and the DNA fragment used as a probe in Southern hybridization are indicated. Drawing not to 

scale. (e) Ubiquitous expression of Venus as assessed by Western blotting of several organ samples 

(10 microgram protein per lane) of an F1 animal carrying a monomeric transposon: M, molecular size 

marker; 1, skin (from the underside); 2, subcutis; 3, liver sample a; 4 liver sample b; 5, pancreas; 6, 

spleen; 7, spleen fat pad; 8, liver fat pad; 9, negative control (tissue sample of wild-type animal); 10, 
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diaphragm; 11, lung; 12, heart; 13 heart fat pad; 14, aorta; 15, stomach; 16, oesophagus; 17, tongue; 

18, negative control (tissue sample of wild-type animal); 19, salivary gland; 20, trachea; 21, cortex of 

CNS; 22, brain stem; 23, cerebellum; 24, skin (back), 25, skin (head); 26, subcutis (back); 27, negative 

control (tissue sample of wild-type animal); 28, kidney; 29 kidney fat pad; 30, adrenal gland; 31, 

intestine; 32, colon; 33, ileum; 34, skeletal muscle sample a; 35, skeletal muscle sample b; 36, 

negative control (tissue sample of wild-type animal). (f) Coomassie-stained 10 % SDS polyacrylamide 

gel of the loading controls of samples 28-36.  

 

Supplementary Video 1. Copy number-dependent fluorescence in F2-generation piglets. The F2 

litter of piglets are derived from the crossbreeding of two lines. Each founder carried three monomeric 

Venus-transposons, which segregated individually during meiosis. The piglets shown carry 0 to 5 

copies of the Venus-transposon, and the fluorescent intensity correlates directly with the genotype. 

The “bluish” piglet in the back is a non-transgenic littermate. 
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Supplementary Figure 1: Identification of genomic transgene integration by PCR. 

(a) Identification of integrated transposon sequences from mouse genomic DNA samples by PCR with 

primers that amplify the left ITR of SB. Lanes: 1) H2O; 2) mouse genomic DNA, negative control; 3) 

mouse genomic DNA, positive control; 4) transgenic founder #1; 5-9) F1 offspring of transgenic 

founder #1; 10) transgenic founder #2; 11-13) F1 offspring of transgenic founder #2; M) 100-bp 

molecular size marker. (b) Ouline of the LMPCR procedure. Digestion of genomic DNA with the 

frequently cutting restriction enzymes BfaI and DpnII and ligation of linkers with a known sequence 

allows for specific LMPCR amplification of transposon/genomic DNA junctions using primers specific 

to the transposon ITR (blue arrows) and the linkers (green arrows). GOI, gene of interest; ITR, inverted 

terminal repeat. (c) Agarose gel with genomic DNA samples. Lanes 1-4) genomic DNA samples of rat 

founders, 500 ng each; M) DNA size marker. (d) Agarose gel with genomic DNA samples digested 
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with BfaI restriction endonuclease. Lanes 1-4) BfaI-digested DNA samples of rat founders, 200 ng 

each; M) DNA size marker. (e) Agarose gel with LMPCR products. Lanes 1-4) result of nested PCR 

following BfaI linker ligation; M) DNA size marker. 
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Supplementary Figure 2: Locus-specific PCR test of a rat founder and its F1 descendants. 

The founder of these F1 animals carried three SB integrations (in chr2, chr4 and chr16), which were 

transmitted to 13 descendants in different combinations. M, DNA size marker. 
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Table 1. Primer sequences. 

 
 

 
 
 
 
 
 
 
 
 
 

Oligo 
designation Sequence Description and use 

SB short  
 
 

5’-TACAGTTGAAGTCGGAAGTTTACATAC-3’ 
 
 

Transposon-specific 
primer used in PCR with 
Tbal rev. Step 81 

Tbal rev 
 
 

5’-GAATTGTGATACAGTGAATTATAAGTG-3’ 
 

Transposon-specific 
primer used in PCR with 
SB short. Step 81 

Linker(+) 5’-GTAATACGACTCACTATAGGGCTCCG 
CTTAAGGGAC-3’ 

Annealed either with 
Linker(-) BfaI or Linker(-) 
DpnII to form double 
stranded linker for LM-
PCR. Step 95 

Linker(-)BfaI 5’-p-TAGTCCCTTAAGCGGAG-Amino-3’ 
 

Annealed with Linker(+). 
The 3’ C7 amino 
modification prevents 
polymerase extension. 
Step 95 

Linker(-)DpnII 5’-p-GATCGTCCCTTAAGCGGAG-Amino-3’ 
 

Annealed with Linker(+). 
The 3’ C7 amino 
modification prevents 
polymerase extension. 
Step 95 

Linker Primer 5’-GTAATACGACTCACTATAGGGC-3’   
 

Linker-specific primer 
used in the first round of 
PCR with Tbal rev3s 
(transposon specific). 
Step 98 

Tbal rev3s 5’-CATGACATCATTTTCTGGAATT-3’  Transposon-specific 
primer used in the first 
round of PCR with 
Linker Primer (linker 
specific). Step 98 

Nested Primer 5’-AGGGCTCCGCTTAAGGGAC-3’   Linker-specific primer 
used in the second 
round of PCR with Tbal 
(transposon specific). 
Step 100 

Tbal 5’-CTTGTGTCATGCACAAAGTAGATGTCC-3’  Transposon-specific 
primer used in the 
second round of PCR 
with Nested Primer 
(linker specific). Step 
100 
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