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Abstract

Interneurons in the dorsal spinal cord process and relay innocuous and nociceptive somatosensory information from
cutaneous receptors that sense touch, temperature and pain. These neurons display a well-defined organization with
respect to their afferent innervation. Nociceptive afferents innervate lamina I and II, while cutaneous mechanosensory
afferents primarily innervate sensory interneurons that are located in lamina III–IV. In this study, we outline a combinatorial
transcription factor code that defines nine different inhibitory and excitatory interneuron populations in laminae III–IV of the
postnatal cord. This transcription factor code reveals a high degree of molecular diversity in the neurons that make up
laminae III–IV, and it lays the foundation for systematically analyzing and manipulating these different neuronal populations
to assess their function. In addition, we find that many of the transcription factors that are expressed in the dorsal spinal
cord at early postnatal times continue to be expressed in the adult, raising questions about their function in mature neurons
and opening the door to their genetic manipulation in adult animals.
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Introduction

Interneurons in the dorsal spinal cord receive and process

multiple types of cutaneous sensory information, including pain,

temperature, pressure and vibration [1–7]. In addition to relaying

cutaneous stimuli, interneurons in the dorsal horn transmit

propioceptive information from Group II and III muscle afferents

[8]. These cutaneous sensory afferents terminate in the dorsal horn

in a modality-specific manner [1,2,7]. Nociceptive information is

received primarily in lamina I–II from two different classes of

sensory afferent neurons that are distinguished molecularly as

peptidergic (CGRP+/TrkA+) C/Ad fiber afferents and non-

peptidergic (Mrgprd+/IB4+/Ret+) C fiber afferents [7]. There

are also nociceptive Ad fibers that terminate in lamina I [7]. Low

threshold mechanoreceptors (LTMRs) that transduce innocuous

cutaneous mechanosensory information innervate first order

sensory interneurons that are located between inner lamina II

(IIi) and lamina IV [8]. As a general rule, C-fiber LTMRs

primarily project to lamina II, Ad-fiber LTMRs project to laminae

IIi and III, while Ab-fiber RA-LTMRs project mainly to laminae

III–IV [7,8]. Proprioceptive information in the dorsal spinal cord

is mainly processed by neurons in laminae IV–VI, although many

proprioceptors project to more ventral regions of the spinal cord

where they innervate premotor interneurons and motor neurons

[1,9–11].

Despite the importance of the dorsal spinal cord for the

reception and transduction of cutaneous mechanosensory

stimuli, we know very little about the neuronal composition of

the central circuits that gate and transmit this information.

Efforts to probe the organization of these circuits have been

hampered by their complexity, and by an inability to

molecularly define discrete populations of sensory neurons and

ascribe functions to them. Recently, a number of developmen-

tally-regulated transcription factors that are expressed in the

developing dorsal horn have been identified [11–16] that

provide an entry point for identifying the sensory interneuron

cell types that play essential roles in processing and transducing

cutaneous somatosensory information. Using a battery of

transcription factors that are expressed at late embryological

and early postnatal stages, we have begun to probe the

molecular diversity of interneurons in laminae III–IV, which

is primarily innervated by cutaneous mechanoreceptors. The

resultant analysis of multiple transcription factors in combina-

tion with Pax2, Gbx1 and Lmx1b, which are more broadly

expressed in the dorsal spinal cord, has allowed us to identify

nine molecularly-distinct interneuron populations in lamina
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III–IV at postnatal and adult stages. More importantly, the

systematic identification of nine molecularly-defined sensory

interneuron cell types in lamina III–IV has set the stage for

functionally dissecting mechanosensory circuits in lamina III–IV

using genetic and molecular approaches similar to those

employed for studying central pattern generator (CPG) networks

(for recent reviews see [17–19]). Consequently, we can now: 1)

examine the role that specific neural populations play in

transducing the sensation of touch, 2) determine the contribu-

tion that cutaneous stimuli make to the dynamic control of

movement, and 3) further our understanding of how somato-

sensory information is coded by spinal cord interneurons.

Materials and Methods

Animals
All protocols for animal experiments were approved by the

IACUC of the Salk Institute for Biological Studies and follow the

NIH guidelines for animal use. The mouse lines used in this study

have been described previously: Pax2-Cre [20]; R26floxstop-Tomato

(Ai14) [21]; MafB-GFP [22]; GAD67-GFP [23]; Lmx1b knockout

[24]; RORa-IRES-Cre [25]. All mice were genotyped by PCR using

allele-specific primers for each strain. For timed pregnancies,

midday on the day of the vaginal plug was designated as

embryonic day (E) 0.5. The day of birth was designated as P0.

Figure 1. Expression of Lbx1, MafA, c-Maf, RORa, RORb, Pax2, Lmx1b, Gbx1 and Tlx3 in the postnatal and adult spinal cord.
Immunostaining of trancription factors that are enriched in the dorsal horn at P4 (A–J) and adult (K–P) stages. Lbx1, Lmx1b, Tlx3, Gbx1, MafA and
c-Maf expression is maintained in the spinal cords of five month old mice (K–P). RORa* denotes RORa-Cre; R26 floxstop-GFP in all figures. The lines in
A indicate the border of lamina III–IV.
doi:10.1371/journal.pone.0077928.g001
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Tissue Preparation and Immunohistochemistry
P0-adult mice were euthanized and perfused with 4% parafor-

maldehyde in PBS (PF). Their spinal cords were then post-fixed for

30–60 mins in 4% PF at 4uC (P0) or at room temperature (adult).

Spinal cords were rinsed and cryoprotected in 20% sucrose in PBS

(4uC) prior to embedding in OCT (Tissue-Tek). Immunostaining

of frozen spinal sections was performed by incubating 20 mm thick

sections with primary antibodies, which were then detected using

species-specific secondary antibodies conjugated with Cy2, Cy3

and Cy5 (Jackson Laboratories) or FITC (Invitrogen). Three-color

images were captured using either an Axioskop 2 Mot Plus

microscope or a Zeiss LSM510 Laser Scanning Confocal

Microscope. AxioVision and Adobe Photoshop software was used

for image analysis, data processing and presentation.

Antibodies
The following commercially available antibodies were used:

monoclonal anti-Lhx1 and anti-Lhx5 (4F2-10: Developmental

Hybridoma Studies Bank); polyclonal anti-Pax2 (71–6000, Zymed;

1:1000); chick anti-GFP (GFP-1020, Aves lab; 1:1000); rabbit anti-

GFP (A-11122, Molecular Probes; 1:1000); chick anti-b-galacto-

sidase Abcam; 1:1000), guinea pig anti-VGluT1 (AB5905,

Millipore; 1:2000); goat anti-MafB (SC10022, Santa Cruz

Biotechnology; 1:500); rabbit anti-MafA (Bethyl Laboratories;

1:750); rabbit anti-c-Maf (Bethyl Laboratories; 1:2500); guinea pig

Table 1. Summary of the expression analyses used to define the inhibitory or excitatory phneotype of postnatal neurons that
express Pax2, Gbx1, Lmx1b, RORb, RORa, Lbx1, MafA, MafB and c-Maf.

Pax2 Gbx1 Lmx1b RORa RORb Lbx1 MafA MafB c-Maf

Gad67-GFP 8263% 7764% ,1% nd 3262% 1162% ,1% 1362% 1862%

Pax2-Cre; lacZ 9662% 9563% ,1% nd 5462% 1863% nd 3262% 2963%

Gbx1 8164% 100%* ,1% 362% 5163% 2164% ,1% 4363% 1963%

Pax2 100%* 8762% ,1% nd nd nd nd nd nd

Lmx1b ,1% ,1% 100%* 9263% 4863% 7963 9362 4763% 6264%

Pax2 and Gbx1 are inhibitory markers, whereas Lmx1b and MafA are excitatory markers. Lbx1 and RORa predominantly label excitatory neurons, as well as a small
number of inhibitory neurons. MafB and c-Maf are expressed by mixed populations of inhibitory and excitatory neurons. Data is expressed as mean6s.d.
RORa expression was analyzed using a RORaCre; R26floxstop-Tomato reporter. Asterisk indicates 100% by definition.
doi:10.1371/journal.pone.0077928.t001

Figure 2. Lmx1b and Pax2 are postnatal markers of excitatory and inhibitory neurons. Analysis of Gbx1, Pax2 and Lmx1b expression in
Pax2-Cre; R26floxstop-lacZ mice at P10 (A–D9,G) and P1 (E–F). The Pax2-derived b-gal reporter is localized to GAD67-GFP+ neurons in the dorsal horn
(A,A9). A large fraction of the Pax2-derived b-gal cells express the Pax2 transcription factor (C,C9). GAD67-GFP and Pax2+ cells express the Gbx1
transcription factor (B,B9,E,E9). Lmx1b is not expressed in Gbx1+ neurons (F) or Pax2-derived neurons in the Pax2-Cre; R26floxstop-lacZ spinal cord (G). The
lines in A indicate the border of lamina III–IV.
doi:10.1371/journal.pone.0077928.g002
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anti-Lbx1 ([26]; 1:1000. Rabbit and guinea pig anti-Gbx1

antibodies were generated against aa 61–308 of the Gbx1 protein

(used at 1:10,000). Rabbit anti-MafB antisera provided by Carmen

Birchmeier and Thomas Müller (Max-Delbrück-Center for

Molecular Medicine, Berlin, Germany) was used at 1:500. Anti-

Lmx1b antisera provided by Thomas Jessell (Columbia University,

USA) was used at 1:1000. A rabbit anti-RORb antibody that

recognizes the ligand-binding domain (LBD) of RORb was

generated and affinity purified using immobilized GST-rat RORb
LBD then used at 1:100.

Results

Identification of Transcription Factors Expressed in the
Mechanosensory Area of the Dorsal Horn at Postnatal
and Adult Stages

We used a battery of antibodies, in combination with previously

characterized mouse reporter lines, to map the expression of

multiple transcription factors in the postnatal dorsal horn and test

whether they are expressed in discrete populations of laminae III–

IV sensory interneurons. This initial survey identified a number of

transcription factors with known roles in neuronal specification

and differentiation, all of which are expressed in the dorsal spinal

cord at late embryonic and postnatal stages (Fig. 1; data not

shown). We focused our analysis on thoracic and lumbar spinal

cord levels, as there was no discernable difference in the expression

patterns of these transcription factors along the anterior-posterior

(A–P) axis at lower spinal cord levels. Transcription factor

expression was analyzed at the following ages: P0, P3, P4, P7,

P10, P27, and in the adult.

Two broad sets of transcription factors were identified. The first,

which includes Lbx1, Lmx1b, Tlx3, Pax2 and Gbx1, is comprised

of transcription factors that display relatively broad patterns of

expression in the dorsal horn (Fig. 1A–E). During embryogenesis,

these transcription factors are expressed broadly in the developing

spinal cord [11,12,14,15,27,28], whereas at postnatal times, we

find that they are enriched in the dorsal horn, including laminae

III–IV (Fig. 1K–N). The second set of transcription factors that we

identified displays a more restricted pattern of expression in dorsal

sensory interneurons. This group includes the nuclear orphan

receptors RORa and RORb, and the large Maf proteins, MafA,

MafB and c-Maf. All five transcription factors displayed cell type-

specific expression in the dorsal horn at postnatal stages (Fig. 1F–J,

O–P), with the expression patterns of MafA, c-Maf and Gbx1 in

the adult spinal cord closely resembling those seen at earlier

developmental times [29,30].

MafA, MafB and c-Maf, together with Lbx1, are all expressed

in laminae III–IV at postnatal and adult stages (Fig. 1). During

embryogenesis, these four transcription factors are also transiently

expressed in intermediate and ventral areas of the spinal cord,

where they mark subsets of ventral commissural neurons and

Renshaw cells (Fig. S1; [11,12,31,32]). At postnatal and adult

stages, cells expressing Lbx1, MafA, MafB and c-Maf are largely

restricted to laminae III–IV, with only a few neurons present in

other laminae (Fig. 1A, H–J, O–P, data not shown). In the case of

MafA and MafB, we detected sparse labeling of interneurons in

the superficial dorsal horn (Fig. 1H, I, O), whereas c-Maf is

expressed in a small number of cells in lamina V (Fig.1J, asterisk).

RORb, on the other hand, displays a more restricted pattern of

expression throughout development (data not shown). In the

postnatal and adult cord, RORb is restricted to laminae III–IV,

with the exception of a few cells that are located in lamina I

(Fig. 1G; Fig. S2).

Lmx1b is expressed at high levels in laminae I–III, with lower

levels of expression in lamina IV (Fig. 1L). Tlx3 is principally

expressed in laminae I–II, although we did detect Tlx3+ cells in

laminae III (Fig. 1J, M). Pax2-expressing cells were more broadly

distributed within the dorsal horn (Fig. 1D), but were present in

lower numbers in the ventral horn. The ventral Pax2+ cells,

together with the dorsal Pax2+ cells, are likely to be inhibitory

interneurons, due to their expression of multiple inhibitory neuron

markers at early embryonic times [17,27–29].

When VGluT1 immunostaining, which marks myelinated

mechanosensory afferents that terminate throughout laminae IIi-

V [33–35], was used to determine the lamina location of the cells

expressing Lbx1, Gbx1, RORb, MafA and c-Maf, the interneu-

rons expressing Lbx1 and MafA were seen to be primarily

Figure 3. Comparative expression of transcription factors that
are co-localized with the excitatory marker Lmx1b. Lbx1, RORa,
RORb, MafA, MafB and c-Maf all show overlapping expression with
Lmx1b in excitatory neurons, albeit at low levels in some neurons.
Analyses were performed at P0 (C–D, K–L), P7 (I–J, G–H), P8 (E–F) and
P10 (A–B). Neurons were assigned a cell type number (1–9) according to
their expression profile, with profiles 1–5 being classified as inhibitory
neurons, while profiles 6–9 are excitatory neurons (see Table 2).
doi:10.1371/journal.pone.0077928.g003

Defining Neuronal Populations in the Dorsal Horn

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e77928



restricted to lamina III–IV (Fig. S2). Neurons that express Gbx1,

RORb and c-Maf also displayed extensive co-localization with

VGluT1+ sensory afferents in lamina III and IV (Fig. S2).

In summary, we have identified a cohort of transcription factors

that are expressed in sensory interneurons within lamina III–IV,

which is the primary recipient region for innocuous mechanosensory

afferents. In view of the demonstrated roles that these transcription

factors play in regulating neuronal cell specification, differentiation

and cell physiology [11,12,14,15,36–43], it is highly likely that they

have important roles in controlling the physiology of dorsal sensory

interneurons gating cutaneous mechanosensory stimuli.

Lbx1, RORb, RORa, MafB and c-Maf are Expressed by
Mixed Populations of Inhibitory and Excitatory Neurons,
whereas MafA is Restricted to Excitatory Neurons

Lbx1, MafA, RORb, MafB, c-Maf, RORa, Pax2, Lmx1b and

Gbx1 continue to be expressed in laminae III–IV at late postnatal

stages. As a first step toward defining the phenotype of the neurons

that express these transcription factors, we asked which of these

proteins are expressed in inhibitory or excitatory sensory

interneurons. Previous studies have shown that Lmx1b is a marker

of dILB excitatory neurons in the embryonic spinal cord, while

Pax2 and Gbx1 mark inhibitory dILA inhibitory neurons

Figure 4. Comparison of transcription factor expression with inhibitory neuronal markers. Lbx1 (A–D), RORb (E–H), MafB (I–L) and c-Maf
(M–P) are expressed in many neurons that express the inhibitory markers Gbx1 (C–D, G–H, K–L, O–P, V–W), GAD67-GFP (A–B, M–N) and Pax2-Cre;
R26floxstop-GFP (E–F, I–J). In RORa-Cre; R26floxstop-Tomato mice (V–W), we observed a few Tomato+ neurons that expressed Gbx1. MafA is the only
transcription factor that did not co-localize with Gbx1 (S–T) or GFP in GAD67-GFP and Pax2-Cre; R26floxstop-GFP mice (Q-R, data not shown). Pax2-Cre;
R26GFP denotes GFP+ cells in Pax2-Cre; R26floxstop-GFPmice. Spinal cords were analyzed at P0 (E–F), P1 (C–D, I–J, S–T), P2 (G–H), P7 (A–B, M–N, Q–R), P8
(V–W), and P10 (K–L, O–P). Examples of the nine different cell types (numbered 1–9) are shown. See Table 2 for further details.
doi:10.1371/journal.pone.0077928.g004
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[11,12,28,29]. To address this question, we used glutamic acid

decarboxylase 67–green fluorescence protein (GAD67-GFP) knock-

in mice [23] to mark and trace inhibitory interneurons. Lmx1b

was not detected in neurons that express GFP at any postnatal

time analyzed, indicating the Lmx1b cells are not GABAergic

inhibitory interneurons (Table 1, data not shown). When we

analyzed Pax2-Cre; R26floxstop-lacZ; Gad67-GFP mice, most, if not

all, Pax2-derived b-galactosidase+ (b-gal+) cells in laminae III–IV

expressed GFP, demonstrating that they are indeed inhibitory

neurons (Fig. 2A,A9). Gbx1 also showed strong co-localization with

the GAD67-GFP reporter (Fig. 2B,B9), and a large number of

these Gbx1+ cells expressed b-gal (Fig. 3D–E9). We also detected

Pax2+ and Gbx1+ cells that do not express GFP in the postnatal

cord (Fig. 2A–B9). The presence of these GAD67-GFP-negative

cells in the postnatal cord most likely reflects the down-regulation

of GAD67 at postnatal times, which has been noted in other

studies [23,28]. Conversely, there are GAD67-GFP+ neurons at in

the postnatal cord that do not express b-gal or Gbx1 (Fig. 2A,B).

In Pax2-Cre; R26floxstop-lacZ mice, the neurons that continue to

express Pax2 were found to represent only subset of the Pax2-Cre+

(b-gal+) cells in dorsal horn (Fig. 2C,C9). This is again due to the

down-regulation of Pax2 (and Gbx1) in the postnatal dorsal horn

[28,30], since at earlier times Pax2 is expressed in all Pax2-Cre

marked neurons (Fig. S3).

The Pax2-Cre; R26floxstop-lacZ reporter mouse was then used to

assess whether Lmx1b co-localizes with GFP in Pax2-derived

‘‘inhibitory’’ neurons. No overlap between Lmx1b and b-gal

expression was noted at P1 (Fig. 2G), which is consistent with our

observation that Lmx1b is excluded from cells that belong to the

Pax2 (dILA) lineage (Fig. S3). This finding demonstrates that Pax2-

Cre-derived neurons do not express the excitatory marker Lmx1b,

and are thus unlikely to be glutamatergic interneurons. We also

confirmed that Lmx1b does not co-localize with Gbx1 (Fig. 2F),

indicating that Lmx1b and Gbx1 mark two separate cell

populations in the dorsal horn. The majority of laminae III–IV

cells that express either Pax2 or Gbx1, express both factors,

although there are a small number of cells that express Pax2 and

Gbx1 alone (Fig. 2E). Taken together, our data demonstrate that

Lmx1b and Pax2/Gbx1 are specific postnatal markers of

excitatory and inhibitory neurons, respectively.

We then analyzed GAD67-GFP mice at P3, P7 and P10 and

Pax2-Cre; R26floxstop-GFP mice at P1 to determine whether Lbx1,

RORb, RORa, MafA, MafB and c-Maf are expressed in

GABAergic inhibitory neurons (Figs. 3 and 4, summarized in

Table 1). These analyses revealed that Lbx1, RORa, RORb,

MafB and c-Maf are present in mixed populations of inhibitory

and excitatory neurons. At postnatal times, Lbx1 and RORa are

predominantly expressed in Lmx1b+ excitatory neurons (Fig. 3A–

D), although a small, but significant fraction of the Lbx1+

interneurons in GAD67-GFP mice are GFP+ (Fig. 4A–B; data

not shown). This expression of Lbx1 in inhibitory neurons was

confirmed by double immunostaining experiments with antibodies

to Gbx1 and Lbx1 (Fig. 4D, asterisk).

Interestingly, the RORb, MafB, and c-Maf populations appear to

be more heterogeneous with respect to their neurotransmitter

phenotype. Approximately 50% of the MafB and RORb neurons

express Lmx1b, and are thus excitatory. In the case of the c-Maf

neurons, greater than 60% of these cells express Lmx1b (Fig. 3E–F,

G–H, I–J, respectively). Conversely, approximately 50% of the

RORb+ cells and 30% of the MafB+ and c-Maf+ cells show co-

localization with GFP in P1 Pax2-Cre; R26floxstop-GFP mice (Fig. 4E–F,

I–J, respectivelyanddatanot shown).Likewise,dual immunostaining

with Gbx1 showed ,50%, ,40% and ,20% co-localization with

RORb,MafBandc-Maf, respectively (Fig. 4G–H,K–L,O–P). In the

GAD67-GFP mice we found fewer GFP+/MafB+ and GFP+/c-Maf+

cells (,10% and ,20%, respectively; Fig. 4M–N; data not shown),

which is probably due to the down-regulation of GAD67 in the

postnatal spinal cord [28].

Our results suggest that most, if not, all of the MafA+ neurons in

lamina III and lamina IV are excitatory glutamatergic neurons, as

more than 90% of these MafA+ cells co-express Lmx1b (Fig. 3K–

L, Table 1). Furthermore, MafA does not co-localize with GFP in

GAD67-GFP mice at P3, P7 and P10 (Fig. 4Q–R), nor is it

expressed together with Gbx1 at these times (Fig. 4S–T). In

summary, Lbx1, RORb, MafB and c-Maf are all expressed in

mixed populations of inhibitory and excitatory neurons, whereas

MafA is specific to excitatory neurons.

Nine New Populations of Neurons Identified in the
Mechanosensory Area by the Combinatorial Expression
of the Lbx1, RORb, RORa, MafA, MafB, c-Maf, Gbx1, Pax2
and Lmx1b Transcription Factors

The combinatorial expression of Lbx1, RORb, RORa, MafA,

MafB, c-Maf, Gbx1, Pax2 and Lmx1b reveals the presence of at

least nine different populations of neurons in laminae III–IV.

Table 2. A combinatorial transcription factor code defines nine different postnatal populations of interneurons in laminae III–IV.

1 2 3 4 5 6 7 8 9

GAD67-GFP + + + + + – – – –

Gbx1 + + + + – – – – –

Lmx1b – – – – – + + nd +

RORb + – – – – + – nd –

RORa – + – – – + nd nd nd

Lbx1 Nd nd nd nd nd + + + nd

MafA – – – – – ‘‘+’’ + + –

MafB – + + – nd ‘‘+’’ ‘‘+’’ nd –

c-Maf – – – ‘‘+’’ nd + + – nd

The first five columns (1–5) refer to inhibitory neuron cell types, while the last four columns (6–9) denote excitatory neurons. The different markers that were analyzed
are indicated. The numbering of each column refers to the number assigned to each neuronal population and it is used in all the figures to indicate neurons
representative of these columns. Annotation: +, expressed; 2, not expressed; nd, not determined; ‘‘+’’, inferred by indirect evidence. Fuller descriptions of the indirect
evidence used for expression profiles 4,6 and 7 are provided in the results section. Asterisk indicates RORaCre; R26floxstop-Tomato expression.
doi:10.1371/journal.pone.0077928.t002
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Figure 5. Relative expression of the transcription factors that define the transcription factor code for the different neuron
populations. The RORb inhibitory neurons that expressed Gbx1 did not express GFP in MafB-GFP mice but not all Gbx1-positive neurons expressed
GFP (A–A9). Therefore RORb/Gbx1 double-positive neurons do not express MafB and not all Gbx1 neurons express MafB. Tomato-positive neurons
that expressed Gbx1 in RORa-Cre; R26floxstop-Tomato mice also expressed MafB (B), therefore all RORa+/Gbx1+ cells express MafB. No c-Maf-positive
neurons expressed GFP in MafB-GFP mice (C) and consequently, c-Maf and MafB do not co-localize in MafB inhibitory neurons. All RORb-positive

Defining Neuronal Populations in the Dorsal Horn

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e77928



These are summarized in Table 2. We have numbered each

population, examples of which are shown in Figures 2–5. Within

laminae III–IV, we were able to distinguish five molecularly-

distinct populations of inhibitory neurons and four populations of

excitatory neurons (Table 2, columns 1–5).

Among the five inhibitory neuron populations, there is one that

does not express Gbx1. These cells can be seen in the GAD67-GFP

spinal cord, where there are a number of GFP+ cells in laminae

III–IV that do not express Gbx1 (Fig. 2B,B9: Table 2, column 5).

The neurons that express Gbx1 can be further subdivided into

four populations: one that expresses RORb (Table 2, column 1);

one that expresses RORa and MafB (Table 2, column 2); one that

expresses MafB and not RORa or RORb (Table 2, column 3);

and one that expresses c-Maf but did not express RORb, RORa
or MafB (Table 2, column 4). The neurons that co-express Gbx1

and RORb (Fig. 4G–H) do not express MafB (Fig. 5A), in so far as

we could not find RORb+/Gbx1+ cells that express GFP in MafB-

GFP mice (Fig. 5A–A9; Table 2, column 1). It should be noted that

the GFP reporter only labels inhibitory MafB+ neurons in these

mice (Fig. 6; data not shown). This is probably due to the loss of an

enhancer element in the MafB-GFP knock-in allele that directs

GFP expression in excitatory neurons [22,32]. A number of the

MafB+ (GFP+) neurons in the MafB-GFP spinal cord were found to

express Gbx1 alone (Fig. 5A–A9: Table 2, column 2–3). Some of

these cells also express RORa, as there is small population of

RORa+ (Tomato+)/Gbx1+ cells that express MafB in the RORa-

Cre; R26floxstop-Tomato mice (Fig. 5B; Table 2, column 2). There is

also a population of Gbx1+/MafB+ neurons in the RORa-Cre;

R26floxstop-Tomato mice that do not express RORa (Tomato), which

represents the third population of Gbx1-expressing neurons

(Fig. 5B; Table 2, column 3). Finally, in MafB-GFP reporter mice,

there are Gbx1-expressing neurons that do not express MafB

(GFP) or RORb. These Gbx1+/MafB2/RORb2 cells constitute

the fourth population of Gbx1+ neurons (blue cells in Fig. 5A;

Table 2, column 4). We have also found a significant fraction of

Gbx1+ cells that express c-Maf (Fig. 5E). These cells are not part of

the Gbx1+/MafB+ or Gbx1+/RORb+ populations, as GFP+/

c-Maf+ cells are rarely, if ever, detected in the MafB-GFP spinal

cord (Fig. 5C and data not shown), and Lmx1b2/RORb+

inhibitory neurons do not express c-Maf (Fig. 5D–D0; Table 2,

columns 1 and 4).

Four different populations of excitatory neurons were identified

in lamina III–IV on the basis of Lmx1b and MafA expression,

three that express MafA (Table 2, column 6–8), and one that

expresses Lmx1b, but not MafA (Table 2, column 9; Figs. 3K–L

and 5K9). Interestingly, all of MafA+ neurons express Lbx1

(Fig. 5J), although in some instances only very weakly (data not

shown). Within the MafA population, one subpopulation expresses

RORb. The MafA+/RORb+ cells make up approximately half of

all RORb+ neurons in lamina III–IV (Fig. 5F; Table 2, column 6).

Since RORb is also co-expressed with Tomato in RORa-Cre;

Rosa26floxstop-Tomato mice (KG and SB, unpublished observations),

we conclude that this subset of MafA+ excitatory neurons most

likely expresses a combination of both RORa and RORb (Table 2,

column 6). These neurons also express MafB and c-Maf, as all

excitatory RORb+/Lmx1b+ neurons express c-Maf and MafB

(Fig. 5D–D0 and 5H; Table 2, column 6). c-Maf rarely, if ever, co-

localizes with GFP in MafB-GFP mice where the GFP reporter

selectively labels inhibitory neurons (Fig. 5C), leading us to

conclude that many of the MafB neurons in lamina III–IV are

excitatory c-Maf+ interneurons (Table 2, column 7). Our results

also demonstrate that there are twice as many MafA+/c-Maf+

neurons in lamina III–IV as compared to MafA+/RORb+ cells.

This means that approximately 50% of the MafA+/c-Maf+

neurons in lamina III–IV are RORb-negative (Table 2, column

7). Finally, we have found a small population of MafA+ neurons in

lamina III–IV that do not express c-Maf (Fig. 5I; Table 2, column

8).

Discussion

In this study, we describe the identification of nine different

populations of postnatal neurons that are principally located in

laminae III–IV, the main area for processing cutaneous mechan-

ical stimuli in the spinal cord. The classification of sensory

interneurons in lamina III and IV was based on a combinatorial

transcription factor code comprising of developmental factors

known to regulate cell fate specification in the nervous system. Our

findings demonstrate an unanticipated level of diversity in the

interneuron populations that are located in regions of the spinal

cord receiving low-threshold cutaneous mechanosensory inputs. A

more limited diversity was suggested by previous electrophysio-

logical studies in vitro [44–48]. In characterizing neurons in

laminae III–IV by their mechanoreceptive afferent fiber input and

neurons that expressed Lmx1b also expressed c-Maf (D–D’’). Many c-Maf-positive neurons expressed Gbx1 (E). Many RORb-positive neurons
expressed MafA, as MafA is an excitatory marker (F). Many RORb-positive neurons expressed Tomato in RORa-Cre; R26floxstop-Tomato mice (G). RORb+

neurons that express MafB are Lmx1b+ excitatory neurons (H–H9). Most MafA expressed C-Maf although there was a significant number of cells that
only expressed MafA single or c-Maf single-positive (I). All MafA-positive neurons expressed Lbx1, although some of them at very low levels like (J). All
MafB-positive neurons that expressed Lmx1b also expressed MafA (K–K’’). See Table 2 for number designations.
doi:10.1371/journal.pone.0077928.g005

Figure 6. GFP expression in the dorsal horn of MafB-GFP mice is restricted to inhibitory neurons. (A) GFP is not expressed in any Lmx1b-
positive neurons. (B) Whereas all GFP+ neurons are MafB+, many MafB neurons do not express GFP. (C) MafB+ neurons that are Lmx1b+ do not express
GFP.
doi:10.1371/journal.pone.0077928.g006
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their intrinsic discharge properties, Schneider [47,48] identified

four groups of cells: phasic, delayed-firing and tonic, where the

tonic population is comprised of two different groups. In a similar

manner, Hochman et al. [44] divided laminae III-V neurons into

four categories based on their firing properties following intracel-

lular current injection: single spike, phasic firing, repetitive firing,

and delayed firing. Morphological studies have also identified

differences in terms of cell/dendrite shape and axon morphology

(see [49,50], and references there in). Cajal described several types

of neurons in laminae II–III [51]. In general, lamina III–IV

contains neurons of varying sizes and shapes: rounded, slightly

elongated, or spindle shaped cells. There is a lower density of these

cells in lamina IV, which also contains large cells. The principal

neurons of the susbstantia gelatinosa are small neurons with short

axons, which can be classified as central cells or Golgi type II

neurons. In addition, there are two larger cell types, stalked cells

with rounded soma, and islet cells. However, many neurons do not

fit into these neat morphological categories, with lamina IV

containing medium sized neurons and larger pyramidal type

neurons [1,2,51,52]. The dorsal horn also contains a number of

projection neurons, the most prominent of these being spinotha-

lamic/spinoparabrachial neurons in lamina I, III and IV, and the

dorsal spinocerebellar neurons that are localized ventral-medially

in Clarke’s column [1,2,7,53]. The Gbx1+ and Pax2+ inhibitory

interneuron cell types that we have identified are unlikely to be

projection neurons, as spinal projection neurons are primarily

glutamatergic. Moreover, the majority of Lmx1b+ and Tlx3+ cells

in the dorsal horn are likely to be local circuit interneurons

[11,12,14].

More recently, multiple subpopulations of dorsal horn gluta-

matergic and GABAergic neurons have been identified that

express various neuropeptides and calcium binding proteins

[29,54–57]. Subsets of GABAergic neurons express the Ca2+

binding protein parvalbumin, as well as the neuropeptide

transmitters neuropeptide Y (NPY), enkephalin, galanin, glycine

and thyrotropin-releasing hormone. There are also small popula-

tions of GABAergic neurons that express choline acetyltransferase

(ChAT) or nitric oxide synthase (NOS). Glutamatergic interneu-

rons express cholescystokinin (CCK), somatostatin and neuroten-

sin [29,54–57]. There is also a subset of enkephalin- positive

neurons that are also glutamatergic. The correlation between

classifying neurons according to their specific transcription factor

profiles (this study) and cell types that have been subdivided

according to their morphology or neurotransmitter/electrophys-

iological properties remains to be determined. Defining these

relationships would go a long way toward identifying the

functional elements of mechanosensory circuitry in the dorsal

horn.

Interestingly, most of the transcription factors that are expressed

in laminae III–IV do not label a single or homogeneous

population of neurons. Instead, Lbx1, RORb, MafB and c-Maf

are expressed in both excitatory and inhibitory neurons. To date,

MafA is the only marker that is restricted to excitatory neurons,

and even then, it is expressed in three molecularly-distinct

populations of excitatory neurons. Somewhat surprisingly, Hu

et al. [58] have reported that MafA largely co-localizes with Pax2,

whereas our data show that MafA is a specific marker of postnatal

excitatory neurons. MafA does not co-localize with GFP in

GAD67-GFP mice or with Gbx1 at any of the postnatal stages we

investigated. Furthermore, MafA is completely lost in Lmx1b

mutant mice that express a normal complement of inhibitory gene

markers, including Pax2 (Fig. S4). This finding coupled with the

observation that MafA is not reduced in Ptf1a mutant mice [58],

when Ptf1a is known to be required for GABAergic neuron

differentiation [29,59], strongly argues against the expression of

MafA in laminae III–IV inhibitory neurons.

While many of the transcription factors analyzed in this study

are restricted to the dorsal horn at postnatal times, their expression

patterns in the embryonic cord are often broader and encompass

neurons that settle in the intermediate and ventral regions of the

spinal cord [60–64]. The one exception is RORb. RORb is

expressed in the dorsal horn throughout embryogenesis (Fig. 1;

MDB and MG, unpublished data). MafB, for example, is

expressed in differentiating Renshaw cells that are derived from

ventral p1 progenitors [32]. MafB is also expressed in motor

neurons [32]. c-Maf is expressed at E12.5 in dI1 and dI3 neurons

in the dorsal horn [31], which are glutamatergic projection

neurons that migrate and settle at more ventral locales in the

spinal cord. Taken together, these data make it highly unlikely that

any single transcription factor specifies cell type in the dorsal horn.

They instead point to neuronal cell identity in the dorsal spinal

cord being determined by the combinatorial activities of multiple

transcription factors.

Although Lbx1, Lmx1b and Tlx3 transcription factors all have

essential roles in neuronal specification and differentiation during

the two waves of neurogenesis that give rise to dorsal horn

interneurons [11,12,14,15], they continue to be expressed in

subsets of lamina III–IV neurons in the adult when neural

differentiation has ceased. The functional importance of this

persistent expression is not known. One possibility is that these

transcription factors are important for maintaining the identity

and mature phenotype of sensory interneurons. For example,

Lhx1 and Lhx5 are required to maintain Pax2 expression in

mature GABAergic neurons [28]. The maintenance of these

factors along with Gbx1, MafB, MafA and c-Maf may also be

important for the reorganization of cutaneous sensory afferent

inputs to the dorsal horn that occurs during the early postnatal

period [3,65]. For example, Lmx1b is known to play a role in

motor neuron axon guidance [66,67], and it might similarly

control axon guidance and remodeling in the dorsal horn. In

summary, this study defines a novel transcription factor code for

sensory interneurons in lamina III–IV. These first order sensory

neurons are the targets of low-threshold cutaneous mechanore-

ceptors, and their characterization provides a foundation for future

experiments to determine how sensory neurons in the dorsal horn

encode cutaneous tactile information.

Supporting Information

Figure S1 MafA, MafB and c-Maf label different popu-
lations of intermedial and ventral neurons. At E11, MafA

(A–C), MafB (D–F) and c-Maf (G–H) label different populations of

neurons that distinct from laminae III–IV neurons due to their

relative expression of Lmx1b and Lhx1/5. At E13, MafB (G) and

c-Maf (H) label a population of neurons that are not in laminae

III–IV due to their position relative to Lmx1b.

(TIF)

Figure S2 Lbx1, MafA, Gbx1, RORb and c-Maf are
markers of postnatal mechanosensory interneurons in
laminae III–IV. VGluT1 labels mechanosensory afferents that

terminate mainly in inner lamina II - dorsal lamina V. The

neurons expressing the Lbx1, Gbx1, RORb, MafA and c-Maf

transcription factors are located in laminae III–IV at early

postnatal (A–C), late postnatal (D) and young adult stages (E).

(TIF)

Figure S3 Pax2-Cre recombines reporter expression in
Pax2+ inhibitory neurons. Comparative expression of Pax2
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and Lmx1b following Pax2-Cre-mediated recombination. Note the

near complete overlap in Pax2 and nuclear GFP expression at

E16.5 (A–B), whereas nuclear GFP expression is completely

excluded from Lmx1b+ excitatory neurons (C–D).

(TIF)

Figure S4 MafA expression in the dorsal horn of Lmx1b
mutant mice. Control (C1 and C2) and Lmx1b mutant animals

(M1 and M2) were analyzed at P0. Lmx1b is expressed in control

mice (A and B), but not in Lmx1b mutant mice (C and D).

Expression of MafA in the dorsal spinal cord (E and F) is is also lost

in the Lmx1b mutant mice (G and H). Pax2 expression in

inhibitory neurons is maintained in Lmx1b mutant mice (K and L)

in a pattern that is comparable to control mice (I and J).

(TIF)
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