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Abstract 

Reprogramming somatic cells to a pluripotent state drastically reconfigures the cellular 

anabolic requirements, thus potentially inducing cancer-like metabolic transformation. 

Accordingly, we and others previously showed that somatic mitochondria and bioenergetics 

are extensively remodeled upon derivation of induced pluripotent stem cells (iPSCs), as the 

cells transit from oxidative to glycolytic metabolism. In the attempt to identify possible 

regulatory mechanisms underlying this metabolic restructuring, we investigated the 

contributing role of hypoxia-inducible factor 1 alpha (HIF1α), a master regulator of energy 

metabolism, in the induction and maintenance of pluripotency. We discovered that the 

ablation of HIF1α function in dermal fibroblasts dramatically hampers reprogramming 

efficiency, while small molecule-based activation of HIF1α significantly improves cell fate 

conversion. Transcriptional and bioenergetic analysis during reprogramming initiation 

indicated that the transduction of the four factors is sufficient to up-regulate the HIF1α target 

pyruvate dehydrogenase kinase (PDK) 1 and set in motion the glycolytic shift. However, 

additional HIF1α activation appears critical in the early up-regulation of other HIF1α-

associated metabolic regulators, including PDK3 and pyruvate kinase (PK) isoform M2 

(PKM2), resulting in increased glycolysis and enhanced reprogramming. Accordingly, 

elevated levels of PDK1, PDK3, and PKM2 and reduced PK activity could be observed in 

iPSCs and human embryonic stem cells (hESCs) in the undifferentiated state. Overall, the 

findings suggest that the early induction of HIF1α targets may be instrumental in iPSC 

derivation via the activation of a glycolytic program. These findings implicate the HIF1α 

pathway as an enabling regulator of cellular reprogramming.  
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Introduction 

Oxygen concentration plays a critical role in mediating modifications of the cellular 

metabolic profile [1]. Under physiological normoxic conditions, human somatic cells are 

characterized by active mitochondria and oxidative phosphorylation (OXPHOS)-based 

metabolism, while oxygen-deprived cells exhibit increased conversion of glucose to lactate 

(the “Pasteur effect”). However, tumor cells fine-tune their cellular bioenergetics to respond 

to higher cellular demands and can shift to glycolysis-based metabolism even in the presence 

of high level of oxygen, a phenomenon known as aerobic glycolysis or “Warburg effect” [2, 

3]. This metabolic shift seems apparently counter-intuitive given the low efficiency of 

glycolytic metabolism in terms of generation of ATP molecules. Nevertheless, several lines of 

evidence demonstrate that this metabolic adaptation endows proliferative cells with critical 

advantages.  

First, anabolic pathways branching out from the glycolytic path supply the 

intermediates for cell growth, including amino acids and lipid precursors [4, 5]. Thus, rapidly 

dividing cells, such as cancer cells, increase the flux through glycolysis to satisfy their need of 

macromolecules, by enhancing glucose uptake and by slowing the entry of pyruvate into 

mitochondria [6]. Second, the energy reconfiguration can provide protection against oxidative 

stress [5], by avoiding high levels of reactive oxygen species (ROS), common by-products of 

mitochondrial respiration, and by re-routing glycolytic intermediates into the pentose 

phosphate pathway, which generates not only essential nucleotide precursors but also the 

reducing factor NADPH, required for the activity of antioxidant enzymes [7]. Recent data on 

pyruvate kinase, which catalyzes the conversion of phosphoenolpyruvate (PEP) into pyruvate 

in the last step of the glycolytic cascade, support the idea that the Warburg effect may 

promote cellular redox homeostasis. Pyruvate kinase isoform M2 (PKM2) is highly expressed 

in cancer cells [8, 9] and upon oxidation it looses activity, thereby reducing pyruvate 
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formation and diverting the glycolytic flux into the pentose phosphate pathway, which 

eventually supports antioxidant activities [10-12].   

A key mediator of the metabolic re-configuration occurring under low oxygen 

conditions is the transcription factor hypoxia-inducible factor 1 (HIF1) [13, 14]. HIF1 is a 

heterodimer consisting of a constitutively expressed HIF1 β subunit and an oxygen-regulated 

HIF1α, which is physiologically degraded under normoxic conditions by oxygen-dependent 

prolyl-hydroxylases (PHD1-3). When oxygen level decreases, or when PHD enzymes are 

pharmacologically inhibited, HIF1α protein escapes degradation and translocates in the 

nucleus, where it initiates a gene expression reprogramming ultimately leading to a switch 

from OXPHOS to glycolysis. HIF1α target genes include glucose transporters, to increase 

glucose uptake, and pyruvate dehydrogenase kinases (PDK1-3) [15-17], to shunt pyruvate 

away from the mitochondria through the inhibition of pyruvate dehydrogenase (PDH). In 

addition, HIF1α interacts with PKM2 and promotes its gene transcription [18], further 

implying an instructive role for HIF1α downstream signaling in the Warburg-like 

restructuring of glucose metabolism. 

The derivation of induced pluripotent stem cells (iPSCs), allowing somatic cells to 

acquire embryonic stem cells (ESCs)-like features [19], is also associated with a profound re-

configuration of anabolic demands. Indeed, induced pluripotent stem cells (iPSCs) show high 

proliferation rate and distinct cell cycle features compared to parental somatic cells [20]. This 

suggests that a corresponding reprogramming of energy metabolism may also be in place. 

Accordingly, we previously discovered that somatic mitochondria and cellular bioenergetics 

are extensively remodeled upon cellular reprogramming as the cells adopt a glycolytic 

metabolism [21]. Following these initial observations, several groups further confirmed that a 

Warburg-like metabolic reconfiguration takes place in both mouse and human iPSCs [22-26]. 

Indeed, the process of “metabolic reprogramming” is now being recognized as an emerging 

important step of the induction of pluripotency [27-30]. 
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The metabolic switch of cell fate reprogramming does not appear to be due to 

dysfunctional mitochondria, which are in fact capable of respiring and consume oxygen, as 

demonstrated by bioenergetic profiling studies [25, 26, 31]. However, like cancer cells, 

proliferating pluripotent stem cells (PSCs) may opt for glycolysis as they necessitate building 

biomass and at the same time maintaining redox homeostasis. In accordance, PSCs exhibit up-

regulation of genes involved in glucose uptake and the initial steps of glycolysis, increased 

expression of PDK1 [25, 31], suggesting the re-routing of metabolism outside of the 

mitochondria, and elevated levels of glucose-6-phosphate (G6P) [31], indicative of enhanced 

flux through the pentose phosphate pathway. Moreover, ROS levels are also reduced in PSCs 

and so is the amount of oxidative damage [21, 32]. Finally, exposure to hypoxic environment 

favorably supports self-renewal and pluripotency [33-35], enhances iPSC generation [36], and 

maintain hESCs in a more developmentally immature state [37]. 

Here, we sought to investigate the mechanisms underlying the metabolic 

reprogramming occurring upon cell fate transition and specifically dissect the contribution of 

the HIF1α pathway. We found that a small molecule mimicking HIF1α activation enhances 

reprogramming, while the ablation of HIF1α results in a dramatic loss of colony formation. 

By performing transcriptional and bioenergetic profiling during early reprogramming, we 

discovered that the transduction of the four factors is sufficient to up-regulate PDK1 and 

thereby initiating a glycolytic shift. The exposure to hypoxia or to HIF1α activation further 

stimulates the expression PDK3 and PKM2, resulting in increased early switch to glycolysis 

and more efficient iPSC generation. The additional up-regulation of PDK3 and PKM2 might 

be critical in enhancing reprogramming, since we observed that their expression is elevated in 

undifferentiated PSCs and is coupled to reduced PK activity, all traits associated with a 

glycolytic state. Taken together, early induction of HIF1α-associated glycolytic modulators 

may be instrumental in the establishment of pluripotency and may possibly represent an 

enabling regulatory step during cell fate conversion. 
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Materials and Methods 

Cell lines and culture conditions 

Neonatal foreskin fibroblasts (FFs) HFF1 and BJ were purchased from ATCC (# SCRC-1041 

and #CRL-2522, respectively) and dermal fibroblasts (DFs) NFH2 were previously derived 

from an 84 year-old woman [38]. All fibroblasts were cultured using DMEM supplemented 

with 10% bovine serum, nonessential amino acids, L-glutamine, penicillin/streptomycin, and 

sodium pyruvate (all from Invitrogen, CA). All iPSC lines were previously generated using 

the four Yamanaka  factors retroviral cocktail: HFF1-derived iPSCs (lines iPS2 and iPS4) 

[21], BJ-derived iPSCs (lines iB4 and iB5) [31], NFH2-derived iPSCs (lines OiPS3, OiPS6, 

OiPS8, and OiPS16) [38]. hESC lines H1 and H9 (WiCell) and iPSCs were cultured in hESCs 

media containing KO-DMEM supplemented with 20% knockout serum replacement, 

nonessential amino acids, L-glutamine, penicillin/streptomycin, sodium pyruvate, 0.1mM β-

mercaptoethanol (all from Invitrogen, Carlsbad, CA), and 8 ng/ml bFGF (Prepotech, Rocky 

Hill, NJ). Pluripotent stem cells were harvested in feeder-free conditions using DMEM-F12 

media supplemented N2/B27. All cultures were normally kept in a humidified atmosphere of 

5% CO2 at 37°C under atmospheric oxygen condition (20%).  

 

HIF1α activation 

To generate hypoxic conditions, the oxygen concentration was set to 1% and the cells were 

maintained under hypoxia for 24h. A small molecule activator of HIF1α was employed, ethyl 

3,4-dihydroxybenzoate (EDHB) (Sigma, #E24859), at a concentration of 100µM of, as 

previously shown [39]. To test the effect of HIF1α activation on the early reprogramming-

initiating events, FFs were transduced twice with the four factor retroviral cocktail (OSKM), 

as previously described [40], alone or in combination with 100µM EDHB treatment. The cells 

were then harvested after 24h from the first transduction (4F 24h and 4F EDHB 24h), after 
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48h from the first transduction (that means 24h after the second transduction) (4F 48h and 4F 

EDHB 48h), and after 72h from the first transduction (4F 72h and 4F EDHB 72h). In 

addition, FFs were treated only with 100µM EDHB for 24h (EDHB 24h), 48h (EDHB 48h), 

and 72h (EDHB 72h). 

 

HIF1α knockdown 

To stably knockdown HIF1α, BJ fibroblasts were transduced with lentiviruses containing 

shRNA sequences against human HIF1α (BJ-HIF1-KD) and scrambled control 

oligonucleotides (BJ-SCR-KD) (TIB MOLBIOL, Berlin, Germany) [41]. Oligonucleotides 

were inserted into the lentiviral bicistronic vector pPR1, which allows for co-expression of 

GFP [42]. Recombinant lentiviruses were produced in 293T cells using the calcium-phosphate 

method. Human BJ fibroblasts stably expressing shRNAs were generated by double 

transduction with lentiviruses at a multiplicity of infection (MOI) of 10 for 24h. Transduction 

efficiency of target cells was determined by flow cytometry analysis of GFP using a 

FACSCalibur (Becton Dickinson, Heidelberg, Germany).  

 

Cellular reprogramming 

To test the consequences of HIF1α manipulation on the overall efficiency of iPSC generation, 

BJ fibroblasts, SCR-KD BJ fibroblasts, HIF1-KD BJ fibroblasts, and BJ fibroblasts treated 

with EDHB were reprogrammed to pluripotency using retroviral vectors expressing the four 

Yamanaka factors (4F: OCT4, SOX2, KLF4, and c-MYC), following our previously 

published protocol [21]. To test the effect of HIF1α knockdown on viral-free iPSC derivation, 

BJ fibroblasts, SCR-KD BJ fibroblasts, and HIF1-KD BJ fibroblasts were transfected using 

three non-integrative episomal plasmids containing a total of seven factors (4F plus NANOG, 

LIN28, and SVLT), as previously described [43]. Briefly, 8×10
5
 fibroblasts (BJ, SCR-KD, 

and HIF1-KD) were nucleofected using the Amaxa Cell Line Nucleofector Kit (Lonza, Basel, 
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Switzerland). After nucleofection, fibroblasts were immediately mixed with 500µl DMEM 

medium before seeding into six-well plates. The following day, the cells were cultured using 

ESC medium supplemented with a small molecule cocktail composed by CHIR99021, A-83-

01, PD0325901, and Y-27632 (all from Stemgent) [43]. Four weeks after either retroviral or 

plasmid reprogramming, the cells were fixed and stained for NANOG expression using the 

ABC method (see below). The reprogramming efficiency was defined as the number of 

NANOG positive colonies relative the total starting number of fibroblasts. 

 

Global gene expression analysis 

Biotin-labeled cRNA samples were produced as previously decribed [21] and hybridized onto 

Illumina human-8 BeadChips version 3 (Illumina, San Diego, CA, United States). The 

following samples were used: BJ, BJ-HIF1-KD, BJ-SCR-KD, 4F 24h, 4F 48h, 4F 72h 

(hybridized in duplicate), EDHB 24h, EDHB 48h, EDHB 72h, 4F EDHB 24h, 4F EDHB 48h, 

4F EDHB 72h (hybridized in single). In addition, previously generated array data were 

incorporated in the analysis, including: amniotic fluid cells (AFCs), foreskin fibroblasts (FFs) 

(HFF1 and BJ), dermal fibroblast (DFs) (NFH2), hESC lines (H1 and H9), FFiPSC lines 

(iPS2, iPS4, iB4, and iB5), DFiPSC lines (OiPS3, OiPS6, OiPS8, and OiPS16) (all hybridized 

in duplicate) and AFiPSC (lines 4, 5, 6, 10, hybridized in single, and line 41, hybridized in 

duplicate) [21, 31, 38, 44]. Microarray analysis, PCA plot, and the general heatmap were 

performed using the R/Bioconductor package. Genes were considered significantly expressed 

with detection p values ≤ 0.01. Differential expression analysis was performed using the 

Illumina custom method, using differential p values ≤ 0.01, fold change ratio > 1.5. The 

heatmap for energy metabolism was generated using Microarray Software Suite TM4 

(TMEV.bat) with an input list adapted from SA Biosciences PCR arrays (Human Glucose 

Metabolism PCR Array, www.sabiosciences.com). Pathway analysis was determined by 

mapping onto KEGG pathways using Database for Annotation, Visualization and Integrated 
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Discovery (DAVID) (http://david.abcc.ncifcrf.gov). Microarray results have been deposited in 

the GEO database (accession number GSE37709).  

 

Quantitative real-time PCR (qPCR) 

Real-Time PCR was performed in 384 or 96 Well Optical Reaction Plates (Applied 

Biosystems, Foster City, CA, United States) using SYBR®Green PCR Master Mix (Applied 

Biosystems). Reactions were carried out on the ABI PRISM 7900HT Sequence Detection 

System (Applied Biosystems). Duplicate or triplicate amplifications were carried out for each 

target gene with at least three wells serving as negative controls. Quantification was 

performed using the comparative Ct method (ABI instruction manual), normalized over 

ACTB, and presented as a log2 values with respect to the biological controls. The list of all 

primers used in this study is presented in Supp. Table 4. 

 

Immunostaining and western blotting  

Avidin-Biotin Complex (ABC) method was used to stain NANOG-positive hESC-like 

colonies, as described elsewhere [45]. Briefly, after primary incubation with NANOG 

antibody (1:100, Abcam #ab62734), biotinylated universal secondary antibody was applied 

following the manufacturer's instruction (Vector Laboratories, ABC universal kit #PK-6200). 

The ABC reagent was then added to bind HRP to the primary/secondary complex. HRP 

enzyme activity was then visualized using the chromogen substrate diaminobenzidine 

tetrachloride (DAB, Sigma # D5637). Senescence-associated β-galactosidase staining was 

performed according to the manufacturer's protocol (Cell Signaling, Danvers, MA, USA, 

www.cellsignal.com). Cells stained for NANOG or β-galactosidase were photographed using 

a digital camera (Canon). 

For western blot analysis, nuclear protein extracts were prepared as described in details before 

[46], then resolved by electrophoresis on an 8% sodium dodecyl sulfate-polyacrylamide gel, 
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and transferred to a nitrocellulose membrane (Amersham Biosciences, Freiburg, Germany). 

Blots were probed with antibodies against HIF1α (AB1536; R&D Systems, Minneapolis, MN, 

USA), HIF2α (ab199, Abcam, Cambridge, UK), and YY1 (sc-281; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA). Secondary antibodies were conjugated to Horseradish 

Peroxidase (Dianova, Hamburg, Germany) and peroxidase activity was visualized using the 

Western Lightning Chemiluminescence Reagent Plus (Perkin Elmer Life Sciences, Boston, 

Massachusetts, USA). 

 

Absolute quantification (AQUA) of PKM1 and PKM2 

The mass spectrometry-based AQUA approach was used to determine the absolute 

quantification of PKM1 and PKM2 isoforms, as previously described [8]. Briefly, protein 

samples from yeasts carrying p414TEF-PKM1 or p413TEF-PKM2, somatic cells, and 

pluripotent stem cells were separated on a 10% SDS-PAGE gels and the mass region between 

50-70 kDa were excised. The gel pieces were then subjected to an “in-gel” tryptic digest. The 

AQUA peptide mixture (20 µL), containing all three AQUA peptides, was spiked to the 

samples as soon as the tryptic digest was completed. For quantitation of the tryptic peptides of 

interest, their corresponding AQUA analogue were spiked in the samples after the tryptic 

digest. Analysis was performed on a nanoLC (Eksigent, Ultra 2D) coupled online to a hybrid 

triple quadrupole/ion trap mass spectrometer (AB/SCIEX, QTRAP 5500). The identity of the 

quantified peptides was confirmed by collecting of MS/MS spectra on the QTRAP operating 

in iontrap mode. In order to confirm specificity of the selected tryptic peptides, yeasts 

expressing either only PKM1 or PKM2 were employed. The quantitative values obtained for 

PKM1 and PKM2 were set in ratio with PKM1+2 and all samples were corrected accordingly. 

 

Pyruvate kinase (PK) activity 
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PK was assessed using the Pyruvate Kinase Activity Assay Kit (MAK072, Sigma), according 

to the manufacture`s instruction. Briefly, cells were rapidly homogenized and the rate of PK 

activity was measured by assessing the fluorescence intensity every 5 minutes until the value 

of the most active sample was higher than the one of the highest standard. The results were 

then reported to the total number of cells calculated according to the BCA protein assay kit 

(23225, Pierce, Thermo Scientific). Both PK and protein measurements were obtained with a 

Tecan reader (InfiniteM200). 

  

Bioenergetic profiling 

Assessment of cellular energy metabolism was performed using Seahorse XF24 extra-cellular 

flux analyzer (Seahorse Bioscience, www.seahorsebio.com), as previously described [31]. 

The instrument allows the simultaneous quantification of mitochondrial respiration (oxygen 

consumption rate, OCR) and glycolysis to lactic acid (extracellular acidification rate, ECAR). 

Four mitochondrial inhibitors (all from Sigma) were used in succession. After three basal 

measurements, 1µM oligomycin, a complex V blocker, was added to inhibit OXPHOS. After 

time point 6, the uncoupling agent FCCP was injected into the wells leading to the collapse of 

the mitochondrial membrane potential and to the consumption of oxygen in the absence of 

ATP production. The same FCCP concentration (1µM) was added again after time point 9 to 

monitor the continuous mitochondrial uncoupling. Finally, 1µM rotenone (complex I blocker) 

and 1µM antimycin A (complex III blocker) were simultaneously injected to completely 

inhibit mitochondrial respiration, thus enabling the calculations of both mitochondrial and 

non-mitochondrial respiratory fractions. 40,000 fibroblasts were plated into each well of the 

XF-24 well plates approximately 18h before the analysis. Assays were initiated by removing 

the growth medium and replacing it with unbuffered media, prepared as previously described 

[31].  
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Statistical analysis 

Data are expressed as mean and standard error of the mean (SEM), unless stated otherwise. 

Data were analyzed using GraphPad-Prism software (Prism 4.0, GraphPad Software, Inc.) and 

Windows XP Excel (Microsoft). 

 

Results 

HIF1α activation stimulates glycolysis and enhances the efficiency of reprogramming  

We previously discovered that the protein expression level of PDK1 is elevated in 

human PSCs compared to somatic cells or to PSC-differentiated cells [31]. These findings 

have been independently demonstrated [25] and further supported by the observation that 

small molecule-based PDK1 induction can significantly improve cellular reprogramming 

[22]. Since PDK1 is a known downstream target of HIF1α [15, 16], we first sought to 

determine the level of HIFα protein expression in undifferentiated PSCs. In agreement with 

previous data obtained on hESCs [34], we verified that HIF1α and HIF2α are not 

constitutively activated in human PSCs (Figure 1A). The pattern of nuclear accumulation 

following hypoxic stimulation was a bit different for HIF1α and HIF2α, as it was comparable 

in both fibroblasts and PSCs for HIF1α and instead only present in PSCs for HIF2α, 

suggesting that HIF2α could play a more important role in undifferentiated stem cells, as 

previously described [47].  

We then investigated whether HIF1α activation may influence the induction of 

pluripotency. We observed that the daily addition of 100µM of the PHD inhibitor ethyl-3,4-

dihydroxybenzoate (EDHB) to BJ foreskin fibroblasts could lead to significant increase in the 

efficiency of reprogramming (from 0.001% in BJ cells to 0.005% in BJ cells treated with 

EDHB). This was assayed based on the number of hESC-like colonies expressing the 

pluripotency-regulating protein NANOG four weeks after retroviral transduction of the four 

Yamanaka factors (4F) (Figure 1B, Student’s t test, 4F versus 4F EDHB, p=0.0063). These 
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findings are in agreement with a previous report showing that a different PHD inhibitor, N-

oxaloylglycine, and another HIF1α inducer, Quercetin, could lead to increased efficiency of 

cellular reprogramming in human fibroblast cells [22]. Moreover, HIF1α over-expression has 

been found to improve the induction of iPSC-like colonies in the A549 cancer cell line [48]. 

Since we previously demonstrated that reprogramming to pluripotency is associated 

with a shift to glycolysis [21], we tested whether the HIF1α activator that facilitated 

reprogramming was capable of enhancing glycolysis. Indeed, short-term treatment with 

EDHB was sufficient to decrease the rate of cellular OXPHOS (Figure 1C) and increase 

glycolytic metabolism (Figure 1D). Several parameters related to mitochondrial respiration 

were strongly lowered by the treatment, including the basal respiration, the ATP turnover, the 

maximal respiration rate, and the spare respiratory capacity (Supp. Fig. 1). Overall EDHB 

significantly reduced the ratio between oxygen consumption rate (OCR) and extracellular 

acidification rate (ECAR) (Figure 1E, Student’s t test, EDHB treated versus untreated, 

p<0.005), indicative of a switch to glycolysis. Hence, mimicking HIF1α stimulation in 

somatic cells can amplify the Warburg-like metabolic shift thereby improving iPSC 

generation.  

 

HIF1α depletion down-regulates the glycolytic pathway and hampers iPSC generation 

In order to establish whether the activation of the HIF1α pathway during 

reprogramming is critical for the generation of iPSCs rather than simply supportive, we stably 

knocked-down HIF1α in BJ fibroblasts (HIF1-KD) using a lentivirus-based RNA interference 

approach. A scrambled knockdown (SCR-KD) was included as control. Immunoblot analysis 

confirmed that HIF1-KD fibroblasts were incapable of accumulating HIF1α protein within the 

nucleus under hypoxic exposure (Figure 2A). Both HIF1-KD BJ and SCR-KD BJ exhibited 

normal fibroblast-like growth features and did not show signs of early senescence, as shown 

by β-galactosidase staining (Supp. Fig.2A).  
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Strikingly, NANOG-positive colonies failed to appear in HIF1-KD cells 

reprogrammed with the 4F retroviral transduction (Figure 2B), while SCR-KD cells retained 

the ability to give rise to NANOG-positive hESC-like colonies with an efficiency 

approximately similar to that of wild type BJ fibroblasts (around 0.001%) (Figure 2B). The 

addition of EDHB was not sufficient to overcome the reprogramming block in HIF1-KD cells 

(data not shown). In addition, we assessed the effect of HIF1α depletion using an alternative 

non-integrative episomal plasmid reprogramming approach [43]. Consistent with the 

retroviral data, wild-type BJ and SCR-KD BJ fibroblasts transfected with the episomal 

plasmids could generate NANOG-positive colonies with a similar efficiency (around 

0.0008%) after four weeks of reprogramming (Figure 2B). However, HIF1-KD BJ fibroblasts 

failed to derive hESC-like colonies (Figure 2B). These results imply that cells depleted of 

HIF1α may be incapable of achieving a pluripotent state regardless of the reprogramming 

method, pointing towards an instrumental role of HIF1α in the induction of pluripotency.  

We then sought to gain insights into the possible mechanisms responsible for the 

inability of HIF1-KD cells to undergo efficient reprogramming and performed global 

transcriptomics. Reassuringly, the results confirmed HIF1A as the most down-regulated gene 

in HIF1-KD BJ compared to SCR-KD BJ (Supp. Table 1). Interestingly, pathway analysis 

revealed that among the most significantly down-regulated pathways in HIF1-KD compared 

to SCR-KD (fold change > 1.5) there were the mTOR signaling pathway, which is known to 

be associated with HIF1α and the regulation of energy metabolism [4], and the pathways 

related to glycolysis and gluconeogenesis (Figure 2C). We then assessed the bioenergetic 

profiling of fibroblasts and found that the lack of HIF1α did not alter their basal glucose 

metabolism, as indicated by the maintenance of OCR/ECAR ratio (Figure 2D).  Indeed, the 

rate of OXPHOS (Supp. Fig. 2B) and glycolysis (Supp. Fig. 2B) appeared similar in HIF1-

KD fibroblasts, SCR-KD, and wild-type BJ fibroblasts. Overall, the data suggest that HIF1α 

ablation may not be sufficient to alter the basal metabolism of fibroblasts but it might hinder 
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reprogramming through the down-regulation of target genes that have to be activated in order 

to enable the establishment of pluripotency. Since genes associated with glycolysis and 

gluconeogenesis have been previously found to be up-regulated in undifferentiated PSCs 

compared to fibroblasts [25, 31], it may be conceivable that cells that are not capable of 

correctly activating a glycolytic program may also be refractory to efficient iPSC conversion. 

 

Up-regulation of HIF1α-associated metabolic regulators during initiation of 

reprogramming  

To follow up the hypothesis that knockdown of HIF1α may alter the transcriptional re-

configuration of energy metabolism and that this may be crucial for reprogramming, we 

sought to focus on regulated gene expression occurring within the initiation phase of iPSC 

derivation. Indeed, we previously observed that the Gene Ontology (GO) biological process 

of “response to hypoxia” was significantly regulated during early reprogramming [40]. We 

thus analyzed the transcriptome of foreskin fibroblasts (FFs) at 24h, 48h, and 72h after i) 

treatment with 100µM EDHB (EDHB 24h, 28h, 72h), ii) transduction with the four 

reprogramming factors (4F 24h, 48h, 72h), and iii) both (4F EDHB 24h, 48h, 72h). These data 

were compared to the transcriptome of fully reprogrammed iPSCs derived from FFs [21, 31], 

from adult dermal fibroblasts (DFs) [38], and from amniotic fluid cells (AFCs) [44], and of 

hESCs.  

Principal component analysis (PCA) revealed that at these early time points neither 

HIF1α manipulation nor 4F retroviral transduction was sufficient to extensively alter the 

global transcriptional signature of somatic cells, which clustered together and apart from all 

PSCs (Figure 3A). The expression level of the most significantly highly up- or down-

regulated genes (fold change > 20) in PSCs compared to somatic cells remained unaffected in 

somatic fibroblasts exposed to 4F transduction and/or HIF1α activation (Figure 3B). In 

particular, among these top-regulated genes, none appeared regulated in EDHB-treated 
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fibroblasts (Supp. Table 2) and only a few genes related to the viral-mediated introduction of 

transcription factors (such as OCT4, the OCT4 pseudogene-1, and the cancer-associated H19) 

were up-regulated in early 4F-transduced fibroblasts (Supp. Table 2). 

We next focused on genes associated with HIF1α, energy metabolism, and mTOR 

signaling pathways (Supp. Table 3). The mRNA expression level of HIF1A and HIF2A genes 

was not altered upon early reprogramming or EDHB treatment (Supp. Table 3), as also 

confirmed by qPCR analyses (Supp. Fig. 3A). Accordingly, no changes in HIF1A or HIF2A 

gene expression could be observed in PSCs compared to somatic cells, both under normoxic 

and hypoxic exposure (Supp. Fig. 3B). This is in agreement with previous findings showing 

the lack of HIF1A transcriptional activation under hypoxia in hESCs [34]. Interestingly, 

however, the expression of some of the genes associated with energy metabolism underwent 

modifications during early reprogramming (Supp. Table 3, Supp. Fig. 4). Among the 

metabolism-related genes exhibiting early up-regulation in 4F-transduced cells or EDHB-

treated cells, we identified three HIF1α target factors known to regulate a reconfiguration of 

energy flux: PKM2, PDK1, and PDK3 (Supp. Fig. 4).  

PKM2, PDK1, and PDK3 gene expression in fibroblasts showed an increase following 

EDHB treatment, as confirmed by qPCR analysis (Figure 4A). This is in agreement with 

previous data linking HIF1α activation with PDK1-3 induction [15-17] and with PKM2 gene 

transcription [18]. Importantly, the sole introduction of the four factors into fibroblasts 

resulted in the early up-regulation of PDK1 (Figure 4A). On the other hand, PKM2 and PDK3 

were not up-regulated following 4F transduction (Figure 4A), indicating that the conventional 

Yamanaka protocol may not be sufficient to induce the early expression of these two factors 

which instead require the additional activation of the HIF1α pathway.  

Finally, we confirmed that elevated expression of these three glycolytic regulators 

could occur in human fibroblasts following both EDHB treatment (Figure 4B) and hypoxic 

exposure (Figure 4C). Importantly, PKM2, PDK1, and PDK3 were not up-regulated in HIF1-
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KD fibroblasts treated with EDHB (Figure 4B, one-way ANOVA, p<0.005) or cultured under 

hypoxia (Figure 4C, one-way ANOVA, p<0.005). No alteration of the basal expression of 

genes associated with the pathways of HIF1α, energy metabolism, and mTOR could be 

detected in HIF1-KD compared to SCR-KD (with the exception of the down-regulation of 

HIF1a) (Supp. Table 3). Hence, although fibroblasts bearing HIF1α knockdown showed a 

normal fibroblast-like basal metabolism (Figure 2D) and normal fibroblast-like metabolic-

related transcriptional signature (Supp. Table 3), they appeared incapable of up-regulating the 

expression of key glycolytic inducers. This implicates the Warburg-like transcriptional 

modulation of energy metabolism as a potential enabling step for initiating cellular 

reprogramming. 

 

Elevated expression of the HIF1α-related glycolytic regulators PKM2, PDK1, and PDK3 

in pluripotent stem cells  

We next investigated the association of the three HIF1α-related metabolic regulators 

with pluripotency. The expression level of PDK1, PDK3, and PKM2 was measured in 

FFiPSCs, DFiPSCs and hESCs, under both normoxia and 24h 1% hypoxia, and compared it 

to that in FFs (for FFiPSCs), DFs (for DFiPSCs), and all somatic fibroblasts (for hESCs) 

grown under normoxic conditions. In agreement with previous protein expression data [25, 

31], the transcriptional level of PDK1 appeared up-regulated in all PSCs (Figure 5A). 

However, PDK1 induction was statistically significant in iPSCs only under hypoxic 

conditions (Figure 5A, Student’s t test, hypoxic iPSCs versus normoxic fibroblasts, p<0.05), 

while both normoxic and hypoxic hESCs exhibited significant PDK1 up-regulation (Figure 

5A, Student’s t test, normoxic/hypoxic hESCs versus normoxic fibroblasts p<0.005). PDK3 

was significantly up-regulated in both iPSCs (Figure 5B, Student’s t test, normoxic/hypoxic 

iPSCs versus normoxic fibroblasts p<0.05) and hESCs (Figure 5B, Student’s t test, 

normoxic/hypoxic hESCs versus normoxic fibroblasts p<0.005) under normoxia and hypoxia, 
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although it was more elevated in iPSCs under hypoxic growth (Figure 5B, Student’s t test, 

hypoxic iPSCs versus normoxic fibroblasts p<0.005). Hence, the exposure to hypoxia led to 

increased up-regulation of PDK1 and PDK 3 in all iPSCs but not in hESCs, which showed 

elevated expression of the two genes already under normoxic growth (Figure 5A and 5B). 

This differential response to hypoxic stimuli between somatic-derived and embryonic-derived 

PSCs may be explained by recent evidence demonstrating that they may not be equivalent in 

terms of their pluripotency [49-51]. Alternatively, it may be simply due to the known 

heterogeneity displayed by different PSC lines [52]. In any case, further studies are warranted 

to dissect this differential response to hypoxic stimuli between iPSCs and hESCs.  

 In order to dissect the role of PKM2 in PSCs, we first sought to employ mass 

spectrometry-based targeted proteomic analysis. This approach allows the quantification of 

the absolute amount of the two alternatively-spliced isoforms encoded by the PKM2 gene, 

PKM1 and PKM2, and it was previously carried out in healthy and tumor-associated tissues 

[8]. Remarkably, in comparison to fibroblasts, both iPSCs and hESCs exhibited reduced 

PKM1 (Figure 5C, Student’s t test, PSCs versus FFs p<0.05) coupled with significantly 

elevated amounts of PKM2 (Figure 5D, Student’s t test, PSCs versus FFs p<0.005). Overall, 

the PKM2/PKM1 ratio appeared significantly increased in PSCs under both normoxic and 

hypoxic conditions (Figure 5E, Student’s t test, normoxic/hypoxic PSCs versus 

normoxic/hypoxic FFs p<0.01). The PKM2 isoform is known to display reduced enzymatic 

activity [12]. Thus, we next measured the PK functionality in fibroblasts and PSCs and 

identified a diminished PK activity in all PSCs (Figure 5F, Student’s t test, PSCs versus wild-

type BJ, p<0.005). This implies that the elevated expression of PKM2 in PSCs may be 

functionally relevant and could contribute to the maintenance of the glycolytic phenotype of 

PSCs.  

Taken together, undifferentiated iPSCs and hESCs express high levels of three HIF1α 

downstream targets, whose function mediates a Warburg-like effect by increasing the energy 
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flux in the upstream glycolytic branches and PPP, which may eventually lead to biomass 

stimulation and redox maintenance [6, 7]. Furthermore, since reprogramming efficiency is 

increased upon EDHB treatment (Figure 1B) or hypoxic stimulation [36], it is tempting to 

speculate that the elevated expression of PKM2 and PDK3 detected in fibroblasts exposed to 

EDHB or hypoxia (Figure 4B and 4C) may possibly play a role in improving the conversion 

to iPSCs by additional metabolic modulation towards a glycolytic state.  

 

Metabolic remodeling during initiation of reprogramming  

Finally, we asked whether the transcriptional activation of metabolic regulators during 

reprogramming initiation was sufficient to induce a metabolic reconfiguration. Bioenergetic 

profiling of fibroblasts following 4F transduction indicated that mitochondrial respiration 

increased over the first three days of reprogramming (Figure 6A). However, the elevation of 

glycolysis appeared more pronounced (Figure 6B). The additional treatment with EDHB 

resulted in enhanced glycolytic conversion, with drastic OCR reduction (Figure 6C) and 

higher ECAR values (Figure 6D). Overall, 4F transduction led to progressive decrease in the 

OCR/ECAR ratio, indicative of initial conversion to glycolytic metabolism (Figure 6E, 

Student’s t test, 4F-transduced BJ versus wild-type BJ, p<0.05). In accordance, the amount of 

extracellular lactate in 4F-tranduced fibroblasts showed a similar gradual increase during the 

first days of reprogramming (Figure 6F, Student’s t test, 4F-transduced BJ versus wild-type 

BJ, p<0.05). Nonetheless, this metabolic remodeling does not appear to be completed at these 

early stages, as shown by the much higher lactate secretion occurring in fully reprogrammed 

iPSCs and hESCs (Figure 6F, Student’s t test, PSCs versus BJ, p<0.005). The additional 

exposure to a drug mimicking HIF1α activation may thus improve the efficiency of iPSC 

generation through the early enhancement of glycolytic activation, as shown by a dramatic 

OCR/ECAR decrease (Figure 6E, Student’s t test, 4F-EDHB treated BJ versus BJ, p<0.005).   
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On the basis of data herein presented, we suggest that the introduction of the four 

Yamanaka factors in human fibroblasts may be sufficient to up-regulate the HIF1α target 

PDK1, which can in turn initiate a glycolytic program. On the other hand, the inclusion of 

hypoxia or EDHB treatment may stimulate the expression of additional HIF1α-related 

metabolic regulators PDK3 and PKM2, enhancing the glycolyitc shift at the very early stages 

of reprogramming and eventually leading to improved iPSC derivation. Finally, 

reprogramming may be inhibited in cells that are incapable of activating HIF1α and up-

regulating these three metabolic regulators, further underlying the importance of HIF1α-

associated metabolic restructuring in the induction of pluripotency in somatic cells (Figure 7). 

 

Discussion 

We and others have previously demonstrated that cell fate reprogramming is 

associated with a transition from respiratory to glycolytic metabolism [21-26]. Tumor cells 

are believed to undergo similar metabolic transformation events in order to sustain the cost of 

anabolic reactions caused by their high proliferative rate and resistance to stress signals [4]. 

Thus, metabolic adaptation appears as a crucial mechanism for proliferating cells, which 

require to build biomass and the same time preserve the redox balance [6]. Here, we sought to 

uncover possible mechanistic pathways underlying the metabolic reprogramming of iPSCs 

and demonstrated that HIF1α, a master regulator of glucose metabolism [13, 14], plays a 

critical role during the induction of pluripotency by modulating the early establishment of a 

glycolytic program. 

Hypoxia and HIF1α have been previously implicated in the maintenance of 

pluripotency. Indeed, hypoxic conditions have been found to lead to improved stemness and 

reprogramming [33, 36]. HIF1α activation could induce hESC-like signature in cancer cell 

lines [48] and drive mouse ESCs to acquire glycolytic features upon transition towards an 

epiblast stem cell (EpiSC)-like state [53]. Moreover, stabilization of hypoxia and HIF1α 
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inhibits the metabolic shift to OXPHOS that is required for efficient differentiation of human 

mesenchymal stem cells [54]. Hypoxic exposure may also increase the protein expression 

UCP2 [55], a regulator of energy metabolism in undifferentiated PSCs [26]. Finally, hypoxia 

might lead to OCT4 reactivation to promote the de-differentiation of PSC-derived progenies 

[56]. Our results provide additional support for all these findings and demonstrate that cells 

incapable of activating a HIF1α response might also be refractory to reprogramming, thus 

underlying the critical importance of this pathway for the induction and maintenance of 

pluripotency.  

Our data suggest that a glycolytic shift may be instrumental for reprogramming as it 

may be set into motion during the reprogramming initiation stage through the early up-

regulation of the HIF1α target PDK1. Indeed, PSCs exhibit elevated PDK1 protein expression 

[25, 31]. Moreover, small molecule-based activation of PDK1 can improve iPSC derivation 

[22], while PDK1 inhibitors lead to reduced hESC-like colony formation [23]. Hence, PDK1 

may possibly represent an early marker of reprogramming involved in the Warburg-like 

metabolic restructuring associated with the conversion to pluripotency.  

The findings also provide additional support to previous data showing that during 

reprogramming, glycolysis-associated genes may be up-regulated prior to genes involved in 

self-renewal and pluripotency [23]. Furthermore, transcriptional changes in the processes 

related to cellular metabolism have been detected during the first initial wave of 

reprogramming, which has been suggested to be under the control of KLF4 and c-MYC [57]. 

It is thus tempting to speculate that KLF4 and c-MYC may be driving the transcriptional and 

bioenergetic modulation observed during the initiation of cellular reprogramming. Indeed, the 

oncogene c-MYC can co-operate with HIF1α  to induce a transcriptional program leading to 

stimulated glycolytic activity [58, 59], although a glycolytic shift has been observed even in 

iPSCs derived in the absence of c-MYC [23]. KLF4 may be capable of activating glycolytic 

metabolism in cancer cells [60] and KLF5, which can substitute KLF4 in the reprogramming 
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cocktail [61], can regulate energy metabolism and up-regulates uncoupling protein 2 (UCP2) 

[62], a protein recently linked to  the glycolytic state of PSCs [26]. Nonetheless, it may as 

well be that the key stemness factor OCT4 could regulate downstream targets implicated in 

OXPHOS and glycolysis [28, 63]. In fact, OCT4 expression intermingles with HIF signaling 

pathways [47] and may positively interact with PKM2 [64]. Further studies are warranted to 

clearly dissect the specific roles of the Yamanaka factors in the remodeling of energy 

metabolism of reprogrammed cells. 

Finally, since reconfiguration of glucose metabolism could have significant 

advantages in preventing redox imbalance [5, 65], it is conceivable that iPSC generation may 

require such metabolic reprogramming in order to safeguard the genome integrity. Nuclear 

and mitochondrial genetic defects have been reported in human iPSCs [31, 66, 67]. Perhaps, 

the suppression of metabolic resetting may function as a reprogramming roadblock by 

inducing an uncontrolled rise of genomic damage which may be incompatible with 

continuous cell growth. In accordance, pro-oxidant reactions can promote PSC differentiation 

[68].  

It is important to note that our analyses were performed on whole cultures and may 

thus not necessarily mirror the situation occurring in the small percentage of cells actually 

undergoing reprogramming. Reassuringly, a recent work employing single-cell analysis 

showed that reprogramming is initiated in the majority of virally transduced fibroblasts, 

although only completed in a smaller cellular subpopulation [69]. Since we mainly focused on 

early reprogramming initiation, it is then possible that our data may reflect real 

reprogramming-related cellular conditions. Nevertheless, given the known heterogeneity of 

single PSC lines [49, 52], it would be of interest to repeat our relatively small-scale 

investigation (which included two hESC lines and thirteen human iPSC lines derived from 

three different cell sources, i.e. foreskin fibroblasts, dermal fibroblasts, and amniotic fluid 

Page 23 of 72



 24 

cells) using larger datasets of several human and murine PSCs to clearly demonstrate the role 

of HIF1α and glycolytic regulation in cell fate conversion. 

Overall, our results indicate that HIF1α-mediated reconfiguration of glucose 

metabolism may represent an early enabling step of cellular reprogramming, a barrier that has 

to be overcome in order to make somatic cells capable of sustaining their newly acquired 

proliferative and biosynthetic needs. We anticipate that the study of metabolism in stem cells 

may unveil critical mechanisms governing the induction of pluripotency, eventually 

elucidating the pathways responsible for allowing this remarkable example of cellular 

plasticity.  
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Figure legends 

Figure 1. Mimicking HIF1α activation facilitates iPSC reprogramming. (A) HIF1α and 

HIF2α nuclear accumulation in foreskin fibroblasts (FFs), hESCs, and FFs-derived iPSCs 

(FFiPSCs) under normoxic conditions (N) and following 24h hypoxic incubation with 1% 

oxygen (H). The transcription factor YY1 was used for normalization of nuclear extracts. (B) 

BJ fibroblasts were transduced with the four factor cocktail (4F) alone or in combination with 

daily treatment with 100µM EDHB (4F EDHB). All cells were plated under reprogramming 

conditions, fixed four weeks later, and immunostained against the pluripotency-associated 

protein NANOG, according to the Avidin-Biotin Complex (ABC) protocol. The experiments 

were repeated three times. Bar graphs represent the mean and standard deviation of the 

average number of NANOG-positive hESC-like colonies detected. **p=0.0063, two-tailed 

Unpaired Student’s t test, 4F EDHB versus 4F (C) Oxygen consumption rate (OCR), 

indicative of OXPHOS activity, was assessed using the Seahorse cellular flux analysis. Wild 

type FFs (BJ cells) (black line) were compared to FFs treated with EDHB for 24h (yellow 

line), 48h (orange line), and 72h (red line). (D) Extracellular acidification rate (ECAR), 

indicative of glycolytic activity, was measured at the same time as OCR in the same samples. 

(E) OCR/ECAR ratio was calculated in order to generate a clear estimate of the overall 

metabolic state of the cells. ***p<0.005, two-tailed Unpaired Student’s t test: EDHB 24h 

versus BJ (p=0.0043), EDHB 48h versus BJ (p=0.0025), and EDHB 72h versus BJ 

(p=0.0032). 

 

Figure 2. HIF1α knockdown inhibits reprogramming. (A) Immunoblot analysis confirmed 

that HIF1-KD BJ fibroblasts were incapable of accumulating HIF1α protein in the nucleus 

upon hypoxic stimulation while SCR-KD BJ fibroblasts retained this ability. (B) Wild-type 

BJ fibroblasts, SCR-KD BJ fibroblasts, and HIF1-KD BJ fibroblasts were reprogrammed to 

pluripotency using either a classical retroviral approach with the four Yamanaka factors (4F: 
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OCT4, SOX2, KLF4, and c-MYC) or with episomal plasmids (expressing the four factors 

plus NANOG, LIN28, and SV40L). After four weeks of culturing under hESC conditions, 

wild type BJ and SCR-KD BJ cells developed hESC-like colonies in a comparable fashion, as 

shown by the similar number of colonies that resulted positive for the pluripotency-associated 

marker NANOG (monitored with the Avidin-Biotin Complex method). However, NANOG-

positive hESC-like colonies  were not generated in HIF1-KD BJ cells, regardless of the 

reprogramming method employed. (C) List of the most significantly down-regulated 

pathways (fold change > 1.5) in HIF1-KD BJ compared to SCR-KD BJ. (D) The ratio of 

OCR/ECAR, indicating the metabolic cell state, was calculated in fibroblasts maintained 

under basal conditions using the seahorse bioanalyzer. 

 

Figure 3. Transcriptional modulation during reprogramming initiation. (A) Principal 

component analysis (PCA) showing the clustering of the transcriptomes of the following 

somatic cells: FFs, DFs, amniotic fluid cells (AFCs), FFs knocked-down for HIF1α 

(HIF1.KD) and knocked-down for a scrambled transcript (SCR-KD), FFs transduced with the 

four factors only for 24, 48, and 72h (4F 24h, 4F 48h, 4F 72h) or in combination with daily 

100 µM EDHB (4F EDHB 24h, 4F EDHB 48h, 4F EDHB 72h), and FFs only treated with 

EDHB (EDHB 24h, EDHB 48h, EDHB 72h), and the following pluripotent stem cells: 

hESCs, FFiPSCs, DFiPSCs, and AFCs-derived iPSCs (AFiPSCs). (B) Heatmap depicting the 

genes most highly down and up-regulated (fold change > 20) in somatic-derived and 

embryonic-derived pluripotent stem cells compared to wild type untreated somatic cells. 

Different iPSCs were compared to their respective somatic cells, while hESCs were compared 

to the average of all wild-type somatic cells. The samples include wild-type untreated somatic 

cells (grey bar), FFs harvested 24h, 48h, and 72h after 4F transduction (green bar), FFs treated 

with EDHB for the same time points (yellow bar), FFs exposed to both 4F and EDHB 

treatment (purple bar), iPSCs (black bar), and hESCs (red bar). Values indicate row-
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normalized log2 average expression values; down-regulated genes are indicated in green, up-

regulated genes in red.  

 

Figure 4. Up-regulation of HIF1α-related metabolic regulators during early 

reprogramming. (A) qPCR analysis of HIF1α targets known to play a role in regulating 

glycolytic metabolism (PKM2, PDK1, and PDK3) during the first three days of 

reprogramming initiation. Relative mRNA level to ACTB is presented in comparison to wild-

type untreated FFs. Green line: FFs transduced with the four factors; yellow line: FFs treated 

with EDHB; purple line: FFs transduced with the 4F and treated with EDHB at the same time. 

(B) Expression of PKM2, PDK1, and PDK3 after 24h EDHB treatment in wild type FFs (BJ 

and HFF1), SCR-KD fibroblasts, and HIF1-KD fibroblasts. ***p<0.005, One-way ANOVA 

single factor: PKM2 (p=5 E-07), PDK1 (p=9 E-06), and PDK3 (p=1 E-07). (C) 

Transcriptional level of the three glycolytic regulators after 24h exposure to 1% hypoxia. 

***p<0.005, One-way ANOVA single factor: PKM2 (p=4 E-05), PDK1 (p=9 E-08), and 

PDK3 (p=1 E-07).   

 

Figure 5. PKM2, PDK1, and PDK3 are highly expressed in PSCs. (A) Relative PDK1 

mRNA expression in: FFiPSCs (iPS2, iPS4, iB4, and iB5) under normoxia and hypoxia in 

relation to normoxic FFs (HFF1 and BJ); DFiPSCs (OiPS6, OiPS8, and OiPS16) under 

normoxia and hypoxia in relation to normoxic DFs (NFH2); and hESCs (H1 and H9) under 

normoxia and hypoxia in relation to all fibroblasts (HFF1, BJ, and NFH2) grown under 

normoxic conditions. **p=0.0098, two-tailed Unpaired Student’s t test, hypoxic FFiPSCs 

versus normoxic FFs. *p=0.043, two-tailed Unpaired Student’s t test, hypoxic DFiPSCs 

versus normoxic DFs. ***p<0.005, two-tailed Unpaired Student’s t test: normoxic hESCs 

versus all normoxic fibroblasts (p=0.0005), hypoxic hESCs versus all normoxic fibroblasts 

(p=0.0011). (B) Relative expression of PDK3 in PSCs under normoxia and hypoxia compared 
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to normoxic somatic fibroblasts. *p=0.023, two-tailed Unpaired Student’s t test, normoxic 

FFiPSCs versus normoxic FFs. **p=0.0061, two-tailed Unpaired Student’s t test, normoxic 

DFiPSCs versus normoxic DFs. ***p<0.005, two-tailed Unpaired Student’s t test: normoxic 

hESCs versus all normoxic fibroblasts (p=0.0007), hypoxic FFiPSCs versus normoxic FFs 

(p=0.0009), hypoxic DFiPSCs versus normoxic DFs (p=0.0021), hypoxic hESCs versus all 

normoxic fibroblasts (p=0.0002) (C) Absolute protein quantification of PKM1 in FFs, 

FFiPSCs, and hESCs. *p<0.05, two-tailed Unpaired Student’s t test, FFiPSCs versus FFs and 

hESCs versus FFs. (D) Absolute protein quantification of PKM2 in FFs (HFF1 and BJ), 

FFiPSCs (iPS2, iPS4, iB4, and iB5), and hESCs (H1 and H9). ***p<0.005, two-tailed 

Unpaired Student’s t test, FFiPSCs versus FFs and hESCs versus FFs. (E) PKM2/PKM1 ratio 

in FFs, FFiPSCs, and hESCs grown under normoxic and hypoxic conditions. **p<0.01, two-

tailed Unpaired Student’s t test, normoxic hESCs versus normoxic FFs. ***p<0.005, two-

tailed Unpaired Student’s t test, normoxic FFiPSCs versus normoxic FFs, hypoxic FFiPSCs 

versus hypoxic FFs, and hypoxic hESCs versus hypoxic FFs. (F) Rate of PK activity, 

normalized over the total protein amount, was measured in wild type FFs (BJ and HFF1), 

SCR-KD and HIF1-KD fibroblasts, FFiPSCs (iB4, and iB5), and hESCs (H1 and H9). 

***p<0.005, two-tailed Unpaired Student’s t test, iB4 versus BJ, iB5 versus BJ, H1 versus BJ, 

and H9 versus BJ. 

 

Figure 6. Metabolic shift during early reprogramming. (A) OCR profile of wild-type FFs 

(BJ) and FFs after 24h, 48h, and 72h from 4F transduction. (B) ECAR profile of FFs at the 

basal level and after 4F introduction. (C) OCR profile in BJ fibroblasts treated with the HIF1α 

mimicker EDHB in addition to the 4F transduction. (D) ECAR profile in FFs and 4F-EDHB 

FFs. (E) OCR/ECAR ratio gradually decreases during reprogramming initiation while it is 

drastically reduced upon the additional introduction of EDHB to the reprogramming cocktail. 

*p=0.0370, two-tailed Unpaired Student’s t test, 4F 48h versus BJ. **p=0.0062, two-tailed 
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Unpaired Student’s t test, 4F 72h versus BJ. ***p<0.005, two-tailed Unpaired Student’s t test: 

4F EDHB 24h versus BJ (p=0.0045), 4F EDHB 48h versus BJ (p=0.0001), and EDHB 72h 

versus BJ (p=0.0002). (F) Production of extracellular lactate in FFs (BJ, SCR-KD, HIF1-KD), 

FFs transduced with the 4F, hESCs (H1 and H9), and BJ-FFiPSCs (iB4 and iB5). The values 

are reported to the amount of lactate generated in control wild-type BJ fibroblasts. *p<0.05, 

two, two-tailed Unpaired Student’s t test: 4F 24h versus BJ (p=0.035), 4F 48h versus BJ 

(p=0.021). **p<0.01, two-tailed Unpaired Student’s t test, 4F 72h versus BJ (p=0.008). 

***p<0.005, two-tailed Unpaired Student’s t test: hESCs versus BJ (p=0.0035), BJ FFiPSCs 

versus BJ (p=0.0041).  

 

Figure 7. HIF1α-associated metabolic reconfiguration during reprogramming initiation.  

Cartoon depicting the potential mechanisms through which the introduction of the 4F or the 

modulation of HIF1α pathway might regulate glycolytic metabolism during the early stages of 

somatic cell reprogramming. The introduction of the 4F in somatic fibroblasts up-regulates 

the HIF1α target PDK1, which re-routes the energy flux outside the mitochondria, thereby 

enhancing the glycolytic metabolism. HIF1α activation up-regulates additional HIF1α targets 

PKM2 and PDK3, further increasing the glycolytic shift and eventually resulting in improved 

conversion to pluripotency.  

 

Supp. Figure 1. (A) Basal respiration in BJ fibroblasts and in BJ fibroblasts treated for three 

days with 100µM EDHB was calculated by subtracting the OCR values following rotenone 

and antimycin A treatment from the basal OCR values. (B) ATP turnover was estimated by 

subtracting OCR measurements after oligomycin introduction from the basal OCR 

measurements. (C) Maximal respiration rate was calculated by subtracting the OCR values 

after rotenone and antimycin a exposure from the OCR values after FCCP exposure. (D) 
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Spare respiratory capacity was estimated by subtracting the basal OCR measurements from 

OCR measurements following FCCP injection.  

 

Supp. Figure 2. (A) Neonatal foreskin fibroblasts BJ were transduced with lentiviruses 

containing shRNA sequences against human HIF1α (BJ-HIF1-KD) and scrambled control 

oligonucleotides (BJ-SCR-KD). The transduced cells maintained fibroblast-like growth 

features and did not display signs of senescence, as shown by lack of β-galactosidase staining. 

(B) OCR profile of BJ, SCR-KD, and HIF1-KD fibroblasts. (C) ECAR profile of BJ, SCR-

KD, and HIF1-KD fibroblasts. 

 

Supp. Figure 3. (A) HIF1A and HIF2A expression level in FFs following 4F transduction 

and/or EDHB treatment. (B) HIF1A and HIF2A expression level in normoxic and hypoxic 

FFiPSCs, DFiPSCs, and hESCs in relation to normoxic FFs, DFs, and FFs + DFs, 

respectively.  

 

Supp. Figure 4. Heatmap and clustering of genes involved in energy metabolism (list taken 

from the Human Glucose Metabolism PCR Array). Values represent the ratio over wild-type 

untreated FFs; down-regulated genes are indicated in green, up-regulated genes in red. PDK1, 

PDK3, and PKM2 are shown with blue arrows. 

 

Supplementary Table 1. List of the 30 most significantly down-regulated genes and 30 most 

significantly up-regulated genes in HIF1-KD cells compared to SCR-KD cells. Reported are 

the average (AVG) signals of the top genes in the two samples, the differential p values 

calculated between HIF1-KD and SCR-KD (light blue, p<0.05; dark blue, p<0.01), the ratios 

calculated as the AVG signal of HIF1-KD over the AVG signal of SCR-KD, and the log2 
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ratio values (fold change down-regulation >1.5 is depicted in green, fold change up-regulation 

>1.5 in red). 

 

Supplementary Table 2. List of the genes most highly up- and down-regulated (fold change 

> 20) in PSCs compared to somatic cells. Reported are the average intensity values of all the 

samples utilized for global gene expression analysis. Genes up-regulated in comparison to 

wild-type fibroblasts are highlighted in red, down-regulated genes in green. 

 

Supplementary Table 3. List of genes associated with HIF1α, energy metabolism, and 

mTOR/autophagy. Reported are the LOG2 ratio values of PSCs over the respective somatic 

fibroblasts (FFs for FFiPSCs, DFs for DFiPSCs, AFCs for AFiPSCs, FFs plus DFs and AFCs 

for hESCs), FFs transduced with the 4F or treated with EDHB over untreated wild-type FFs, 

and HIF1-KD BJ fibroblasts over SCR-KD BJ fibroblasts. Up-regulated genes are highlighted 

in red. 

 

Supplementary Table 4. List of primers used for quantitative real-time PCR.  
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Figure 1. Mimicking HIF1α activation facilitates iPSC reprogramming. (A) HIF1α and HIF2α nuclear 
accumulation in foreskin fibroblasts (FFs), hESCs, and FFs-derived iPSCs (FFiPSCs) under normoxic 

conditions (N) and following 24h hypoxic incubation with 1% oxygen (H). The transcription factor YY1 was 

used for normalization of nuclear extracts. (B) BJ fibroblasts were transduced with the four factor cocktail 
(4F) alone or in combination with daily treatment with 100µM EDHB (4F EDHB). All cells were plated under 
reprogramming conditions, fixed four weeks later, and immunostained against the pluripotency-associated 
protein NANOG, according to the Avidin-Biotin Complex (ABC) protocol. The experiments were repeated 
three times. Bar graphs represent the mean and standard deviation of the average number of NANOG-

positive hESC-like colonies detected. **p=0.0063, two-tailed Unpaired Student’s t test, 4F EDHB versus 4F 
(C) Oxygen consumption rate (OCR), indicative of OXPHOS activity, was assessed using the Seahorse 

cellular flux analysis. Wild type FFs (BJ cells) (black line) were compared to FFs treated with EDHB for 24h 
(yellow line), 48h (orange line), and 72h (red line). (D) Extracellular acidification rate (ECAR), indicative of 
glycolytic activity, was measured at the same time as OCR in the same samples. (E) OCR/ECAR ratio was 

calculated in order to generate a clear estimate of the overall metabolic state of the cells. ***p<0.005, two-

tailed Unpaired Student’s t test: EDHB 24h versus BJ (p=0.0043), EDHB 48h versus BJ (p=0.0025), and 
EDHB 72h versus BJ (p=0.0032).  
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Figure 2. HIF1α knockdown inhibits reprogramming. (A) Immunoblot analysis confirmed that HIF1-KD BJ 
fibroblasts were incapable of accumulating HIF1α protein in the nucleus upon hypoxic stimulation while SCR-
KD BJ fibroblasts retained this ability. (B) Wild-type BJ fibroblasts, SCR-KD BJ fibroblasts, and HIF1-KD BJ 
fibroblasts were reprogrammed to pluripotency using either a classical retroviral approach with the four 
Yamanaka factors (4F: OCT4, SOX2, KLF4, and c-MYC) or with episomal plasmids (expressing the four 

factors plus NANOG, LIN28, and SV40L). After four weeks of culturing under hESC conditions, wild type BJ 
and SCR-KD BJ cells developed hESC-like colonies in a comparable fashion, as shown by the similar number 
of colonies that resulted positive for the pluripotency-associated marker NANOG (monitored with the Avidin-

Biotin Complex method). However, NANOG-positive hESC-like colonies  were not generated in HIF1-KD BJ 
cells, regardless of the reprogramming method employed. (C) List of the most significantly down-regulated 
pathways (fold change > 1.5) in HIF1-KD BJ compared to SCR-KD BJ. (D) The ratio of OCR/ECAR, indicating 
the metabolic cell state, was calculated in fibroblasts maintained under basal conditions using the seahorse 

bioanalyzer.  
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Figure 3. Transcriptional modulation during reprogramming initiation. (A) Principal component analysis 
(PCA) showing the clustering of the transcriptomes of the following somatic cells: FFs, DFs, amniotic fluid 
cells (AFCs), FFs knocked-down for HIF1α (HIF1.KD) and knocked-down for a scrambled transcript (SCR-

KD), FFs transduced with the four factors only for 24, 48, and 72h (4F 24h, 4F 48h, 4F 72h) or in 
combination with daily 100 µM EDHB (4F EDHB 24h, 4F EDHB 48h, 4F EDHB 72h), and FFs only treated with 

EDHB (EDHB 24h, EDHB 48h, EDHB 72h), and the following pluripotent stem cells: hESCs, FFiPSCs, 
DFiPSCs, and AFCs-derived iPSCs (AFiPSCs). (B) Heatmap depicting the genes most highly down and up-

regulated (fold change > 20) in somatic-derived and embryonic-derived pluripotent stem cells compared to 
wild type untreated somatic cells. Different iPSCs were compared to their respective somatic cells, while 

hESCs were compared to the average of all wild-type somatic cells. The samples include wild-type untreated 
somatic cells (grey bar), FFs harvested 24h, 48h, and 72h after 4F transduction (green bar), FFs treated 

with EDHB for the same time points (yellow bar), FFs exposed to both 4F and EDHB treatment (purple bar), 
iPSCs (black bar), and hESCs (red bar). Values indicate row-normalized log2 average expression values; 

down-regulated genes are indicated in green, up-regulated genes in red.  
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Figure 4. Up-regulation of HIF1α-related metabolic regulators during early reprogramming. (A) qPCR 
analysis of HIF1α targets known to play a role in regulating glycolytic metabolism (PKM2, PDK1, and PDK3) 

during the first three days of reprogramming initiation. Relative mRNA level to ACTB is presented in 
comparison to wild-type untreated FFs. Green line: FFs transduced with the four factors; yellow line: FFs 
treated with EDHB; purple line: FFs transduced with the 4F and treated with EDHB at the same time. (B) 
Expression of PKM2, PDK1, and PDK3 after 24h EDHB treatment in wild type FFs (BJ and HFF1), SCR-KD 

fibroblasts, and HIF1-KD fibroblasts. ***p<0.005, One-way ANOVA single factor: PKM2 (p=5 E-07), PDK1 
(p=9 E-06), and PDK3 (p=1 E-07). (C) Transcriptional level of the three glycolytic regulators after 24h 

exposure to 1% hypoxia. ***p<0.005, One-way ANOVA single factor: PKM2 (p=4 E-05), PDK1 (p=9 E-08), 
and PDK3 (p=1 E-07).  
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Figure 5. PKM2, PDK1, and PDK3 are highly expressed in PSCs. (A) Relative PDK1 mRNA expression in: 
FFiPSCs (iPS2, iPS4, iB4, and iB5) under normoxia and hypoxia in relation to normoxic FFs (HFF1 and BJ); 
DFiPSCs (OiPS6, OiPS8, and OiPS16) under normoxia and hypoxia in relation to normoxic DFs (NFH2); and 
hESCs (H1 and H9) under normoxia and hypoxia in relation to all fibroblasts (HFF1, BJ, and NFH2) grown 
under normoxic conditions. **p=0.0098, two-tailed Unpaired Student’s t test, hypoxic FFiPSCs versus 
normoxic FFs. *p=0.043, two-tailed Unpaired Student’s t test, hypoxic DFiPSCs versus normoxic DFs. 
***p<0.005, two-tailed Unpaired Student’s t test: normoxic hESCs versus all normoxic fibroblasts 

(p=0.0005), hypoxic hESCs versus all normoxic fibroblasts (p=0.0011). (B) Relative expression of PDK3 in 

PSCs under normoxia and hypoxia compared to normoxic somatic fibroblasts. *p=0.023, two-tailed 
Unpaired Student’s t test, normoxic FFiPSCs versus normoxic FFs. **p=0.0061, two-tailed Unpaired 

Student’s t test, normoxic DFiPSCs versus normoxic DFs. ***p<0.005, two-tailed Unpaired Student’s t test: 
normoxic hESCs versus all normoxic fibroblasts (p=0.0007), hypoxic FFiPSCs versus normoxic FFs 
(p=0.0009), hypoxic DFiPSCs versus normoxic DFs (p=0.0021), hypoxic hESCs versus all normoxic 

fibroblasts (p=0.0002) (C) Absolute protein quantification of PKM1 in FFs, FFiPSCs, and hESCs. *p<0.05, 
two-tailed Unpaired Student’s t test, FFiPSCs versus FFs and hESCs versus FFs. (D) Absolute protein 

quantification of PKM2 in FFs (HFF1 and BJ), FFiPSCs (iPS2, iPS4, iB4, and iB5), and hESCs (H1 and H9). 
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***p<0.005, two-tailed Unpaired Student’s t test, FFiPSCs versus FFs and hESCs versus FFs. (E) 
PKM2/PKM1 ratio in FFs, FFiPSCs, and hESCs grown under normoxic and hypoxic conditions. **p<0.01, two-
tailed Unpaired Student’s t test, normoxic hESCs versus normoxic FFs. ***p<0.005, two-tailed Unpaired 
Student’s t test, normoxic FFiPSCs versus normoxic FFs, hypoxic FFiPSCs versus hypoxic FFs, and hypoxic 
hESCs versus hypoxic FFs. (F) Rate of PK activity, normalized over the total protein amount, was measured 
in wild type FFs (BJ and HFF1), SCR-KD and HIF1-KD fibroblasts, FFiPSCs (iB4, and iB5), and hESCs (H1 and 

H9). ***p<0.005, two-tailed Unpaired Student’s t test, iB4 versus BJ, iB5 versus BJ, H1 versus BJ, and H9 
versus BJ.  
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Figure 6. Metabolic shift during early reprogramming. (A) OCR profile of wild-type FFs (BJ) and FFs after 
24h, 48h, and 72h from 4F transduction. (B) ECAR profile of FFs at the basal level and after 4F introduction. 
(C) OCR profile in BJ fibroblasts treated with the HIF1α mimicker EDHB in addition to the 4F transduction. 

(D) ECAR profile in FFs and 4F-EDHB FFs. (E) OCR/ECAR ratio gradually decreases during reprogramming 
initiation while it is drastically reduced upon the additional introduction of EDHB to the reprogramming 
cocktail. *p=0.0370, two-tailed Unpaired Student’s t test, 4F 48h versus BJ. **p=0.0062, two-tailed 

Unpaired Student’s t test, 4F 72h versus BJ. ***p<0.005, two-tailed Unpaired Student’s t test: 4F EDHB 
24h versus BJ (p=0.0045), 4F EDHB 48h versus BJ (p=0.0001), and EDHB 72h versus BJ (p=0.0002). (F) 

Production of extracellular lactate in FFs (BJ, SCR-KD, HIF1-KD), FFs transduced with the 4F, hESCs (H1 and 
H9), and BJ-FFiPSCs (iB4 and iB5). The values are reported to the amount of lactate generated in control 

wild-type BJ fibroblasts. *p<0.05, two, two-tailed Unpaired Student’s t test: 4F 24h versus BJ (p=0.035), 4F 
48h versus BJ (p=0.021). **p<0.01, two-tailed Unpaired Student’s t test, 4F 72h versus BJ (p=0.008). 
***p<0.005, two-tailed Unpaired Student’s t test: hESCs versus BJ (p=0.0035), BJ FFiPSCs versus BJ 

(p=0.0041).  
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Page 43 of 72



 

 

Page 44 of 72



  

 

 

Figure 7. HIF1α-associated metabolic reconfiguration during reprogramming initiation.  
Cartoon depicting the potential mechanisms through which the introduction of the 4F or the modulation of 

HIF1α pathway might regulate glycolytic metabolism during the early stages of somatic cell reprogramming. 

The introduction of the 4F in somatic fibroblasts up-regulates the HIF1α target PDK1, which re-routes the 
energy flux outside the mitochondria, thereby enhancing the glycolytic metabolism. HIF1α activation up-
regulates additional HIF1α targets PKM2 and PDK3, further increasing the glycolytic shift and eventually 

resulting in improved conversion to pluripotency.  
47x39mm (600 x 600 DPI)  
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Supp. Figure 1. (A) Basal respiration in BJ fibroblasts and in BJ fibroblasts treated for three days with 500µM 
EDHB was calculated by subtracting the OCR values following rotenone and antimycin A treatment from the 

basal OCR values. (B) ATP turnover was estimated by subtracting OCR measurements after oligomycin 

introduction from the basal OCR measurements. (C) Maximal respiration rate was calculated by subtracting 
the OCR values after rotenone and antimycin a exposure from the OCR values after FCCP exposure. (D) 

Spare respiratory capacity was estimated by subtracting the basal OCR measurements from OCR 
measurements following FCCP injection.  
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Supp. Figure 2. (A) Neonatal foreskin fibroblasts BJ were transduced with lentiviruses containing shRNA 
sequences against human HIF1α (BJ-HIF1-KD) and scrambled control oligonucleotides (BJ-SCR-KD). The 
transduced cells maintained fibroblast-like growth features and did not display signs of senescence, as 

shown by lack of β-galactosidase staining. (B) OCR profile of BJ, SCR-KD, and HIF1-KD fibroblasts. (C) ECAR 
profile of BJ, SCR-KD, and HIF1-KD fibroblasts.  

145x237mm (600 x 600 DPI)  

 

 

Page 47 of 72



  

 

 

Supp. Figure 3. (A) HIF1A and HIF2A expression level in FFs following 4F transduction and/or EDHB 
treatment. (B) HIF1A and HIF2A expression level in normoxic and hypoxic FFiPSCs, DFiPSCs, and hESCs in 

relation to normoxic FFs, DFs, and FFs + DFs, respectively.  

45x37mm (600 x 600 DPI)  
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Supp. Figure 4. Heatmap and clustering of genes involved in energy metabolism (list taken from the Human 
Glucose Metabolism PCR Array). Values represent the ratio over wild-type untreated FFs; down-regulated 
genes are indicated in green, up-regulated genes in red. PDK1, PDK3, and PKM2 are shown with blue 

arrows.  
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TargetID SCR-KD.AVG_Signal HIF1-KD.AVG_Signal HIF-KD.Diff Pval

1 HIF1A 840.37 148.78 7.82E-13

2 PPFIA4 84.86 15.87 1.48E-02

3 CX3CR1 165.06 36.21 8.46E-05

4 ZBTB7A 119.43 28.36 1.04E-02

5 A2M 363.17 88.63 3.16E-08

6 TNFRSF10D 178.66 43.82 1.36E-04

7 PTHR1 216.62 54.33 6.49E-06

8 AMOT 103.90 26.69 1.22E-02

9 HSPB3 1847.28 519.46 8.05E-11

10 CCND2 414.99 117.53 3.03E-08

11 MMP11 2446.98 711.70 8.47E-09

12 TPP2 179.72 55.40 8.52E-03

13 COMP 81.98 25.84 4.69E-02

14 C1ORF190 85.02 27.07 4.28E-02

15 COL8A2 572.80 182.80 6.20E-07

16 RARB 198.53 63.56 2.41E-03

17 LRRC32 357.85 118.34 8.01E-06

18 SLC24A3 169.56 56.95 2.20E-03

19 SPINT2 684.61 230.24 1.60E-06

20 RNF212 87.82 30.08 4.76E-02

21 MARK1 354.36 124.31 1.47E-06

22 UCN2 90.20 32.54 4.31E-02

23 ERMP1 227.06 86.23 1.75E-03

24 CST6 99.11 37.73 3.67E-02

25 SUSD2 200.96 76.64 9.41E-04

26 CCDC109B 704.32 269.38 3.33E-05

27 EXTL1 165.32 63.56 3.42E-03

28 FAIM3 160.53 62.84 4.42E-03

29 PPP1R14A 710.25 279.08 1.04E-06

30 DRD1IP 141.03 55.42 1.29E-02

1 RSAD2 5.00 728.98 3.68E-38

2 IL8 5.00 277.53 1.03E-11

3 IFI27 211.69 7817.48 3.68E-38

4 CMPK2 5.00 183.86 5.60E-08

5 SST 5.00 174.17 1.52E-06

6 IFI44L 133.28 4235.28 3.68E-38

7 OAS1 28.77 853.60 2.05E-23

8 SLC39A8 5.00 124.54 6.84E-05

9 HERC5 116.68 2846.25 3.68E-38

10 LRRC17 5.00 106.51 1.92E-04

11 CYP1B1 97.30 1777.36 3.68E-38

12 TMEFF2 6.58 119.41 1.17E-04

13 SLC16A6 6.57 106.72 9.43E-04

14 OAS2 217.19 2963.19 3.88E-22

15 LGALS9 5.00 60.47 2.24E-02

16 GNA14 11.17 135.00 3.86E-05

17 BST2 69.97 815.40 4.44E-16

18 MX2 339.01 3924.26 8.88E-16

19 HERC6 464.37 4422.53 3.68E-38

20 ZNF804A 10.26 95.11 2.59E-03

21 DTX3L 23.64 205.78 2.83E-07
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22 ESM1 38.48 329.90 6.30E-11

23 EPSTI1 847.96 7178.81 3.68E-38

24 RTP4 32.05 269.82 2.35E-09

25 OASL 29.40 240.89 1.80E-06

26 MX1 4012.46 32269.70 3.68E-38

27 C6ORF192 36.24 273.41 1.66E-09

28 HCP5 109.21 819.36 2.22E-16

29 CLDN1 152.92 1132.21 1.36E-12

30 DDX58 186.47 1368.32 3.68E-38
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HIF1-KD/SCR-KD ratio LOG2 ratio

0.18 -2.50

0.19 -2.42

0.22 -2.19

0.24 -2.07

0.24 -2.03

0.25 -2.03

0.25 -2.00

0.26 -1.96

0.28 -1.83

0.28 -1.82

0.29 -1.78

0.31 -1.70

0.32 -1.67

0.32 -1.65

0.32 -1.65

0.32 -1.64

0.33 -1.60

0.34 -1.57

0.34 -1.57

0.34 -1.55

0.35 -1.51

0.36 -1.47

0.38 -1.40

0.38 -1.39

0.38 -1.39

0.38 -1.39

0.38 -1.38

0.39 -1.35

0.39 -1.35

0.39 -1.35

145.80 7.19

55.51 5.79

36.93 5.21

36.77 5.20

34.83 5.12

31.78 4.99

29.67 4.89

24.91 4.64

24.39 4.61

21.30 4.41

18.27 4.19

18.15 4.18

16.24 4.02

13.64 3.77

12.09 3.60

12.09 3.60

11.65 3.54

11.58 3.53

9.52 3.25

9.27 3.21

8.70 3.12
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8.57 3.10

8.47 3.08

8.42 3.07

8.19 3.03

8.04 3.01

7.54 2.92

7.50 2.91

7.40 2.89

7.34 2.88

Page 53 of 72



20fold up FF DF AFCs FFiPSCs DFiPSCs AFiPSCs hESCs

TUBB2B 339.4 107.8 1127.1 13008.9 25569.1 35359.8 55087.2

CCND2 92.1 17.6 709.2 5116.3 8773.9 6650.5 20533.3

RBPMS2 87.3 134.4 123.0 3309.3 9153.0 5955.2 17482.0

APOE 46.7 21.9 158.7 8362.5 17693.0 18141.2 16683.2

CNTNAP2 5.0 14.1 35.7 2766.6 4057.5 3741.5 12686.7

LIN28 5.0 12.9 35.9 2800.2 11011.3 10065.9 11741.5

DPPA4 5.0 15.7 40.2 2141.7 7855.9 5809.9 11455.7

GAL 198.8 24.5 54.0 4259.8 11770.7 3930.1 10287.3

ZIC2 5.0 13.5 40.8 1573.3 2957.0 6490.3 8292.6

MT1G 75.2 32.9 204.3 473.0 3191.4 6615.1 8089.2

CDH1 5.0 20.7 65.7 2584.3 7252.0 5521.5 7060.2

CRABP1 5.0 16.8 38.7 779.6 2887.1 2152.7 7057.5

SCNN1A 5.0 20.1 67.8 928.6 3713.6 3037.8 6772.2

POU5F1 5.0 14.4 36.1 1038.8 4999.3 5339.9 6760.6

PROM1 5.0 14.1 232.9 2697.6 5117.8 4855.7 6227.9

RCOR2 49.4 49.4 75.9 897.8 1601.0 2504.6 5943.8

RASL11B 10.6 29.8 42.7 836.1 2591.0 4721.2 5925.3

ZSCAN10 5.0 11.5 33.6 1469.9 5193.4 6049.5 5893.4

MT1H 5.0 18.7 38.1 279.0 1580.0 3327.6 5868.1

HAND1 5.0 15.0 30.8 5766.4 11434.9 785.2 5609.5

KIF1A 5.0 15.6 40.5 3436.8 6858.1 3385.5 5607.8

CST1 5.0 15.4 44.2 3948.1 2832.4 4543.2 5546.9

GLDC 5.0 20.3 59.6 1505.0 3850.2 4251.2 5465.6

NEFM 22.6 21.2 41.7 555.9 388.7 1049.8 4823.6

SOX2 5.0 12.7 30.3 914.6 1447.5 1383.0 4306.9

LIN28B 5.0 16.2 32.5 832.1 2711.1 1343.8 4007.5

APOA2 5.0 15.1 61.7 1861.8 2970.4 758.4 3948.7

ACTA1 5.0 16.9 44.9 7236.6 16719.8 219.3 3615.6

PUNC 5.0 12.5 30.1 1255.6 2628.9 1730.2 3549.4

RAB17 5.0 29.4 122.4 1379.8 1776.2 3431.8 3407.8

CXADR 5.0 16.3 122.5 1169.0 3344.1 1799.0 3223.9

EPHA1 5.0 15.2 70.5 841.7 2261.7 2649.5 3084.0

MYCN 5.0 17.0 42.8 673.6 3605.8 1445.3 3027.2

GDF3 5.0 17.5 40.3 285.6 431.5 1377.3 2886.6

H19 33.0 18.1 47.7 6223.7 13665.5 500.1 2799.9

ZIC3 5.0 17.5 36.0 509.1 2091.4 897.3 2687.6

EOMES 5.0 14.5 29.6 400.8 680.7 774.7 2572.6

PRSS8 5.0 15.1 42.8 723.8 1129.0 679.8 2563.1

KIF5C 5.0 17.9 41.9 780.3 1700.0 1153.8 2545.8

CHD7 10.3 22.0 96.5 921.8 1390.5 919.8 2523.5

KCNK12 5.0 18.0 51.3 688.4 1401.5 1395.9 2512.2

LCP1 5.0 18.2 39.8 1253.7 2994.7 289.6 2467.5

CAMKV 5.0 17.7 36.5 430.5 1503.6 2172.9 2466.6

LEFTY1 5.0 13.0 40.6 815.7 3523.3 560.7 2464.9

WDR72 5.0 14.8 43.3 25.8 670.6 475.6 2459.9

TRIML2 5.0 16.9 49.8 1098.2 2321.4 1379.0 2415.1

CDH3 5.0 16.5 46.2 1047.2 2437.5 2127.0 2413.2

FLJ22662 10.4 31.5 42.5 279.0 908.7 709.8 2400.5

CLDN7 20.5 24.4 52.9 791.3 2491.1 1341.7 2393.0
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NMU 5.0 14.5 34.6 384.2 1791.1 691.0 2387.8

HERC5 10.5 17.3 56.8 339.8 2161.8 806.3 2380.2

NODAL 5.0 23.1 46.2 396.0 1211.6 459.2 2333.0

RPRM 5.0 14.3 33.4 1036.3 3413.1 736.3 2305.3

SALL4 5.0 14.1 45.0 642.5 2792.9 1356.2 2234.3

SOX21 5.0 17.1 53.4 616.2 216.0 2317.5 2226.3

POU5F1P1 5.0 15.9 57.0 1314.8 5942.9 1678.0 2196.1

SBK1 5.0 16.9 44.3 463.9 1268.7 1291.7 2153.2

CGN 5.0 16.4 69.9 934.7 1946.4 1262.1 2064.7

GPM6B 5.0 14.5 35.8 454.0 1277.5 978.4 2044.8

SLC7A3 5.0 16.0 40.0 536.5 1967.4 1326.9 1930.3

D4S234E 5.0 19.5 59.3 528.4 1913.6 1232.8 1921.4

LEFTY2 5.0 15.4 44.6 1300.3 2067.5 283.6 1801.2

VGF 7.5 21.0 77.6 2228.8 5178.8 551.0 1796.6

DLK1 5.0 16.6 46.0 359.8 1405.8 1286.3 1792.6

CRMP1 5.0 17.0 46.7 550.4 1449.6 891.4 1696.1

RIMS3 7.9 16.7 54.7 327.1 588.8 946.9 1686.3

C9ORF135 5.0 16.2 52.1 305.8 1267.4 1154.6 1568.2

LRRN1 5.0 15.9 42.6 456.2 1548.4 1192.4 1508.0

HEY2 5.0 18.7 39.5 414.1 1315.2 602.7 1459.2

SLC16A9 5.0 18.3 47.9 756.3 1028.4 593.2 1440.5

DNMT3B 5.0 24.7 49.0 491.3 3001.0 723.8 1414.2

SOX8 13.1 18.9 51.6 724.7 760.8 1203.9 1412.5

APOA1 5.0 15.1 39.2 2125.8 2440.7 49.6 1385.1

GLIPR1L1 5.0 20.6 45.2 880.1 2779.3 147.5 1373.4

SYT4 5.0 15.8 34.7 141.2 198.1 202.4 1327.7

CPVL 9.2 21.5 52.7 347.1 1516.0 771.2 1326.6

NELL2 5.0 13.0 41.8 489.6 851.1 914.4 1273.5

L1TD1 5.0 20.9 37.6 860.2 2777.5 509.7 1253.1

SST 5.0 14.3 37.1 73.6 354.1 35.9 1245.3

EDNRB 5.5 23.6 43.7 206.5 620.6 985.3 1241.8

FZD3 5.0 17.2 64.1 283.9 275.2 700.6 1203.3

MIXL1 5.0 15.1 25.5 75.9 201.4 171.7 1161.5

OVOL2 5.0 16.5 41.7 237.0 912.2 885.6 1116.4

SILV 5.0 17.8 57.3 184.0 793.7 1483.8 1106.0

TCEAL2 5.0 17.3 43.8 99.4 883.5 649.1 1081.8

COBL 5.0 16.8 42.4 534.6 1391.9 839.5 1047.1

NKD2 5.0 14.5 28.3 278.2 548.1 992.1 1030.9

C1ORF187 5.0 11.6 46.7 453.8 870.8 463.8 942.9

SLC35F1 5.0 13.4 32.8 299.6 277.8 390.8 913.2

RPRML 5.0 20.1 38.3 196.5 375.3 449.0 906.3

FOXA2 5.0 12.6 34.6 158.5 275.8 461.1 877.7

MMP9 5.0 11.5 26.7 455.6 2178.8 464.9 857.9
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4F 24h 4F 48h 4F 72h EDHB 24h EDHB 48h EDHB 72h 4F EDHB 24h 4F EDHB 48h

216.2 718.2 1641.7 161.5 198.7 175.4 202.8 168.7

57.1 83.9 223.4 309.6 203.9 202.8 156.8 172.3

100.9 179.9 170.7 145.8 132.6 114.9 115.4 97.6

109.7 96.0 169.5 110.3 87.3 60.8 65.3 57.6

11.6 5.3 9.1 9.2 12.6 15.1 5.2 6.4

13.2 5.0 5.7 5.0 10.4 11.4 5.0 6.4

21.5 24.2 29.5 11.1 17.3 16.6 7.6 9.3

769.7 1034.0 1468.5 571.3 247.4 215.4 252.5 202.0

21.1 19.9 21.8 14.9 19.0 19.5 14.0 23.6

162.1 167.6 1972.1 264.4 95.8 111.6 168.6 154.2

20.9 22.7 23.2 14.2 17.6 17.9 13.6 14.9

14.6 12.0 11.5 7.7 16.0 13.4 12.2 15.8

18.7 24.9 39.5 13.9 18.1 16.4 11.1 12.6

1306.8 2477.8 2265.9 7.8 12.1 13.4 231.2 446.0

16.4 11.0 20.7 5.0 11.8 10.0 5.3 5.0

73.2 153.0 189.0 25.1 31.8 37.3 28.9 28.5

27.9 29.6 30.3 29.3 37.0 31.9 36.1 20.7

10.1 13.1 11.7 14.2 12.8 11.7 6.2 5.0

23.0 45.2 1233.8 16.9 23.6 22.1 28.6 19.5

120.2 283.7 705.0 6.8 16.1 15.7 15.5 15.2

11.2 5.0 8.0 6.2 12.6 16.7 15.2 7.6

12.0 19.5 28.2 27.6 12.1 16.4 17.2 11.5

21.5 30.5 43.3 19.0 13.2 16.5 14.9 11.5

74.6 83.4 60.9 47.5 31.1 35.6 35.8 58.9

13.1 13.2 10.7 8.1 10.6 7.9 12.1 7.2

10.4 7.9 9.1 21.8 18.9 18.1 37.0 26.7

22.4 18.5 18.3 10.8 21.8 14.5 10.7 14.1

21.3 18.8 22.1 11.1 15.0 16.2 7.4 16.6

15.0 19.0 21.0 6.7 14.9 9.3 12.8 7.4

22.9 21.8 15.4 17.8 20.9 21.2 20.8 16.2

10.1 18.8 69.9 14.4 10.1 14.7 14.0 13.6

20.4 20.8 20.3 17.3 14.9 19.3 13.4 6.3

6.8 5.5 7.8 13.2 22.4 15.0 16.5 11.5

18.2 18.2 36.1 13.2 14.4 13.6 11.3 14.4

1338.0 1263.8 2359.2 39.4 44.3 39.2 476.2 804.3

5.0 10.5 12.2 24.4 13.7 27.1 19.3 13.1

9.1 5.0 5.0 11.8 14.0 22.3 18.8 12.5

9.9 5.0 9.7 16.3 18.6 23.4 11.1 12.1

28.2 16.8 18.4 16.1 22.0 21.0 33.0 38.0

29.7 45.5 58.5 37.9 34.4 34.3 43.0 36.7

23.7 34.2 40.9 18.3 24.7 19.4 13.4 10.8

14.1 13.8 13.8 21.3 19.1 11.2 13.1 8.6

18.1 52.2 46.3 16.8 25.2 24.4 21.4 25.1

7.3 10.8 9.6 10.6 13.3 13.9 10.3 7.7

7.9 13.4 6.6 6.6 8.1 21.8 5.5 5.0

27.5 43.7 121.0 23.1 17.3 19.8 16.0 8.4

18.6 17.3 21.8 17.8 16.1 21.6 15.3 14.4

33.5 39.5 67.2 31.7 28.0 24.2 25.7 27.5

65.1 68.2 112.3 15.5 22.1 18.1 12.8 19.9
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10.3 8.3 15.6 11.2 13.9 17.1 7.6 9.5

884.0 548.7 272.7 34.6 45.5 45.7 2108.4 3806.9

22.0 14.3 14.9 21.1 30.2 29.2 15.8 25.7

20.0 19.8 28.1 8.7 16.9 13.2 15.4 6.4

10.7 13.6 29.5 10.9 12.4 17.7 7.1 14.3

22.6 29.6 62.8 11.1 16.8 15.6 5.5 12.3

1712.9 2822.4 2695.6 8.0 14.5 16.4 364.0 589.2

13.2 12.8 17.0 17.6 12.2 16.9 15.4 21.1

9.3 83.6 116.1 17.3 14.1 17.6 19.5 18.7

17.9 23.1 26.1 18.3 15.0 17.9 7.5 14.4

17.3 12.0 16.1 13.2 15.8 15.3 11.2 14.7

76.1 482.6 778.9 27.6 31.4 28.7 34.5 33.1

17.1 17.7 20.1 15.2 20.3 18.3 7.1 13.2

52.8 61.1 66.9 61.4 40.4 34.2 36.3 43.2

25.9 36.1 77.8 11.2 12.4 11.6 9.0 9.1

19.5 22.9 45.0 17.1 18.0 23.9 17.3 16.7

19.2 15.2 18.3 27.9 21.0 25.0 34.6 30.6

17.2 29.9 164.2 9.8 18.9 23.6 6.6 12.3

12.3 14.5 13.4 16.3 17.8 18.4 16.6 13.2

15.6 11.4 13.1 12.6 16.8 13.3 14.0 15.2

18.7 64.8 67.2 13.5 14.6 18.0 6.9 30.3

22.5 23.6 24.1 24.3 20.1 20.2 30.1 24.1

269.7 316.6 214.6 90.3 101.6 99.1 69.7 73.4

9.5 5.2 6.6 8.5 15.6 19.7 11.6 9.5

21.5 29.8 25.0 18.8 18.3 22.5 17.2 27.2

6.8 5.0 5.2 10.9 17.7 14.2 16.7 13.2

27.0 28.6 25.9 24.8 24.7 25.4 18.1 17.4

12.2 11.6 20.0 8.6 13.8 15.7 10.6 12.3

58.5 191.2 169.3 18.8 22.4 27.7 35.6 33.9

18.8 23.2 45.2 31.7 20.4 19.8 13.0 12.9

18.2 22.0 24.6 23.2 21.4 21.4 20.6 20.5

15.9 8.1 12.2 11.4 17.5 22.3 18.7 10.2

5.0 9.7 12.3 6.1 7.8 11.8 9.7 5.1

14.3 14.6 15.6 10.7 16.9 18.5 14.5 16.9

11.9 9.3 9.3 21.4 26.1 22.6 18.6 23.8

13.4 13.3 17.0 23.7 14.7 21.7 17.5 15.6

14.9 19.2 26.2 17.5 15.2 14.1 20.0 12.9

13.9 15.0 19.1 7.2 14.2 13.6 5.0 5.0

22.9 28.9 16.2 9.6 17.1 15.9 9.1 11.5

18.3 12.1 14.0 11.4 15.7 29.6 15.4 11.1

16.0 60.0 290.8 19.8 21.4 18.1 16.5 17.0

5.0 8.1 10.6 10.9 14.0 12.7 9.8 8.0

7.0 5.0 14.6 12.5 14.0 19.6 5.2 6.5
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4F EDHB 72h HIF KD SCR KD

219.0 343.6 460.6

297.1 71.1 231.0

100.3 162.0 110.3

27.6 43.2 59.6

10.9 5.0 10.3

5.3 6.4 10.8

5.1 9.5 9.1

119.4 31.3 15.9

16.8 10.2 10.8

141.5 42.5 54.0

5.0 29.7 23.2

5.0 6.1 13.3

11.9 12.1 16.7

635.7 7.1 9.9

7.9 5.0 5.4

32.5 22.6 36.8

13.5 21.0 34.6

5.0 6.3 8.4

20.9 16.0 22.1

11.2 5.0 7.5

5.0 15.6 10.0

15.0 9.6 5.0

27.4 10.6 14.3

28.4 35.2 23.3

5.8 5.5 5.0

21.0 9.0 26.0

15.3 11.0 15.9

12.7 10.5 10.1

5.0 10.3 12.9

19.6 10.3 23.2

13.8 7.1 6.9

7.9 13.0 10.9

15.0 19.8 13.2

16.7 8.9 7.2

552.1 25.2 44.6

9.3 22.7 22.9

18.9 17.8 25.7

6.2 10.1 11.3

24.3 30.8 18.9

33.2 28.0 23.4

20.7 6.4 13.2

13.3 6.0 11.4

16.0 18.0 11.2

9.0 5.0 5.0

5.0 9.5 5.2

13.8 19.6 12.2

8.4 5.7 10.2

23.3 53.6 28.1

27.3 25.6 15.6
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5.1 10.0 5.5

4005.4 1606.9 73.2

29.8 17.7 14.7

21.3 6.5 10.9

5.7 6.9 19.3

14.9 11.9 14.0

794.5 5.0 9.1

14.1 23.8 22.3

7.4 12.4 14.6

10.1 6.7 10.7

7.9 12.3 7.6

41.6 22.5 15.3

19.4 14.2 13.4

49.2 37.4 29.1

8.5 8.3 9.4

10.3 15.4 15.8

22.5 24.9 30.2

8.2 9.5 13.0

12.8 11.4 9.7

14.1 24.7 19.4

12.1 13.6 7.7

23.7 18.0 16.2

46.1 65.4 61.3

24.3 9.1 5.0

13.4 22.0 7.7

15.9 6.3 7.5

15.3 13.7 22.4

5.0 5.5 7.2

11.9 15.7 16.9

12.6 102.9 7.5

29.0 24.7 23.0

16.3 11.6 8.0

6.9 5.0 5.0

9.7 10.5 11.5

14.4 18.5 15.1

11.2 10.6 10.0

9.2 10.0 14.0

14.7 9.7 5.0

8.5 6.3 9.1

11.1 8.7 15.1

14.8 13.2 7.1

6.2 6.7 9.9

5.0 5.8 9.8
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20fold down FF DF AFCs FFiPSCs DFiPSCs AFiPSCs hESCs 4F 24h

S100A4 13232.4 10700.6 1570.3 272.9 116.4 599.6 755.9 31915.7

GAS6 3257.3 5060.1 10132.6 755.2 784.2 395.9 668.5 2155.7

THBS1 10621.6 11184.0 24606.4 360.2 1153.6 213.2 659.2 7614.5

CSRP1 2569.5 1766.9 10485.4 1657.9 2792.9 332.7 611.8 2833.8

S100A6 5227.8 3670.5 3668.2 1383.4 1979.2 212.2 588.5 7096.0

CD248 7733.8 5426.3 79.1 314.5 458.0 106.0 574.5 16411.3

ARID5B 2697.2 1775.7 2751.3 271.7 420.5 87.8 519.6 2192.3

IGFBP3 4565.3 6262.1 3919.3 1226.9 2316.5 95.9 477.0 4744.4

WNT5A 2731.9 622.6 162.1 187.0 336.8 46.2 365.3 952.4

RGS4 421.0 1189.6 11568.9 259.6 648.6 43.0 352.9 1357.2

LOX 3986.9 3456.7 6793.6 328.8 365.9 115.4 341.4 9462.5

LMCD1 1699.8 1109.1 340.1 391.1 601.2 127.1 283.3 440.9

SULF1 5348.4 1000.3 2034.6 233.5 281.9 93.7 266.4 6054.0

SELM 1112.4 1130.0 2151.7 147.1 369.2 253.2 244.0 1463.8

LOXL4 2259.0 3321.4 2887.3 329.9 165.7 71.8 235.5 1580.8

CTSK 2363.4 2575.5 82.7 70.5 125.6 123.3 226.4 3420.3

COL8A1 561.5 2139.0 6143.9 212.7 85.9 56.6 203.9 500.9

CYBRD1 3283.3 2920.1 1274.3 63.4 135.8 101.7 200.5 2607.3

DCN 6763.8 3410.5 1069.9 56.4 494.2 21.6 175.3 5640.2

TIMP3 2265.2 718.0 51.8 283.4 395.0 38.9 170.8 3099.3

LAYN 1212.2 1085.2 889.8 97.8 208.2 72.4 168.0 1072.2

FBLN5 1882.6 1367.9 98.8 123.9 236.7 38.3 162.1 1480.3

PPP1R3C 1503.5 959.3 1295.9 50.8 190.0 115.1 160.7 3236.0

MVP 884.6 1037.3 1561.6 123.8 194.7 88.4 159.6 1182.7

VEGFC 888.6 806.7 2155.3 104.9 169.7 42.6 157.5 1666.6

ADAMTS1 1032.1 197.6 610.7 207.3 321.0 51.2 137.1 703.5

GLIPR1 645.3 1216.6 3680.8 194.4 141.3 17.2 135.4 1667.0

NFIX 1640.8 4939.3 2000.1 497.8 284.6 209.5 133.8 1757.2

OXTR 3322.0 2615.2 3039.4 128.4 196.9 40.6 122.8 2058.0

ITGA11 202.2 1110.1 3293.8 33.5 35.5 25.8 121.1 61.7

NNMT 1124.3 692.4 905.0 130.9 177.6 58.9 118.5 556.9

CPA4 668.6 323.6 17227.5 86.0 40.5 15.3 116.6 205.0

COL16A1 1330.1 537.6 374.7 184.4 149.1 58.1 115.0 1205.6

CRYAB 778.6 1988.8 1956.9 89.3 2382.0 44.9 113.9 1240.4

TNFRSF14 704.5 574.6 90.9 110.0 136.1 70.2 105.2 857.0

TMEM119 2630.9 5938.3 32.0 96.6 119.6 33.4 101.6 1331.3

HOXA5 126.5 192.4 4540.1 139.3 331.8 52.5 99.9 182.1

COL12A1 1052.9 1099.0 312.3 79.9 115.0 32.9 93.5 396.3

NTN4 888.5 112.5 911.6 86.7 88.4 48.2 91.1 286.3

LRP10 627.6 748.2 697.6 131.9 289.3 74.1 89.2 640.7

FAP 1556.7 1103.9 1897.9 17.1 15.3 16.0 86.7 1333.5

CERCAM 521.0 776.3 1038.6 100.6 196.7 63.5 84.4 377.6

TMEM173 878.5 1300.9 2365.8 43.3 244.3 18.7 81.6 1424.4

MFAP5 1339.5 1635.4 964.9 383.6 302.6 31.7 79.7 581.9

RCN3 1274.3 650.2 313.0 42.3 61.0 72.5 74.5 2102.8

ANPEP 1809.1 2382.6 951.1 134.2 428.9 26.2 74.0 2569.7
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LY96 877.3 477.8 138.1 50.9 32.2 48.2 71.5 1613.1

FSTL3 298.9 172.1 1767.4 136.6 313.0 59.4 70.6 304.4

ENG 593.6 954.6 741.4 58.4 94.8 59.0 69.9 1070.1

TNFRSF11B 2533.7 785.7 921.8 48.6 28.3 21.9 67.2 1970.6

MEG3 1467.2 1121.8 3933.1 378.3 4668.7 272.5 67.0 2262.5

C1R 1381.3 570.4 56.9 10.5 29.8 78.8 61.2 910.1

CD97 522.6 608.4 786.1 184.0 211.8 195.9 60.4 775.2

ABCC3 594.4 351.8 269.4 100.1 134.3 36.8 58.1 374.7

IFIT2 428.6 112.9 82.2 46.7 160.6 36.3 57.8 3046.5

KIAA1199 6731.8 2543.6 131.5 28.6 151.6 22.2 57.6 2919.8

RECK 1050.0 409.6 174.7 47.1 31.8 13.1 57.1 887.2

NUPR1 775.1 730.0 39.4 63.2 167.6 33.4 56.8 697.8

C1S 895.9 426.0 42.1 21.7 65.2 59.5 56.4 664.4

MYLK 719.8 448.7 319.7 29.3 53.7 35.8 55.5 485.7

MGLL 377.5 301.5 528.9 24.9 39.4 40.5 54.7 622.7

C1QTNF5 395.0 744.5 63.9 42.8 79.8 62.2 50.3 334.8

C10ORF116 825.2 1163.2 109.8 17.3 532.7 39.1 48.3 2660.1

GREM1 638.5 352.6 246.0 54.0 7.6 27.9 46.7 477.9

COX7A1 858.2 1122.1 54.7 32.8 676.2 41.2 44.5 685.9

C15ORF52 955.9 848.5 2540.0 79.8 59.2 37.1 43.0 1576.4

FOXF2 397.0 88.3 52.8 36.9 41.0 33.9 42.6 355.2

TRIM4 494.1 318.8 392.8 137.8 168.2 217.7 38.4 655.5

GPNMB 1137.0 1241.4 50.5 5.0 511.7 37.6 37.1 1252.3

NOV 457.6 163.2 75.7 15.7 26.8 25.4 37.1 619.1

HSPB6 337.8 1148.4 1050.7 17.4 156.2 43.5 36.9 483.8

COPZ2 376.2 252.1 301.0 12.7 21.6 27.8 36.1 711.4

LUM 499.6 85.0 63.5 46.9 39.7 18.6 36.0 202.9

P8 612.3 514.8 48.6 50.2 120.7 19.7 35.5 680.7

UBA7 302.1 243.9 41.6 18.4 52.5 32.4 34.7 603.1

VGLL3 414.3 482.6 218.4 18.2 46.3 21.9 32.6 158.1

PODN 1567.0 940.3 52.8 16.3 16.6 56.4 31.1 1406.1

HSPB3 569.3 1137.3 219.5 7.9 275.1 32.5 30.0 846.6

MXRA8 286.6 819.7 982.2 18.2 90.7 54.3 29.7 467.2

SRGN 357.6 328.5 5394.7 14.7 19.1 27.7 28.4 260.7

WNT2 235.7 26.4 38.7 10.5 28.5 20.6 28.3 127.7

MMP3 1928.0 751.7 45.7 16.8 22.3 31.1 26.6 2747.4

HSPB7 155.1 888.0 34.5 10.0 58.5 27.8 26.2 442.4

GBP1 267.1 128.0 166.6 12.0 11.3 18.1 19.6 323.4

APOD 478.9 237.6 44.7 6.8 6.2 38.1 17.2 33.6

SERPINB7 524.2 173.5 844.6 6.5 10.2 18.9 17.2 764.6

KRT34 1360.7 68.1 1547.9 5.0 5.0 16.5 17.1 1072.5

CLIC3 114.9 141.9 1304.0 9.6 109.7 18.5 15.5 821.8

SAMD9 341.7 181.8 124.5 22.7 6.2 25.7 15.0 2285.3

PSG6 464.3 63.0 43.4 5.0 33.8 16.4 13.9 437.3

PSG4 570.8 219.9 45.0 13.3 84.8 19.4 12.9 502.3

SYNC1 408.9 411.1 337.8 9.9 10.6 15.0 12.7 411.5

CLEC3B 193.5 364.7 48.0 5.0 5.0 15.7 12.1 87.6
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OSR2 297.6 198.8 46.2 5.0 5.0 15.8 10.5 157.6

PSG9 1015.8 353.7 64.5 5.0 29.6 11.9 7.2 990.1

C10ORF54 534.0 98.2 40.9 5.0 25.7 12.7 5.0 271.7
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4F 48h 4F 72h EDHB 24h EDHB 48h EDHB 72h 4F EDHB 24h4F EDHB 48h4F EDHB 72hHIF KD

34552.3 30845.8 10239.0 8618.1 9170.1 11680.4 11927.1 8835.0 13935.0

1993.8 1498.0 4723.8 4822.2 5372.9 3597.7 4247.3 3760.0 3980.5

5347.0 4543.8 12956.2 12934.5 16977.9 12391.3 12054.2 5189.0 15306.4

1842.6 1376.7 5633.6 5493.8 7764.8 5079.8 3685.0 2224.8 5308.1

7874.2 6038.2 4847.2 4753.1 5021.0 4851.4 5407.1 5930.5 4446.5

15354.8 9176.0 4089.2 8877.2 9705.7 6929.0 9463.7 9802.8 8869.4

1709.9 1672.6 2072.6 4029.1 3241.1 3132.4 2878.9 2968.0 4020.9

3000.2 1720.8 5444.0 3281.4 4480.9 2618.7 3569.9 1611.4 9084.8

962.4 905.0 1186.6 1605.0 1909.9 1025.4 1081.7 803.2 3499.9

1540.6 716.2 1183.0 740.7 1057.4 1182.6 1631.6 912.9 499.8

7554.0 4519.9 4526.8 3847.7 4958.6 4288.2 4522.3 3532.8 6439.3

922.4 906.9 241.9 614.2 538.4 468.3 576.8 361.1 1800.7

6772.5 5725.6 3515.1 2335.3 2605.5 3006.1 5919.8 3802.4 5485.3

1246.2 1303.5 1214.3 1287.2 1623.2 1186.5 1284.2 1140.2 1653.0

3142.1 2231.7 1165.8 1192.2 1814.6 757.7 981.5 889.6 2260.5

3707.3 3704.5 2787.4 1979.3 1500.7 1344.8 1930.2 2689.6 3675.2

615.4 499.3 444.3 454.5 763.9 295.9 365.2 290.3 1473.8

2605.5 2065.4 3786.5 2743.9 3156.6 3078.0 3055.6 2523.4 4981.5

5687.1 4874.7 4621.7 4754.6 4371.4 3887.8 4777.4 4170.1 4187.8

2312.8 1554.3 4425.5 2844.7 2441.7 2322.1 2252.2 2221.2 2361.5

593.1 506.3 960.8 1547.6 1200.5 1353.8 1230.0 1074.6 2607.8

1259.0 972.1 2209.6 1929.2 2029.8 1691.9 1994.6 1747.6 3858.0

2207.5 2170.8 725.6 828.1 748.3 921.5 1169.2 1720.3 760.7

1125.4 948.1 1070.4 1187.9 1144.6 1257.9 1496.9 1326.7 1149.8

836.1 481.3 3515.6 2898.2 3326.4 3651.1 3686.0 2306.3 1847.9

406.4 234.3 1139.3 1613.9 1595.2 1617.5 1854.4 1032.9 2013.6

913.1 353.0 537.5 687.5 1222.7 913.9 871.5 530.7 643.2

1785.1 1701.0 3617.7 5182.9 4547.1 4027.4 4726.7 4874.9 3946.0

1079.5 468.8 3886.8 4006.2 5131.7 3117.6 2240.6 554.7 4864.9

38.6 49.9 325.4 351.4 331.5 200.6 188.3 136.2 501.6

664.3 820.0 509.6 352.6 559.1 556.3 530.7 513.0 721.7

1057.0 1308.6 238.4 975.0 650.7 610.9 1371.5 1520.8 720.5

1047.7 766.3 517.0 579.3 538.7 479.0 456.0 321.0 965.1

803.7 730.2 1021.2 845.3 554.3 914.7 769.0 345.3 2096.8

1147.3 1185.2 218.0 430.9 313.2 572.3 858.1 923.7 775.3

2710.4 2315.4 858.7 2498.4 1164.3 1323.1 1111.2 1628.1 1308.3

248.2 283.7 178.2 173.1 159.7 161.2 208.9 293.2 115.9

282.2 203.8 1138.0 1366.5 1307.9 975.2 898.1 719.3 1271.8

293.5 332.9 683.9 670.4 701.7 685.0 1054.1 1107.5 3011.6

507.6 351.9 725.7 824.6 889.3 778.2 961.4 907.6 1273.0

1303.6 1266.8 1893.6 1283.2 1264.5 1415.1 1333.1 1059.3 1559.1

397.6 358.6 1254.5 1411.3 1094.4 883.7 1171.9 1242.8 1123.7

965.1 773.5 1581.3 1638.2 1074.5 2362.1 2767.0 2044.9 2625.0

500.7 463.5 1457.6 1263.9 1209.9 1035.6 857.0 330.8 1034.6

1847.9 1036.1 789.9 728.7 872.9 842.8 830.7 806.0 676.7

1842.7 1096.9 6225.7 4570.9 3733.6 3220.1 4313.3 5640.8 1527.1
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1980.1 2123.0 1270.1 824.1 863.5 1134.7 1769.3 2452.9 1512.7

200.3 181.5 815.0 535.7 623.0 595.4 436.6 191.0 850.2

948.4 568.6 1098.2 908.1 830.1 728.1 1081.2 977.0 847.4

1401.4 868.8 2753.3 2367.7 3283.8 2320.0 2648.4 1197.5 4721.1

2127.7 2390.1 1464.4 1647.1 2235.9 1701.6 2306.1 3507.8 1410.6

1369.1 1666.0 822.6 598.8 515.4 947.7 1584.5 2136.3 1351.4

859.0 662.1 810.5 1019.3 836.6 1039.4 999.8 838.2 649.6

266.8 182.0 534.7 627.2 770.9 729.5 884.4 569.7 506.0

1895.7 936.2 195.4 315.9 287.8 11365.8 15835.1 13331.8 4781.6

2974.8 2832.4 2483.9 4204.3 3042.4 3222.5 2157.5 1033.6 7861.0

713.9 523.0 445.0 468.3 501.5 300.5 395.5 264.9 630.2

567.9 1359.3 401.4 191.7 220.9 446.8 448.5 635.2 1029.2

936.7 1117.7 794.6 577.7 445.9 826.6 1371.0 1621.5 1458.8

324.8 212.9 833.8 956.3 890.7 776.8 900.6 806.8 1117.9

436.1 299.6 753.2 398.4 468.5 453.5 440.9 260.6 503.7

306.5 412.1 303.2 276.1 180.0 358.4 226.8 240.4 633.1

3804.1 3972.9 1213.3 1643.7 1158.1 1536.5 2078.5 2161.9 833.8

298.2 170.2 339.9 224.8 357.6 466.8 469.8 167.3 605.3

536.5 468.8 1220.3 1120.6 1207.2 1021.4 1073.1 961.0 1648.8

1317.8 1023.2 961.0 1235.2 1000.4 1048.3 1192.8 848.1 1400.4

389.0 332.9 371.9 462.4 332.7 395.7 399.5 403.8 459.9

713.0 627.9 566.0 598.4 564.0 578.6 678.9 734.4 705.8

1405.1 1560.2 1751.2 1009.9 732.3 1151.4 1873.6 2600.8 2088.0

654.3 402.4 340.5 347.8 247.0 539.9 883.4 627.0 1380.7

413.1 285.8 965.7 855.3 914.1 1025.3 1120.3 920.3 1011.0

583.3 444.4 324.2 399.7 432.7 326.3 390.3 383.1 431.8

200.0 174.3 164.1 161.6 195.9 159.2 230.8 119.0 325.5

454.4 1074.0 367.8 171.8 162.0 373.9 356.3 475.9 721.8

846.0 448.4 75.5 187.2 101.8 474.1 1031.4 912.4 457.2

143.3 135.7 167.2 256.7 387.3 138.9 103.2 52.1 368.1

1209.4 1144.4 1335.6 938.3 837.2 670.2 658.3 581.2 2453.2

994.9 792.8 41.4 161.7 132.5 207.2 202.0 60.3 297.3

310.0 247.8 576.9 237.6 870.5 921.9 923.8 954.0 714.3

176.0 73.4 698.7 638.8 758.2 648.2 635.6 448.3 658.3

157.3 154.4 28.9 43.4 45.1 34.3 40.4 29.1 125.5

1497.6 419.4 2032.8 1622.2 1693.0 2350.8 2639.9 2357.0 2522.1

136.8 62.4 466.0 322.9 384.6 417.2 245.4 62.4 542.2

328.5 207.0 78.6 153.9 206.0 858.6 1005.9 640.9 1032.1

78.4 158.2 1680.1 1242.1 849.4 558.3 772.4 1143.1 720.5

408.7 189.7 741.6 849.8 1044.7 928.4 716.3 362.9 570.6

444.3 167.8 5326.0 1788.6 5096.9 3200.5 2824.6 639.4 3219.3

428.3 665.2 68.0 175.3 147.9 225.7 316.3 86.7 210.7

2598.3 1610.9 311.2 396.4 357.7 2241.6 3487.8 3279.9 1119.0

290.4 146.0 203.5 161.4 185.9 163.3 222.4 170.9 266.1

331.4 175.7 539.7 438.0 536.8 424.8 518.7 467.0 632.7

288.8 275.8 152.2 225.9 287.4 267.3 220.8 137.6 659.6

131.5 293.8 51.9 74.5 75.5 57.7 59.2 77.8 115.3
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135.3 138.8 224.2 374.0 287.0 329.3 393.5 264.6 622.4

509.5 249.7 786.9 677.4 847.5 754.9 922.8 672.4 1043.4

639.6 793.7 37.4 83.5 55.3 53.9 81.6 84.8 340.3
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SCR KD

13290.7

4898.7

18392.0

6086.7

4531.3

7051.6

4359.1

6436.2

3411.9

382.5

5403.1

2069.9

8296.7

1995.8

1480.8

4712.5

813.7

6212.9

5112.2

1782.6

1882.5

3064.8

1428.7

1227.0

1824.4

1822.0

514.4

5590.3

5317.8

994.0

1082.4

563.4

1172.9

2552.6

652.6

2877.7

153.2

1768.7

2210.6

1226.9

2636.6

1401.9

2120.4

1956.2

711.9

1712.1
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1194.5

952.5

827.9

3610.9

1567.7

1105.0

632.0

617.9

729.9

7799.9

755.0

915.6

1067.8

1216.6

408.3

1258.9

839.5

553.0

1989.7

1594.6

495.4

643.3

2880.8

791.7

1261.1

420.1

239.4

693.8

204.1

459.4

3063.2

989.1

915.9

518.5

66.7

1153.6

889.2

292.7

663.3

513.0

4036.5

192.1

409.7

353.0

827.5

461.7

106.9
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792.2

1366.6

264.8
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LOG2 ratio PSCs over respective somatic cells LOG2 ratio over FFs

Pathway Gene FFiPSCs DFiPSCs AFiPSCs hESCs 4F 24h

HIF pathway HIF1A -1.32472 -0.14476 -2.12118 -0.33018 -0.24648

HIF2A -1.277 0.254546 -1.86007 -1.828 -0.92826

HIF3A 0 -1.13546 -1.0079 1.314304 1.163173

EGLN1 -0.26675 0.478343 -1.22186 0.86345 0.167642

EGLN2 0.022896 1.667587 -0.05731 1.715912 1.114057

EGLN3 1.906598 1.243785 -0.36449 3.20434 1.727792

Glucose metabolism SLC2A1 0.838216 3.37233 -0.63902 1.871524 -0.38918

SLC2A3 3.161092 3.626333 2.593632 4.471338 -0.43842

SLC2A4 0.134897 -1.75626 -0.68636 1.073538 1.337318

LDHA -1.24821 -0.02246 -1.02373 0.413997 0.956869

LDHB 0.628746 2.743092 0.090048 1.080396 0.501023

LDHC 0 -1.63573 -0.82699 3.544952 2.456882

LDHD 0.552873 1.392309 1.449535 2.97693 0.871806

PFKL 0.425188 1.103037 -0.43161 1.211234 0.339445

PFKFB3 0.814285 1.978096 -0.94773 1.675069 0.532532

PKM2 0.085242 0.751188 -1.08879 0.475667 0.590584

PKLR 0 -1.70998 -0.69799 1.914589 1.808865

PDK1 0.784813 -0.05158 -0.82282 2.652892 1.738163

PDK3 2.023877 3.236353 0.831652 4.456384 0.434946

ENO2 1.037563 2.01967 0.312073 3.221445 -0.08439

ALDH9A1 -0.52749 0.810336 -0.35254 1.29554 0.075207

mTOR/Autophagy BNIP3 -1.23455 0.632964 -0.98902 1.523424 -0.06827

IDH1 0.993386 2.532364 2.035234 3.016112 0.42

REDD1 1.514988 3.078718 2.104921 2.840165 0.19

FRAP1 1.095095 2.114259 0.840836 2.367248 0.64

RICTOR 0.731814 -0.14735 -0.91735 1.556596 1.06

TSC1 -0.29518 1.328942 -0.46117 -0.08845 -0.07

TSC2 1.188298 1.42713 -0.30013 0.937955 -0.05

EIF4B 0.342956 1.912345 1.411853 2.134099 -0.09

LKB1 0.759724 0.849671 -0.56368 0.964241 0.60

ATG5 -0.55435 1.08134 0.224307 1.397168 0.25

ATG7 -0.69998 0.666393 -0.76789 0.784888 1.08

ATG10 0.870945 1.724113 1.012972 3.084164 0.79

ATG12 -0.2937 1.31414 -0.25749 1.569154 0.71
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LOG2 ratio over FFs

4F 48h 4F 72h EDHB 24h EDHB 48h EDHB 72h 4F EDHB 24h 4F EDHB 48h 4F EDHB 72h

-0.38949 -0.67326 -0.39634 -0.43809 -0.04532 -0.50406773 -0.12097651 -1.03524687

-1.2843 -1.16017 0.59213 0.294654 0.279806 0.216882601 -0.02755145 0.128134197

1.283967 1.227399 1.340147 1.668346 2.044068 1.357834604 1.41566349 1.366241071

0.688618 0.395339 0.689773 0.817407 1.337671 0.853578267 1.16068642 0.513313759

1.590191 1.407596 -0.14252 -0.52898 -0.45133 -0.13779387 -0.20269747 -0.18205001

2.178325 2.205649 0.875938 1.640353 1.692109 1.278640207 1.18186458 1.53463737

0.271099 0.214724 -0.3357 -0.50101 -0.04558 -0.29474642 -0.55226665 -0.76993463

-0.14209 0.160589 -0.59201 -0.59818 -0.00459 -0.23783633 0.05951629 -0.20992319

1.470044 1.482445 1.850267 1.563047 2.14463 1.730640825 2.15870283 1.707071503

0.87278 0.521507 0.515879 0.319926 0.61524 0.380431993 0.2305529 0.002761306

1.387434 1.176448 -0.69524 -0.66801 -0.66674 -0.45201987 -0.60491799 -0.61229165

2.208933 2.471894 1.633983 2.231059 2.106531 1.026447397 0.67308817 2.383168443

0 0.766061 0.32238 1.707187 1.600474 1.4896611 0.78809214 1.188007121

0.492777 0.474184 1.188152 0.946982 1.131325 0.911373767 0.96938046 0.91618633

0.978268 0.861875 1.193726 1.070762 1.171731 1.063587487 1.01879591 0.813540497

0.599438 0.163701 1.42983 1.658813 1.462483 1.535814579 1.60359922 1.790236794

1.612614 1.688279 1.659283 1.847028 1.920683 1.451551383 1.8176871 1.765805438

1.721297 1.619517 1.381037 1.78312 1.951815 1.323538461 1.71571916 1.393300736

0.584895 0.215747 1.794389 1.868575 1.962995 1.993684507 1.92576498 1.592561741

0.044764 -0.02124 1.880062 0.696102 1.049519 1.182336225 0.77853425 1.272774798

0.221064 0.136057 0.119773 0.022001 0.341679 0.054686503 0.13760004 0.13757899

0.06712 -0.15464 0.426042 -0.06127 0.954506 0.589615216 0.17958938 -0.11082864

1.115855 1.767397 -0.02526 0.110223 -0.05926 0.742687069 0.88580219 1.131558358

0.753582 2.14973 -0.68675 -0.91987 -1.30265 -0.75639503 -0.63174354 1.042291129

0.57796 0.766775 1.112215 1.111626 1.009241 0.813621373 0.95210913 0.79393086

1.342604 1.03313 1.827893 2.02331 2.126559 2.233730879 2.08670539 1.674324834

0.033172 0.068781 -0.66091 -0.2974 -0.4351 -0.57644638 -0.48441901 -0.2228336

-0.021 -0.12102 1.113446 1.695776 0.999762 0.977921037 0.79208675 1.220387482

0.443335 0.658392 -0.03136 0.073874 0.040324 -0.05730454 -0.14019292 0.098470173

1.052762 1.14325 1.067682 1.423491 0.694329 1.170153203 0.48430684 1.330947419

0.513042 0.658055 -0.38546 -0.55282 -0.19185 -0.32225646 -0.61126102 -0.3129495

1.096352 0.981186 -0.30869 -0.17181 -0.21949 -0.26713564 -0.00075836 0.010926037

0.452965 0.876907 1.079918 0.760891 0.89901 0.973226302 0.57335314 0.82930881

0.848512 0.445102 0.135664 -0.36603 0.208828 0.428855037 0.52201342 0.474980525
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LOG2 ratio over SCR-KD fibroblasts

HIF1-KD

-2.36353

-0.47953

-0.46067

-0.81644

0.323768

-0.59355

-0.43584

-0.87866

0.501852

-0.29101

0.039252

-0.47357

0.017723

-0.31976

0.083061

-0.34047

1.047267

0.045597

-1.048

-1.09335

-0.53001

-0.65086

0.014818

-0.58453

0.133109

-0.83028

0.565405

-0.10668

-0.55512

-0.8339

0.20546

0.1318

-0.03871

0.329465

Page 71 of 72



Supp. Table 4. List of primers used for real-time QPCR analysis 

 

 

 

Gene Forward sequence (5’-3’) Reverse sequence (5’-3’) 

ACTB TCAAGATCATTGCTCCTCCTGAG ACATCTGCTGGAAGGTGGACA 

PDK1 ACTTCGGATCAGTGAATGCTTG ACTCTTGCCGCAGAAACATAAA 

PDK3 CGCTCTCCATCAAACAATTCCT CCACTGAAGGGCGGTTAAGTA 

PKM2 AAGGACCTGAGATCCGAACTG GCGTTATCCAGCGTGATTTTGA 

HIF1A GGCGCGAACGACAAGAAAAAG CCTTATCAAGATGCGAACTCACA 

HIF2A CTCTCCTCAGTTTGCTCTGAAAA GACAGAAAGATCATGTCGCCA 
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