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Abstract. We present a mathematical model for the protrusion of lamellipodia
in motile cells. The model lamellipodium consists of a viscoelastic actin gel in
the bulk and a dynamic boundary layer of newly polymerized filaments at the
leading edge called the semiflexible region (SR). The density of filaments in the
SR can increase due to nucleation of new filaments and decrease due to capping
and severing of existing filaments. Following on from previous publications, we
present important approximations that make the model feasible and accessible
to fast computational analysis. It reveals that there are three qualitatively
different parameter regimes: a stable, stationarily protruding lamellipodium;
a stable lamellipodium showing oscillatory motion of the leading edge; and zero
filament density and no stable lamellipodium. Hence, the model defines criteria
for the existence of lamellipodia and the ability of cells to move effectively,
and we discuss which parameter changes can induce transitions between the
different states. Furthermore, stable lamellipodia have to be able to exert and
withstand substantial forces. We can fit the experimentally measured dynamic
force–velocity relation that describes how cells can adapt to increasing external
forces when encountering an obstacle in their environment during motion.
Moreover, we predict a different stationary force–velocity relation that should
apply if cells experience a constant force, e.g. exerted by the surrounding tissue.
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1. Introduction

Cell motility plays a key role in neural development, wound healing, the immune response [1]
and in metastasis of cancer cells [2]. Understanding the mechanisms of cell motility is a
prerequisite for finding a means of inhibiting cancer spread [3, 4].

Many motile cells form a lamellipodium in the direction of motion, which is a flat
protrusion supported by an actin filament network. The force of protrusion in the lamellipodium
is believed to arise from the polymerization of actin [5, 6]. Actin polymers are found in
bundles in the interior of the lamellipodium, where myosin motor molecules can move along
them to create contractions. Toward the leading edge, actin forms a polar network with the
fast polymerizing barbed ends directed toward the membrane. At the opposite pointed ends,
filaments depolymerize, actin monomers are recycled and diffuse to the front, where they
are consumed by the growing tips [7]. This process is called treadmilling and is regulated
by several proteins [8–13]. Arp2/3 (actin-related protein 2/3) binds to an existing actin
filament and nucleates a new branch. Arp2/3 is activated by nucleation promoting factors,
such as the membrane-associated WASP, N-WASP or WAVE. Activation is restricted usually
to the leading edge membrane. Capping proteins bind to the barbed end of a filament
and prevent polymerization and depolymerization there. Cofilin binds to filaments, enhances
depolymerization and severs them. Different kinds of cross-linking proteins connect filaments
and provide mechanical stability to the network. Other proteins are believed to bind actin
polymers to the membrane [14].

The protrusions of motile cells consist of the posterior lamellum with highly cross-linked
and bundled actin filaments and the anterior lamellipodium with a network of individual
filaments polymerizing against the leading edge membrane [15–20]. While earlier studies
suggested the lamellipodial actin network to be highly cross-linked very close to the leading
edge membrane already due to branching of filaments by the Arp2/3 complex [21, 22], more
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recent studies showed that the branch point density in the lamellipodium may be rather low
and the lamellipodium-like structures may extend several hundreds of nanometers into the
cell [23–26]. That view is also supported by the mechanical properties of the anterior region,
which is as soft as weakly cross-linked actin networks [6, 27–30]. The studies also differ in
their results on filament length. While some conclude that filaments in the lamellipodium have
a length of a few hundreds of nanometers [21, 22], others find the length in the micrometer
range [19, 23, 24, 28, 31, 32].

The force balance at the surface of the object propelled by actin polymerization
comprises forces driving and resisting the motion. Polymerizing actin filaments generate motion
[11, 33]. The forces resisting it are only in part drag forces. They arise not so much from the
fluid surrounding drops or beads as from friction with the actin network. Cell motion involves
membrane motion relative to the substrate and to adhesion sites as well as fluid transport. That
also causes forces resisting motion which increase with the velocity. A major contribution to
the resisting forces comes from filaments bound to the object surface and pulling on it. That has
been shown for beads [5] and oil drops [34] directly. The presence of a large variety of actin
binding membrane proteins or proteins linking F-actin to membrane proteins in the leading edge
of lamellipodia (reviewed in [14]) strongly suggests that filaments attach also to the membrane
and hold it back. Additionally, membrane tension resists protrusion in spreading and motile
cells [35–38].

Here, we first present an extension of a model used in a variety of previous modeling
studies and then apply the model to questions relevant for cell function. We extend the model
to include total filament number dynamics due to capping, nucleation and severing. Changes in
filament number were not important for the quantitative modeling of the dynamic force–velocity
experiments lasting about 10 s only [30] or morphodynamics on the time scale of a few tens of
seconds [39]. But they are so for the stationary response of cells to forces, since the filament
number can adjust if force is applied for a long time [40].

The model without capping and nucleation describes the free filament length changes in
the semiflexible region (SR). Because shortening of the free filament length by cross-linking
is compensated for by filament elongation due to polymerization, all filaments quickly assume
the same free length [41]. Based on a monodisperse approximation, we solve equations for
the mean filament length. That monodisperse approximation cannot be applied to capped
filaments, since they do not polymerize and their length depends on the time of capping. An
exact approach requires the time-dependent solution of the partial differential equation for the
length distribution dynamics of capped filaments [42]. That can be done analytically but only
up to a remaining time integral, which renders the model very slow in simulations and rather
inaccessible to analysis. Here, we present the methods and approximations leading in the end to
a much simpler model formulation.

We apply the model to calculate the stationary force–velocity relation, but also show that it
reproduces the dynamic one. The model enables us also to investigate conditions for protrusion
existence. Both, the existence of stable protrusions and the stationary force–velocity relation are
crucial for cell behavior in tissue. The existence of protrusions is a prerequisite for mesenchymal
(lamellipodial) motion. Since the forces exerted by surrounding tissue on a cell act over a long
time, the stationary force–velocity relation applies and not so much the dynamic one which has
been measured in vitro [6, 29, 30].
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Figure 1. Schematic representation of the processes included in the model. The
actin filaments (green) in the semiflexible region (SR) can fluctuate and bend.
They exert forces on the leading edge membrane (blue line) and push it forward.
They elongate by polymerization and shorten by attachment of cross-linkers (red
dumbbells), which advances the gel boundary (red line) defined by a critical
concentration of bound cross-linkers. Retrograde flow in the actin gel counteracts
forward motion of the gel boundary. Filaments can also attach to the leading edge
membrane and exert a pulling force. New filaments are nucleated from attached
filaments. Filaments can get capped or severed and vanish into the gel afterwards.

2. The model

2.1. Modeling concept

The model includes the dense cross-linked actin gel in the bulk and the SR at the leading edge
of the lamellipodium (see figure 1). The boundary between the gel and the SR is defined by a
critical concentration of cross-linkers bound to the actin filaments. The density of filaments in
the SR changes by nucleation of new filaments and capping and severing of existing filaments.
Filaments in the SR can attach to the leading edge membrane via linker proteins. Attached
filaments can not only push, but also pull the membrane. The leading edge dynamics is
determined by the balance of filament forces and forces resisting motion.

2.2. Filament forces

Semiflexible actin filaments are subject to Brownian motion at the length scale of cells since
their persistence length lp is in the same range. Filaments of contour length l grafted at one end
exert an entropic force on an obstacle at distance z. The force has been calculated in [43] as

Fd(z, l, lp) = Fcrit F̃(η̃), (1)
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with the scaling variable

η̃ =
l − z

l‖
, l‖ =

l2

lp
, (2)

and

Fcrit =
π 2

4

kBT

l‖
(3)

is the critical force for the Euler buckling instability. In [43], it is shown that for small
compression η̃ . 0.2, the scaling function of the entropic force can well be approximated as

F̃<(η̃) =
4 exp(− 1

4η̃
)

π 5/2η̃3/2
[
1 − 2 erfc

(
1/(2

√
η̃)
)] . (4)

For η̃ & 0.2 the calculation yields

F̃>(η̃) =
1 − 3 exp(−2π2η̃)

1 −
1
3 exp(−2π 2η̃)

. (5)

The situation is different for attached filaments, since the tip of the filament is always
positioned at the membrane and cannot fluctuate. The proteins linking the filaments to the
membrane are assumed to behave like elastic springs. We distinguish three different regimes
for the force Fa exerted by the serial arrangement of polymer and linker, depending on the
relation between the depth of the semi-flexible region z, the equilibrium end-to-end distance
R‖ = l(1 − l/2lp) and the contour length l [44]:

Fa(l, z) =

−k‖(z − R‖), z 6 R‖, (i)
−keff(z − R‖), R‖ < z < l, (ii)
−kl(z − l) − keff(l − R‖), z > l. (iii)

(6)

The three cases correspond to: (i) a compressed filament pushes against the membrane; (ii)
filament and linker pull the membrane while being stretched together; and (iii) a filament is
fully stretched but the linker continues to pull the membrane by being stretched further. Here,
k‖, kl and keff are the linear elastic coefficients of polymer, linker and serial polymer–linker
arrangement, respectively. For k‖ we use the linear response coefficient of a worm-like chain
grafted at both ends k‖ = 6kBT l2

p/ l4 [45, 46].

2.3. Rates

Detached filaments attach to the membrane with a constant rate ka. The detachment rate of
attached filaments is force dependent since a pulling force facilitates detachment. It can be
expressed as

kd = k0
d exp(−d Fa/kBT ), (7)

with the force-free detachment rate k0
d . The length increment d added by an actin monomer to

the filament is 2.7 nm.
Detached filaments can polymerize and grow. The velocity of polymerization is force

dependent because the probability that the filament fluctuates away from the membrane and
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a gap sufficiently large for insertion of an actin monomer appears decreases with increasing the
force [47]. The polymerization velocity reads

vp = vmax
p exp(−d Fd/kBT ). (8)

vmax
p is the maximum polymerization velocity depending on the actin monomer concentration.

The rate of filament shortening is contour length dependent. The filaments are shortened
by the attachment of cross-linker molecules and incorporation of filament length into the actin
gel. The cross-linking velocity is length dependent, since the cross-linker binding probability
increases with filament length. It is unlikely that very short filaments get cross-linked. Free
cross-linker molecules bind to filaments near the leading edge. Retrograde flow of the actin
network transports them as bound molecules to the rear, where they dissociate and diffuse back
to the front. Solving the corresponding reaction–diffusion equation, we have shown [48] that
the cross-linking velocity can be expressed as

vg(l, n) = v̂max
g n tanh(nl/l̄). (9)

It is proportional to the filament density n, because denser filament packing allows cross-
linkers to span the inter-filament distance more easily. The characteristic length l̄ and the
maximum cross-linking rate v̂max

g are parameters. In the rate of filament shortening ṽg(l, z, n) =

max(1, vgl/z), the additional factor l/z accounts for the fact that a larger portion of filament
length is incorporated into the gel during cross-linking when filaments are bent.

Detached filaments may get capped. The binding rate of capping proteins is force
dependent, similar to the attachment of actin monomers to the filament barbed ends during
polymerization. We find an Arrhenius factor in the capping rate

kc = kmax
c exp(−d Fd/kBT ). (10)

New filament branches are nucleated by Arp2/3 off attached filaments with a nucleation
rate kn. We assume nucleation from attached filaments since activation of the Arp2/3 complex
by nucleation-promoting factors involves membrane binding. New filaments enter the force
balance and thus the SR dynamics when they reach the support by the actin gel. Since the
branching point vanishes into the gel quickly, newly nucleated filaments have the same length
as the mother filament in our model. The total number n of filaments is undefined without a
feedback to the nucleation process [42]. Such a feedback could be caused by a limited number
of Arp2/3 proteins. The effective nucleation rate reads

kn = k0
n − k N

n n. (11)

The rates k0
n and k N

n are constants.
We also want to include the disassembly of actin filaments by ADF/cofilin into our model.

ADF/cofilin binds to ADP-actin within filaments and promotes its dissociation by severing and
depolymerization of filaments [33]. We hypothesize that filaments to which cofilin is bound
vanish from the SR because they cannot exert a force any longer once they are severed. Actin
filaments bind ATP-actin monomers at their plus ends and quickly hydrolyze ATP to ADP-Pi but
it takes longer to lose the y-phosphate. Cofilin only binds to ADP-actin when y-phosphate has
dissociated [49, 50]. We can describe the dissociation by an exponential decay. The half lifetime
for y-phosphate dissociation within the filament is 6 min [33]. We neglect that y-phosphate dis-
sociation is probably accelerated by cofilin. The probability of cofilin binding is proportional to
the probability of finding an ADP-actin monomer at a given site x from the tip of the filament:

pADP = 1 − e−t ln(2)/T1/2 = 1 − e−x ln(2)/(vmax
p T1/2). (12)
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We assume that the polymerization velocity is constant vmax
p . The probability of filament

severing is found by integrating over the whole filament length

psev =

∫ l

0
1 − e−x ln(2)/(vmax

p T1/2)dx = l +
vmax

p T1/2

ln(2)

(
e

−
ln(2)l

vmax
p T1/2 − 1

)
. (13)

That leads to l-dependent terms in the dynamics of the number of attached and detached
filaments.

2.4. Gel velocity and retrograde flow

We have calculated the retrograde flow velocity in the actin gel [48] using the theory of the
active polar gel by Kruse et al [51, 52]. It depends linearly on the force acting on the leading
edge membrane. Solving the gel equations leads to the expressions for the coefficients of this
linear equation as a function of the gel parameters. We obtain for the gel velocity

u ≈ vlink −
µL

4η
g1 +

f0

Lξ
g2,

g1 =
1

2.0 + 0.12 ξ L2

4ηh0

, (14)

g2 =

(
1.0 + 0.92

ξ L2

h04η

)1/2 (
1.0 + 0.03

µL

4ηvlink

)
.

Here, vlink is the cross-linking velocity, hence the velocity at which the actin gel is produced.
The gel boundary does not move forward with the velocity of cross-linking since there is a
backwards-directed retrograde flow in the actin gel. The term proportional to g1 expresses the
retrograde flow arising from contractile stress µ in the actin gel. Contractions may be caused
by myosin motors or actin depolymerization [53]. L = 10 µm is the width of the gel part of the
lamellipodium and η is the viscosity of the actin gel. The g2-term describes a retrograde flow
due to filaments in the SR pushing the gel backwards. The total force that they exert on the
gel boundary is denoted by f0. Adhesions between the gel and the substrate are described by
the friction coefficient ξ . h0 is the height of the lamellipodium at the boundary between the gel
and the SR. We have fit g1, g2 for 06 ξ L2

4ηh0
6 50. Equations (14) are valid on the condition that

µL
4ηvlink

< 1.

2.5. Dynamic equations

The processes considered so far determine the length distribution of attached Na(l, t), detached
Nd(l, t) and capped filaments Nc(l, t) in the SR. Their dynamics are described by the following
linear equations (see also [42]):

∂

∂t
Nd(l, t) =

∂

∂l
((ṽg − vp)Nd(l, t)) + kd Na(l, t) − ka Nd(l, t) − kc Nd(l, t)

−ksev Nd(l, t)

[
l +

vmax
p T1/2

ln(2)

(
e

−
l ln(2)

vmax
p T1/2 − 1

)]
, (15)
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∂

∂t
Na(l, t) =

∂

∂l
(ṽg Na(l, t)) − kd Na(l, t) + ka Nd(l, t) + kn Na(l, t)

−ksev Na(l, t)

[
l +

vmax
p T1/2

ln(2)

(
e

−
l ln(2)

vmax
p T1/2 − 1

)]
, (16)

∂

∂t
Nc(l, t) =

∂

∂l
(ṽg Nc(l, t)) + kc Nd(l, t). (17)

ksev is the binding rate of cofilin.
As shown in [41, 42], a δ-function-ansatz for Nd(l) and Na(l) used in equations (15)

and (16) leads to ordinary differential equations for the total density of attached and detached
filaments na and nd and for their mean lengths la and ld:

ṅd = kdna − (ka + kc)nd − ksevnd

[
ld +

vmax
p T1/2

ln(2)

(
e

−
ld ln(2)

vmax
p T1/2 − 1

)]
, (18)

ṅa = kand − (kd − kn)na − ksevna

[
la +

vmax
p T1/2

ln(2)2

(
e

−
la ln(2)

vmax
p T1/2 − 1

)]
, (19)

l̇d = −(ṽg(ld, z, n) − vp(ld, z)) + kd(la, z)
na(t)

nd(t)
(la(t) − ld(t)), (20)

l̇a = −ṽg(la, z, n) + ka
nd(t)

na(t)
(ld(t) − la(t)). (21)

The dynamics of the SR width reads

ż =
1

κ
( f0 − fext) − u(vlink, − f0), (22)

with the total filament force

f0 = (Fd(ld, z)nd(t) + Fa(la, z)na(t) + fc(nd, ld, z, n)) . (23)

We have also included a constant external force fext that acts on the leading edge.
Expression (14) is used for the gel boundary velocity u. The total force of capped filaments
fc, the average cross-linking rate vlink and the total filament density n will be calculated below.

2.6. Length distribution of capped filaments

The monodisperse approximation is not valid for the distribution of capped filaments Nc(l, t).
That renders the calculation of Nc(l, t) much more complicated than it was for the other
densities. However, we need Nc(l, t) for its contributions fc to the force, nc to the total number
of filaments and vc

g to the average cross-linking velocity vlink (see equation (42)).
Equation (17) is solved using the method of characteristics. Here, we assume that

filaments are long when they get capped. We neglect the length dependence of vg and only
account for ṽg = max(1, l/z)v̂max

g n. As before, we write vmax
g (n) = v̂max

g n. Furthermore, we
are only interested in Nc(l, t) for z 6 l 6 ld, since for l < z, capped filaments exert no force.
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Hence, ṽg =
l
z v

max
g . Using the monodisperse approximation for the detached filaments Nd(l, t) =

nd(t)δ(l − ld(t)), equation (17) reads

∂

∂t
Nc =

vmax
g

z
Nc +

l

z
vmax

g

∂

∂l
Nc + kc(ld)nd(t)δ(l − ld). (24)

With
dN

ds
=

∂ N

∂t

dt

ds
+

∂ N

∂l

dl

ds
, (25)

we can identify the characteristics

dt

ds
= 1 ,

dl

ds
= −vmax

g

l

z
(26)

and
dNc

ds
=

vmax
g

z
Nc + kc(ld)nd(t)δ(l − ld). (27)

The first equation (the first of equations (26)) gives s = t and therefore we obtain

dl

dt
= −

vmax
g

z
l (28)

with the solution (obtained by separation of variables)

l(t) = l(t∗) exp

(
−

∫ t

t∗

vmax
g (t ′)

z(t ′)
dt ′

)
. (29)

The time point of capping is denoted by t∗. Solving

dNc

dt
=

vmax
g

z
Nc + kc(ld)nd(t)δ(l − ld) (30)

requires a little more effort. The general solution of the inhomogeneous equation equals the
sum of the solution of the homogeneous equation and a special solution of the inhomogeneous
equation. The solution of the homogeneous equation reads

N h
c = C exp

(∫ t

t∗

vmax
g

z
dt ′

)
. (31)

The special solution of the inhomogeneous equation is found by the variation of constants:

N sp
c =

[∫ t

t∗
dt ′kc(ld(t

′))nd(t
′)δ(l(t ′) − ld(t

′) exp

(
−

∫ t ′

t∗

vmax
g

z
dt ′′

)]
exp

(∫ t

t∗

vmax
g

z
dt ′

)
=

∫ t

t∗
dt ′kc(ld(t

′))nd(t
′)δ(l(t ′) − ld(t

′) exp

(∫ t

t ′

vmax
g

z
dt ′′

)
=

kc(ld(t∗))nd(t∗)

|
d

dt ′ (l(t
′) − ld(t ′))|t ′=t∗

exp

(∫ t

t∗

vmax
g

z
dt ′′

)
.

In the last line, we have used δ(g(x)) =
∑n

i=1
δ(x−xi )

|g′(xi )|
, where xi are the roots of g(x). Note that

l(t∗) = ld(t∗) at the time of capping t∗. Equation (29) yields

exp

(∫ t

t∗

vmax
g

z
dt ′′

)
=

ld(t∗)

l(t)
. (32)

New Journal of Physics 15 (2013) 015021 (http://www.njp.org/)

http://www.njp.org/


10

We find that
d

dt
l(t)|t=t∗ = −

vmax
g (t∗)

z(t∗)
ld(t

∗)

using (29). Furthermore,

d

dt
ld(t)|t=t∗ = −

vmax
g (t∗)

z(t∗)
ld(t

∗) + vp(ld(t
∗)) + kd(la(t

∗))
na(t∗)

nd(t∗)
(la(t

∗) − ld(t
∗)).

Hence,

N sp
c (t, t∗) =

kc(ld(t∗))nd(t∗)

vp(ld(t∗)) + kd(la(t∗)) na
nd

(t∗)(la(t∗) − ld(t∗))

ld(t∗)

l(t)
(33)

for kd(la(t∗)) na
nd

(t∗)(la(t∗) − ld(t∗)) > −vp(ld(t∗)). To find the length distribution of capped
filaments, for every length l, t∗ has to be calculated by solving l = ld(t∗). The number of capped
polymers is determined by the number of detached polymers and the capping rate at the time of
capping.

2.7. The total number, force and cross-linking rate of capped filaments

For calculating the total number, force and cross-linking rate, we need

∂l

∂t∗
=

∂

∂t∗

[
ld(t

∗) exp

(
−

∫ t

t∗

vmax
g (t ′)

z(t ′)
dt ′

)]

=

[
l̇d(t

∗) −

(
−

vmax
g

z
(t∗)

)
ld(t

∗)

]
exp

(
−

∫ t

t∗

vmax
g (t ′)

z(t ′)
dt ′

)

=

[
−

vmax
g

z
ld(t

∗) + vp(t
∗) + kd

na

nd
(la − ld)(t

∗) +
vmax

g

z
ld(t

∗)

]
exp

(
−

∫ t

t∗

vmax
g

z
dt ′

)

=

[
vp (ld(t

∗)) + kd (la(t
∗))

na

nd
(t∗) (la(t

∗) − ld(t
∗))

]
exp

(
−

∫ t

t∗

vmax
g (t ′)

z(t ′)
dt ′

)
.

The total density of capped filaments with z 6 l 6 ld is then given by

nc =

∫ ld(t)

z(t)
dl Nc(l, t) =

∫ t

t∗z

dt∗
∂l

∂t∗
Nc(t

∗, t) =

∫ t

t∗z

dt∗kc (ld(t
∗), z(t∗)) nd(t

∗). (34)

The lower integral boundary is z(t) since shorter filaments do not exert any force and are
therefore not considered in the model. The time of capping of filaments with length z at time t
corresponds to t∗

z . We again use equation (29)

z(t) = ld(t
∗

z ) exp

(
−

∫ t

t∗z

vmax
g (t ′)

z(t ′)
dt ′

)
(35)

and apply a root finding algorithm to determine t∗

z . The total number of all filaments is given by
n = nc + na + nd.

Along these lines, we can also calculate the total force of capped filaments

fc =

∫ ld(t)

z(t)
dl Nc(l, t)Fd(l, z) =

∫ t

t∗z

dt∗kc (ld(t
∗), z(t∗)) nd(t

∗)Fd (l(t∗), z(t)) . (36)
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Note that we have to calculate l(t∗) according to expression (29) for every t∗. The average
cross-linking rate yields

vc
g =

1

n

∫ ld(t)

z(t)
dl Nc(l, t)vg(l, n) =

1

n

∫ t

t∗z

dt∗kc (ld(t
∗), z(t∗)) nd(t

∗)vg (l(t∗), n(t)) . (37)

The total number of filaments (attached, detached and capped) n enters vmax
g , and nc is therefore

already required for determining t∗

z (equation (35)). The total number changes according to

dn

dt
= knna(t) − vmax

g (t)Nc(l = z, t). (38)

It increases by nucleation and decreases because capped filaments are eaten by the gel. We only
consider capped filaments longer than z that exert a force in order to simplify the calculations.
Capped filaments with length l = z vanish at the rate of gel cross-linking from this filament
population. Their number is determined by equation (33) for l(t) = z(t).

2.8. Further approximations

To calculate t∗

z in every time step and integrate over Fd and vg is computationally very
demanding. We also want to avoid tracking the history of la, ld, z, na, nd and n. To simplify
the calculation, we assume a stationary distribution Nc(l). In the stationary case, we obtain

Nc(l) =

∫ t

t∗
dt ′kc(ld(t

′))nd(t
′)δ(l(t ′) − ld(t

′) exp

(∫ t

t ′

vmax
g

z
dt ′′

)
= −

∫ l

ld

dl ′
z

vmax
g l ′

kcndδ(l
′
− ld)

l ′

l
=

zkcnd

lvmax
g

. (39)

We have changed the integration variable according to equation (28).
The total density of capped filaments that exert a force (i.e. with length z < l < ld) reads

nc =

∫ ld

z
dl Nc(l) =

zkcnd

vmax
g

ln

(
ld

z

)
. (40)

With vmax
g = v̂max

g (na + nd + nc), we obtain

nc = −
na + nd

2
+

√(na + nd

2.0

)2

+ ln

(
ld

z

)
kcndz

v̂max
g

. (41)

To calculate the average cross-linking rate,

vlink =
1

n

(
navg(la) + ndvg(ld) + vc

g

)
, (42)

we again consider only capped filaments with z 6 l 6 ld. We neglect the length dependence of
vg and set vg = vmax

g to obtain analytic expressions

vc
g =

∫ ld

z
vg(l)Nc(l) dl = zkcnd

∫ ld

z

vg(l)

lvmax
g

dl ≈ zkcnd

∫ ld

z

1

l
dl = zkcnd ln

(
ld

z

)
. (43)

The force of capped filaments is given by

fc =

∫ ld

z
dl Nc(l)Fd(l, z) =

kcndz

vmax
g

∫ ld

z

Fd

l
dl, (44)
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Figure 2. The force of capped filaments for z 6 l 6 ld, which occurs in
the integrand of equation (44), during a simulation of the system (ksev =0).
(Crosses) The entropic force according to equation (1). (Solid line) Euler
buckling force only (equation (3)) with the scaling function set to 1 as an
approximation for the entropic force to obtain an analytic expression for the total
force of capped filaments fc (equation (45)). Only for lengths slightly larger
than z the full entropic force differs from the Euler buckling force, so that the
approximated fc is slightly too large. However, the contribution of that part to
the integral is very small and the approximation is good. (A) lp = 15 µm and (B)
lp = 2 µm. Other parameters: ka = 0.833 s−1, k0

d = 1.67 s−1, k0
n = 2.0 s−1, k N

n =

0.00167 µm s−1, kc = 1.0 s−1, v̂max
g = 0.01 µm2 min−1, vmax

p = 50 µm min−1,
κ = 0.833 nN s µm−2, l̄ = 10, η = 33.3 nN s µm−2, ξ = 10.0 nN s µm−3, µ =

2.78 pN s µm−2, h0 = 0.1 µm, L = 10 µm.

with Fd(l, z) =
π2

4
kBT lp

l2 F̃(η̃) (see equation (1)). The scaling function F̃(η̃) (equations (4)
and (5)) cannot be integrated analytically. It increases monotonically to 1 with increasing
the compression η̃ of the filament. When simulating the dynamical system we see that the
1/ l3-dependence of the integrand of fc dominates over the increasing part of F̃ (see figure 2).
Therefore, we approximate Fd by the Euler buckling force Fcrit and obtain

fc =
kcndz

vmax
g

∫ ld

z

π 2

4

kBT lp

l3
dl =

kcndz

vmax
g

π2

8
kBT lp

(
1

z2
−

1

l2
d

)
. (45)

In figure 3, we compare the solution of our time-dependent model with the solution of the
model with the approximations introduced in this section.
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Figure 3. Comparison of the solution of the time-dependent model (solid lines)
and the model with the approximations introduced in this section (dashed
lines). (A)–(C) For the parameters from the fit of the force–velocity relation
(table 1). (D), (E) For parameters in the regime with n = 0 as the stationary
state: k0

n = 2.0 s−1, kmax
c = 1.175 s−1, all other parameters remain unchanged.

Retrograde flow is set to zero. (A), (D) Density of attached filaments na (blue),
detached filaments nd (red) and the total filament density n (black). (B), (E) Force
density of attached filaments fa (blue), of detached filaments fd (red) and capped
filaments fc (yellow). (C) Length of attached filaments la (blue), of detached
filaments ld (red) and SR depth z (black). Filament length is undetermined and
increases steadily in the regime with n = 0.

3. Results

3.1. Existence of stable protrusions

Our model defines criteria for the existence of stable lamellipodia. In figure 4, we examine how
the stationary filament density changes with some model parameters. The black areas indicate
regions in the parameter space where n = 0 (no filaments in the SR) is the only stable fixed point.
Since n = 0 means that there is no protrusion, the conditions for the existence of attractors with
n > 0 (fixed points or limit cycles) describe the conditions for the existence of stable protrusions.
Different sets of parameters in our model correspond to different cell types or different levels of
expression or activation of signaling molecules within one cell type.

No stable lamellipodium exists for low nucleation rates in figure 4(A), because the creation
of new filaments by nucleation cannot compensate for filament extinction by capping and
severing. The stable protrusion vanishes for small cross-linking rates v̂max

g since the filaments
are long. That entails large severing rates and renders the filaments floppy, which increases
the capping rate. Similarly, the filament density decreases with increasing capping rate kmax

c
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Figure 4. Stationary total filament density: (A) as a function of the cross-linking
rate v̂max

g and the nucleation rate k0
n; (B) as a function of the capping rate kmax

c
and the external force fext; (C) as a function of the binding rate of cofilin ksev and
attachment rate ka. There is a bistable domain at large attachment rates. We only
show the fixed point with higher filament density. All other parameters are as in
table 1.

(figure 4(B)). A larger external force has among others the consequence of decreasing the
capping rate via its force dependence (equation (10)). Furthermore, filaments shorten to adapt
to the external force, which decreases the severing rate. In this way, applying an external force
may cause protrusion formation in the parameter regime shown in figure 4(B). Nucleation is
proportional to the number of attached filaments. Consequently, filament binding may cause
protrusion generation in figure 4(C).

Besides stable fixed points with a certain filament density, our model also exhibits stable
limit cycles. Those limit cycles also correspond to stable lamellipodia. However, the leading
edge shows oscillatory motion and varying protrusion velocities. In figure 5, we show two
examples of oscillatory solutions of the model. As already discussed in [41], the membrane
velocity can either stay at an intermediate value most of the time and periodically drop to lower
values during short ‘stops’ (figure 5(F)), or the membrane periodically jerks forward during
short ‘jumps’ (figure 5(E)). During the phase of slow movement, attached filaments are shorter
than z and pull the membrane. The effective cross-linking velocity ṽg is larger than the effective
polymerization velocity vp. Consequently, filaments shorten until the force is sufficiently large
to disrupt the attached filaments from the membrane and to push it forward. Now the filaments
can grow longer again, exert weaker forces and attach to the membrane (see [41] for a detailed
description of the oscillation mechanism). The retrograde flow increases or decreases with the
membrane velocity since both are proportional to the total filament force. New filaments are
nucleated from attached filaments in our model. Due to the nucleation, the total filament density
increases when forces are low and the number of attached filaments goes up (figures 5(A) and
(B)). The number of capped filaments also increases, because the capping rate is high at low
forces, and the filaments are long and it takes longer until they vanish into the gel.

Many mathematical models equate the leading edge velocity with the polymerization rate
or a monotonically increasing algebraic function of it. That excludes a phase difference between
the maxima of the polymerization rate and leading edge velocity in oscillations. However,
such a phase difference has been observed [54]. The leading edge velocity increases first and
subsequently the polymerization rate increases. Figure 6 shows the two oscillation types as limit
cycles in the phase plane spanned by polymerization velocity vp and leading edge velocity. The
system cycles clockwise in both the cases. The red limit cycle corresponds to oscillations shown
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Figure 5. Examples of oscillatory solutions of the model. (A), (B) The density
of attached (blue), detached (red) and capped (yellow) filaments and the
total filament density (black). (C), (D) The length of the attached (blue) and
detached (red) filaments and SR depth (black). (E), (F) Membrane velocity
(black), retrograde flow velocity (red) and the velocity of the gel boundary
(light blue). (A), (C), (E) For ka = 0.2 s−1, k0

d = 0.5 s−1, kmax
c = 0.23 s−1, vmax

p =

78 µm min−1. (B), (D), (F) For ka = 0.2 s−1, k0
d = 0.3 s−1, kmax

c = 0.025 s−1,
vmax

p = 12 µm min−1. All other parameters are as in table 1.

in figures 5(A), (C) and (E), and the blue one to figures 5(B), (D) and (F)). The phase difference
between both velocities in the red limit cycle is obvious. It is about 9 s expressed in time. That is
less than the 20 s observed in [54], but we did not search for parameters with longer delays since
the important message is the existence of a clear phase difference. The blue limit cycle exhibits
almost no phase difference between the two maxima, but the leading edge velocity decreases
earlier than the polymerization rate.

In figure 7, we show two examples of bifurcation diagrams where increasing the nucleation
rate (figures 7(A), (C) and (E)) or external force (figures 7(B), (D) and (F) leads to a transition
from no lamellipodium to a stable, stationarily protruding lamellipodium (a stable fixed point,
solid line) to a stable, oscillating lamellipodium (an unstable fixed point, dashed line, a stable
limit cycle). In figures 7(A), (C) and (E), the fixed points of the dynamical system are plotted
against the nucleation rate k0

n . At k0
n = 0.25 s−1, the nucleation rate becomes large enough to
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Figure 6. The two oscillation types as limit cycles in the phase plane spanned
by polymerization velocity vp and leading edge velocity. The system cycles
clockwise in both the cases. The red limit cycle corresponds to oscillations shown
in figures 5(A), (C) and (E), and the blue one to figures 5(B), (D) and (F).

generate a stable fixed point. Attached and detached filaments are both longer than the SR depth
z here. The filament density, and therefore also the cross-linking rate, increases with increasing
the nucleation rate k0

n . Consequently, filaments get shorter and exert higher forces. Eventually,
attached filaments are shorter than z and the effective cross-linking rate may get larger than the
effective polymerization rate, leading to a transition to the oscillatory regime. A stable fixed
point different from n = 0 can also be generated by increasing the external force (figures 7(B),
(D) and (F)). Again, to balance the increasing external force, filaments shorten and their number
increases until the fixed point loses stability. Since now the filament density decreases again and
the filaments are very short, in the range of the saturation length of the cross-linking velocity,
the cross-linking velocity drops below the polymerization velocity and the fixed point becomes
stable again upon further growth of force. Note that in those examples attachment rates ka and
detachment rates k0

d are lower than in figure 4, which is necessary for observing the oscillations.

3.2. The force–velocity relation

Cells that exhibit stable lamellipodia have to be able to withstand substantial forces from their
surroundings. The force–velocity relation describes the lamellipodium protrusion velocity as a
function of the force exerted on the leading edge. It is usually measured with a scanning force
microscope (SFM) cantilever (see [30]). In [30], we simulated the experimentally measured
force–velocity curves with a model with a constant filament density. We now repeat our fit with
the model including capping, nucleation and severing. The result is shown in figure 8 and the
parameters in table 1. The measured data are still very well reproduced by the model. When
the cell touches the cantilever, the velocity of the leading edge drops from ∼250 nm s−1 to less
than 1 nm s−1 (figure 8(C)), followed by a concave force–velocity relation (figure 8(B)). As
already described in [30], the force–velocity relation mainly gets its characteristic shape due
to an initial bending of long filaments and a subsequent adaptation of filament lengths to the
increasing external force (figure 8(E)). Retrograde flow slowly increases until it compensates
for polymerization in the stalled state (figure 8(C)). The total number of filaments first increases
during the concave phase because the capping rate decreases with increasing the force, and
severing decreases with shrinking the filament length. Later, the filament number decreases
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Figure 7. Stationary filament length, SR depth, filament density, membrane
and retrograde flow velocity as a function of the nucleation rate k0

n (A, C,
E) and the external force fext (B, D, F). (A), (B) The length of attached
(blue) and detached (red) filaments and SR depth (black). (C), (D) The density of
attached (blue), detached (red) and capped (yellow) filaments and total filament
density (black). (E), (F) Membrane (black) and retrograde flow (red) velocity.
(Solid lines) A stable fixed point. (Dashed lines) An unstable fixed point; the
system oscillates. (A), (C), (E) For ka = 0.2 s−1 and k0

d = 0.5 s−1, fext = 0, all
other parameters are as in table 1. The displayed fixed points vanish below
k0

n = 0.25 s−1. However, there is always another stable fixed point with n = 0 and
undetermined filament length. Filament lengths larger than 4 lm of the unstable
fixed point are not shown in (A). (B), (D), (F)) For ka = 0.2 s−1, k0

d = 0.5 s−1,
k0

n = 0.15 s−1, η = 4.0 nN s µm−2, ξ = 0.7 nN s µm−3, all other parameters are
as in table 1. Below fext = 0.008 nN µm−1, n = 0 is the only stable fixed point.
Unlike in (A), (C), (E), we only show the stable fixed point that is then generated
and not the unstable fixed point.
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Figure 8. Fit of the experimentally measured dynamic force–velocity relation.
(A), (B) Comparison of simulation (black) and experiment (red). (A) Time
course of the cantilever deflection, which is proportional to the force exerted
on the cell. (B) The force–velocity relation obtained from the deflection and the
deflection velocity. (C) Development of the leading edge velocity (black), the
gel boundary velocity (blue) and retrograde flow velocity (red). The sum of the
latter two (dashed magenta) equals the cross-linking rate and is proportional to
the filament density. (D) Time course of filament densities: (blue) attached; (red)
detached; (yellow) capped; (black) total. (E) Development of filament lengths
((blue) attached; (red) detached) and the SR depth (black). For the parameter
values see table 1.

again, because the ratio of attached to detached filaments decreases and therefore also the
nucleation rate. The value in the stalled state is slightly higher than in the freely running cell.

Our model fits the measured protrusion and retrograde flow velocities of the freely running
cell before cantilever contact, the velocity measured with the cantilever during the concave
phase, the value of the stall force and the shape of the force–velocity relation. Due to the
good agreement between the measured data and the simulation, we assume that the model
parameters determined by the fit of the force–velocity relation represent the ‘default’ values for
the stable keratocyte lamellipodium in parameter space. We can also conclude some features of
the structure of the lamellipodium such as filament length and branch point density. The capping,
nucleation and severing rates are relatively low. With the filament density of about 280 µm−1

(see figure 8(D)), the effective nucleation rate kn = k0
n − k N

n n is approximately 9 min−1. Since
filaments polymerize in the freely running cell with about 31µm min−1 (the rate of filament
elongation equals the rate of filament shortening nv̂max

g l/z), we should find a branching point
approximately every 3.5 µm along the filament. Filaments in the SR are less than 2 µm long
and consequently the branch point density is low. If we keep in mind that new branches grow
from attached filaments only, we find about 50 branch points in the SR per µm lateral width.
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Table 1. List of model parameters and their values in figure 8. See also [30].

Symbol Meaning Value Units Reference

ka Attachment rate of filaments to the membrane 10.0 s−1 10 s−1 in [55]

k0
d Detachment constant 25.0 s−1 Fitted

vmax
p Saturation value of polymerization velocity 46.2 µm min−1 30 µm min−1 in [47]

v̂max
g Saturation value of the gel cross-linking rate 0.075 µm2 min−1 Fitted

k0
n Nucleation rate 0.6 s−1 [24]

k N
n Limiting factor of the nucleation rate 0.0016 µm s−1 Fitted

kmax
c Capping rate 0.065 s−1 [24]

ksev Binding rate of cofilin 2.0 s−1 µm−1 Assumed
T1/2 Half-life of ATP-actin within filament 6.0 min [33]
l̄ Saturation length of the cross-linking rate 10 Assumed
κ Drag coefficient of the plasma membrane 0.113 nN s µm−2 [56]
k Elastic modulus of SFM cantilever 291 nN µm−2 [30]
d Actin monomer radius 2.7 nm [57]
lp Persistence length of actin 15 µm [58]
kl Spring constant of linker protein 1 nN µm−1 [47, 59]
η Viscosity of actin gel 0.833 nN s µm−2 [60, 61]
ξ Friction coefficient of actin gel to adhesion sites 0.175 nN s µm−3 [62]
µ Active contractile stress in actin gel 8.33 pN µm−2 Fitted
h0 Height of lamellipodium at the leading edge 0.25 µm [63, 64]
L Length of the gel part of lamellipodium 10 µm [21, 64]

Contact length with beads 4.4 µm [30]

The capping rate is also low. The model result for the density of capped filaments in the
freely running cell is approximately 10 µm−1 (figure 8(D)). We should bear in mind that
this is only the number of capped filaments with lengths between z and ld. Hence, the total
number of capped filaments in the SR amounts to 30 µm−1 (see figure 8(E)). Consequently, to
accomplish a stationary filament number, the newly nucleated filaments are partly compensated
for by capping, partly by severing. In [24], the authors find on average one branch point every
0.8 µm along a filament by evaluating electron microscopy tomograms. However, this value was
measured in NIH 3T3 cells and treadmilling is much slower in those cells than in keratocytes,
which entails also a smaller branch point distance given a comparable branching rate. The
capping and nucleation rates in their simulations (kcap = 0.03 s−1, kbr = 0.042 s−1) are slightly
lower but in the same range as in our fit (table 1). Moreover, the actual branch point density
should be higher because we only account for filament branches that have already grown to the
length of the mother filament in our model.

We would like to emphasize that the force–velocity relation measured with the SFM
cantilever is not the relation between a constant external force and stationary velocity values. It
gets its characteristic shape due to the adaptation of filament length, SR depth and retrograde
flow to the increasing external force. The stationary force–velocity relation with the parameter
values from our fit of the keratocyte data is shown in figure 9(A). The stationary force–velocity
relation is defined as the stationary protrusion velocity at a given constant external force. It is
dominated by the force–velocity relation of the gel (equation (14)) and is almost linear. The
slight change in slope occurs because the filament density, and therefore also the maximum
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Figure 9. The stationary force–velocity relation and retrograde flow, filament
density, filament length and SR depth as a function of the external force.
(A), (B) Membrane (black) and retrograde flow (red) velocity. (C), (D) The
density of attached (blue), detached (red) and capped (yellow) filaments and total
filament density (black). (E), (F) The length of attached (blue) and detached (red)
filaments and SR depth (black). (A), (C), (E) For the parameters from the fit of
the dynamic force–velocity relation (table 1). (B), (D), (F) For k0

n = 2.2 s−1 and
kmax

c = 1.0 s−1, all other parameters are unchanged.

cross-linking rate, first increases and then decreases (figure 9(C)). Filaments in the SR shorten
to balance the increasing external force (figure 9(E)). However, they remain long enough that
the effective cross-linking rate does not drop below its maximum value. Otherwise, we could
observe a change in slope (see [48]). We find that the stationary force–velocity relation allows
for much faster motion for forces below the stall force than the dynamic force–velocity relation.
Cells adapt to the constantly applied external force and become faster by that adaptation. It is
not possible that a stationary relation exhibits the initial velocity drop seen in the experiment.
If we increase the capping and nucleation rates, the maximum in the filament density is more
pronounced (figure 9(D)). Consequently, the stationary force–velocity relation has a concave
shape (figure 9(B)). The velocity first increases with increasing force, reaches a maximum and
then drops. As we see in figures 7(B), (D) and (F), the force–velocity relation can get much
more complex for lower attachment and detachment rates. Here, we enter the oscillatory regime
by increasing the external force and observe a drop in the stationary velocity.

4. Discussion

Our model provides the conditions for the existence of stable membrane protrusions. The
existence of critical values for capping and severing above which stable lamellipodia vanish was
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as expected. Here, we assumed that the binding of the capping protein leads to an elongation
of the filament by the diameter of this protein. That renders the capping rate force-dependent.
While this paper was in press, we indeed learned about experimental results proving the force
dependence of the capping rate, which we had used due to thermodynamic considerations,
similar to the force dependence of the polymerization rate [65]. Consequently, large forces
may reduce the capping rate to a degree sufficient for protrusion formation. Similarly, filaments
have to be short to withstand large external forces, which leads to reduced severing. Since we
assumed that membrane-bound filaments do not get capped, and new filaments are nucleated
from attached filaments, also membrane binding can rescue lamellipodia. The existence of a
critical minimal cross-linking rate illustrates that filaments grow too long and floppy for exerting
a force and the lamellipodia collapse, if the gelation process does not keep up with leading edge
movement. It is important to keep in mind that transient protrusions may exist with less stringent
requirements, such as e.g. a difference between gel boundary and leading edge velocity.

The variation of parameters in this study can be interpreted as describing varying states
of signaling pathways converging on lamellipodium formation and control or as describing
different cell types. The fit of the measured force–velocity relation determines the parameters
applying to the stable keratocyte lamellipodium. We can describe other cell types by varying
our model parameters. Thus, our model provides an explanation of why some cells exhibit
stable, stationarily protruding lamellipodia while others show oscillations of the leading edge
or no lamellipodia at all. Different levels of expression or activation of signaling molecules that
entail e.g. different nucleation rates lead to the different phenotypes, while the mechanism for
lamellipodial protrusion due to actin polymerization is the same in all cells. Our model also
suggests which manipulations should lead to the formation of a stable lamellipodium or vice
versa its collapse. For example, reducing the nucleation rate in the keratocyte lamellipodium
by inhibiting Arp2/3, or reducing the cross-linking rate by inhibiting cross-linking molecules,
should lead to a collapse of the lamellipodium. A transition to a lamellipodium exhibiting
oscillating protrusion velocities can be achieved by decreasing the attachment and detachment
rates of filaments to the membrane.

The response of the cell to external forces depends on the mode of application.
Stationary force–velocity relations are shown in figures 7(F) and 9(A), (B). Application
of a constant force leads to a piecewise linear force–velocity relation at small filament
nucleation rates and can increase the velocity at larger nucleation rates. Force application
may also even shift the cell into an oscillatory regime, as in figure 7(F). These examples
illustrate that the stationary force–velocity relation does not exhibit a unique shape but may
be rather complex. The comparison between figures 8(B), (C) and 9(A) shows the differences
between dynamic and stationary force–velocity relations. Hence, our model predicts that the
stationary force–velocity relation is different from the dynamic relations measured by force
microscopy in [6, 29, 30]. The differences to the dynamic force–velocity relation arise
from adaptation to the force by thinning of the SR and a rise in filament density. That a
rise in filament density in response to an increasing external force can entail a constant
or even increasing velocity has previously been described in the autocatalytic branching
model [40] and has been proposed as the mechanism for the force–velocity relation of actin
networks [66].

In a realistic lamellipodium, filaments exhibit a variety of lengths and are oriented
under different angles [23, 32]. Length distributions of capped filaments were not calculated
explicitly in this study because we were mainly interested in the leading edge dynamics, and
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short filaments, which cannot exert a force, do not contribute to it. We also do not consider
angular distributions. Nevertheless, we are confident that the different regimes found here,
no lamellipodia, stable lamellipodia and oscillations, do not depend on this simplification.
However, in [67] it was suggested that the filament angular distribution changes under the
application of a constant force, and it would be interesting to study whether this influences the
stationary force–velocity relation in our model, too. Adhesions are treated as a constant friction
between the gel and the substrate in this study. In [30], we have shown that the strengthening
of adhesions by the external force does not substantially change the dynamic force–velocity
relation. However, further studies are necessary to determine whether remodeling of adhesions
contributes to the stationary force–velocity relation.

We have also not included any signaling events in our model. This is certainly a good
approximation for the measurement of the dynamic force–velocity relation which takes 5–15 s.
Signaling would need to occur even faster. Given, additionally, that the model explains a
variety of experimental observations starting with the shape of the complete relation on
physical grounds, it seems unlikely that signaling has an essential role in shaping the dynamic
force–velocity relation. However, one can imagine that cell signaling, and therefore also our
model parameters such as nucleation or polymerization rate, change and adapt if a stationary
force is applied to the lamellipodium. Our simulations of the stationary force–velocity relation
allow determining whether signaling has a role there by comparing our results with future
experiments. Moreover, it is interesting to note that signaling is not necessary for the adaptation
of the filament density to the force.
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