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Figure 8. EB-mediated differentiation of human iPS cells. (A) iPS cells were kept in suspension on polyHEMA-coated six-well plates in EB medium
to allow formation of cystic EBs for 6 days. (B) After 6 days, EBs were placed onto gelatin-coated plates, and the spontaneously differentiating,
attached cells were assessed for markers of the three germ layers. Cells were positive for the endodermal marker AFP, the mesodermal marker
a-SMA and the ectodermal marker bIII-tubulin. (C) Multi-lineage differentiation of human iPS cells was determined by qPCR for markers of the
three germ layer markers, and compared with undifferentiated human iPS cells. Data are normalized to Gapdh, and relative to undifferentiated
human iPS cells. (D) Histological evidence of EB germ layer differentiation. Shown are images of hematoxylin- and eosin-stained histological sections
of EBs obtained from human iPS cells. Tri-lineage differentiation potential is evidenced by the presence of structures characteristic to ectodermal
(neural rosettes, left), mesodermal (muscle fiber, middle) and endodermal (gut epithelium, right) tissues, indicated by arrows.
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We demonstrated that the efficiency of reprogramming
can be increased by increasing the amounts of the trans-
poson reprogramming vectors electroporated into the
cells. This suggests that it might be possible to further
improve the efficiency of SB-mediated reprogramming
by further increasing the amounts of the electroporated
reprogramming vectors. However, in light of our
analysis of transposon copy numbers in iPS colonies,
such a strategy may prove counter-productive. Namely,
transposon copy number analysis in the iPS clones
revealed that even at reduced transposon vector doses
the majority of iPS clones contained multiple (at least 2)
transposon insertions. As earlier studies have shown that
it is relatively straightforward to generate single-copy in-
sertions in HeLa cells by titrating the transposon compo-
nents in the transfection reactions (37,38), these results
suggest selection for >1 copies during iPS cell
reprogramming, which might be limited by the levels of
expression of the reprogramming factors. Two papers
have demonstrated that the quick reactivation of the en-
dogenous Oct4 gene is a crucial step in the reprogramming
process (29,61), and that the fusion of Oct4, Sox2 and
Nanog to the transcriptional transactivation domain of
herpes simplex virus protein VP16 can dramatically
increase reprogramming speed and efficiency (61). This
discovery indicates that by improving the efficiency of
the reprogramming vectors by wusing such high-
performance engineered factors or by increasing reprog-
ramming factor expression by codon optimization and
additional elements incorporated in the transgene
cassette design (63), it might be possible to generate
single-copy iPS cell clones more efficiently.

It has been shown previously that miRNAs are essential
regulators of cell fate and pluripotency and play import-
ant role in somatic cell reprogramming (53,64—67). Recent
studies have demonstrated that the miRNA cluster 302/
367 promotes generation of human iPS cells (53), and can
drive efficient somatic cell reprogramming even in the
absence of the exogenous reprogramming factors (29). In
agreement with those findings, addition of the miRNA
cluster 302/367 to our pT2-OSKM reprogramming
vector resulted in ~15-fold improvement in the efficiency
of human iPS cell generation. However, in the mouse
system we did not observe a similar positive effect on
the generation of iPS cells. In addition, the morphology
of mouse iPS colonies generated with the pT2-OSKM-
miR-302/367 vector resembled that of epiblast stem cells
(EpiSCs) (68-70), and was distinct from the morphology
of the ES cell-like iPS clones generated with pT2-OSKM
and pT2-OSKML vectors (Supplementary Figure S8).
This observation could be explained in light of miRNA
expression profiles in both ES- and EpiSCs indicating that
those two pluripotent states have distinct miRNA signa-
tures (71). According to the latest reports, a ‘naive’ pluri-
potent state compatible with the inner cell mass and early
epiblast is represented by murine ES cells that predomin-
antly express the miR-290/295 cluster, whereas a ‘primed’
pluripotent state, similar to the post-implantation epiblast
and represented by murine EpiSCs and human ES cells,
predominantly expresses the miR-302/376 cluster (64,71).
In this manner, use of the pT2-OSKM-miR-302/376

vector in our reprogramming experiments could have
shifted the balance in the mouse system from generation
of the typical iPS colonies with an ES cell-like morphology
toward the derivation of cells resembling EpiSCs, which
are characterized by the high expression of miR-302/362
cluster (71).

A major goal of human cell-based therapy is to develop
methods that allow treatment of patients afflicted with
genetic and degenerative disorders with a ready supply
of defined transplantable cells. Because of their plasticity
and unlimited capacity for self-renewal, human iPS cells
have been proposed for use in ‘personalized’ cell-based
therapies. Targeted genetic manipulation of stem cells is
well advanced, and offers the opportunity to correct
monogenic, life-threatening genetic defects. For such
purposes it would be necessary to deliver and stably inte-
grate a therapeutic gene construct into the genomes of
autologous, patient-derived iPS cells, followed by differ-
entiation into a linage of interest and transplantation of
genetically corrected (‘healed’) cells. Such protocols will be
especially justified in conditions, where autologous,
patient-derived target cells are scarce and/or not
amenable to genetic correction by ex vivo technologies.
For example, Fanconi anemia (FA) patients with an
advanced bone marrow failure have almost no hematopoi-
etic stem cells (HSCs) in their hematopoictic tissues,
precluding a classic HSC-based ex vivo gene therapy.

In a gene therapy setup, an SB transposon vector could
carry both a reprogramming cassette flanked by
homospecific loxP sites and a therapeutic cassette. After
reprogramming has taken place, the reprogramming
cassette could be excised by Cre recombinase-mediated
excision. In another scenario, the SB transposon could
deliver the reprogramming cassette flanked by heter-
ospecific loxP sites. Following generation of iPS cells,
the reprogramming cassette could be exchanged via Cre
recombinase-mediated exchange with a therapeutic gene
construct that is also flanked by the same recombination
sites. We demonstrated the applicability of the latter
strategy by site-directed integration of a fluorescent
marker into a transposon-tagged locus (Figure 3). This
strategy would allow phenotype correction and reprogr-
amming in a single step. This would be especially import-
ant in FA, because it has been previously shown that
phenotype correction is required for iPS reprogramming
in FA fibroblasts (5). For a therapeutic application, it will
be important that the therapeutic transgene cassette is
inserted into a ‘safe harbor’ locus to avoid genotoxic
effects and unwanted phenotypes. From the currently
applied integrating vector systems, the SB transposon is
especially noteworthy for its lack of preference for insert-
ing into genes (39). The reprogramming SB transposon
was integrated into a TA site on chromosome X in the
mouse iPS cells that were subsequently used for RMCE
(Supplementary Figure S9). Importantly, there are no
known protein coding and miRNA genes in a window
of +£20kb around the transposon insertion site. This
provides proof-of-concept for the generation of iPS cells
with a single SB transposon integrated into a ‘safe harbor’
chromosomal locus. The establishment of safe protocols
for the generation and clonal tracking of iPS cells by
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rational genome engineering along with advanced differ-
entiation protocols of iPS cells would open the field for
potential correction of a multitude of severe monogenetic
or acquired disorders of hematopoiesis, including aplastic
anemias, immunodeficiencies, storage disorders, infecious
diseases such as HIV infection and certain forms of
cancer.
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