












Figure 3. Analysis of high-confidence Y2H interactions for HD506-Q23. (A) Display of the ‘pool’ comparison, and (B) display of the ‘pBTM’
comparison above sampling cutoffs: log2-ratiopool �1.68 and log2-ratiopBTM �1.578 (34 overlapping scores). Edge line width: ratiopool and ratiopBTM
(linear scale). Edge color: q-value Wilcoxon, with high confidence q-values <0.05 (blue, red). Nodes: baits in diamonds, preys in circles, HIPPIE
(green), LUMIER confirmed novel interactions (purple). (C) Validation of HTT Y2H data by LUMIER (description in Supplementary Figure S5).
LUMIER results are shown from selected positives with HD506-Q23 in the prey and bait orientation. Binding ratios R-op (deep purple) and R-ob
(light purple) measure firefly (FL) signal with bait and prey combinations compared with bait- and prey-only controls. Asterisks (*) show FL-baits
with positive LUMIER in two repeat screen sets. Positive controls are BCL2L1-firefly with BAD-renilla, and S100B-firefly with S100A1. (D) Indirect
evidence for novel Y2H PPIs by HIPPIE comparison. Representation of shared PPIs between HTT and EVL, ERCC6L, HMG20A, PIAS1, ZNF451
according to HIPPIE. Nodes: microarray Y2H (yellow), HIPPIE (white), Edges: microarray Y2H (red lines), HIPPIE (grey, closed for HTT
interactions), Edge line width: HIPPE evidence score (0.5–1).
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confirmed by LUMIER assays (Supplementary Table S5,
Figure 3C). Among the high-confidence interactions, 27
out of the 44 PPIs (61%) were either confirmed with
LUMIER or were HIPPIE positives (Figure 3A and B).
If the cutoffs were further raised (log2-ratios �3), the
overall precision is even higher with 14 out of 18 Y2H
PPIs (78%) confirmed by LUMIER or HIPPIE. Hence,
in general, the significance and enrichment of the micro-
array signals correlate well with confidence for genuine
PPIs.

We further inspected five intriguing novel HTT inter-
actions among the highest ratio scores (all ratios �15) in
more detail: ERCC6L, EVL, HMG20A, PIAS1 and
ZNF451. HMG20A is part of the high-mobility group
proteins, EVL is an Ena/VASP family protein that
links cell signaling to remodeling of the actin cytoskel-
eton (31) and ERCC6L is a member of the SNF2/
RAD54 helicase family with a role in DNA repair (32).
The other two proteins have roles in protein sumoylation;
PIAS1 (Protein inhibitor of STAT) is a Sumo ligase and
ZNF451 a transcriptional co-regulator associated with
PML bodies and Sumo (33). The associations of
ERCC6L, EVL and HMG20A with HTT were confirmed
in LUMIER assays, whereas those with PIAS1 and
ZNF451 were not. We used the HIPPIE database for
further evaluation of these five proteins, looking for
co-complex formation with previously identified HTT
interactors as an indirect evidence for association
(Figure 3D). We found that EVL shares four partners
out of 22 with HTT, including the actin monomer-
binding protein profilin-2 (PFN2), and a spectrin
protein involved in actin crosslinking (SPTAN1), which
is consistent with a functional involvement of HTT in
actin remodeling (34). ZNF451 shares 3 out of its 13
known partners with HTT. These include also a
shared interactor with EVL, the pre-mRNA processing
factor 40 (PRPF40A), which was originally discovered as
an HTT interacting protein (HIP10) (35). In addition,
ZNF451 is linked to PIAS1 (33), which also shares
20% of its known partners with HTT, further
corroborating the association of HTT with the
sumoylation machinery. This is consistent with the
observed regulation of HTT stability by sumoylation
and ubiquitination (36).

For a functional analysis of PPI networks, we relied
on a dual strategy: hypergeometric testing for
overrepresentation of pathways and GO above
determined cutoffs, and deep sampling of selected
gene associations for true enrichment over the entire
range of scores. For a global overview and functional
enrichment analysis, it is preferable to increase the sen-
sitivity using less stringent cutoffs, expanding also to
less significant results (q-value Wilcoxon >0.05).
When doing cutoff sampling and gene overrepre-
sentation analysis for the total HD506-Q23 screening
data (Supplementary Figure S5 and Table S6), the
results are consistent with the multiple roles for HTT
as a hub for PPIs and diverse functions such DNA
binding, signaling and binding to ubiquitin-proteasome
components (11,12,21).

Functional analysis of wild-type and mutant ATXN1 PPI
networks

A major strength of the microarray-based Y2H method is
the comprehensive readout of the total screening results,
which allows the side-by-side comparison of PPI profiles
for mutant and wild-type bait proteins. We compared the
PPI patterns for the bait proteins ATXN1-Q32 and
ATXN1-Q79 containing a non-pathogenic and a patho-
genic polyQ tract, respectively (Figure 4). Inspecting the
PPI data obtained for the two bait proteins revealed that
ATXN1-Q79 interacts with two to three times more prey
proteins than ATXN1-Q32 (Supplementary Table S7).
Applying quantitative benchmarking for all 9941
ATXN1-Q79 scores with 109 known HIPPIE positives,
we found a relatively stronger performance for the
expanded ATXN1-Q79 protein (ROC-values: 0.596 and
0.585), whereas the performance for the short
ATXN1-Q32 form was closer to random (ROC-values:
0.554 and 0.520) (Supplementary Figure S6).
Considering the bias of known positives, automated
cutoffs were generated only from the ATXN1-Q79 PPI
data (log2-ratiopool=1.728, log2-ratiopBTM=1.329;
a=0.99) (Figure 4A), but then were also applied to the
ATXN1-Q32 screen set (Figure 4B). We found that eight
known positive interactions were among the ATXN1-Q79
PPIs, whereas for ATXN1-Q32, only one known prey
protein (ARID5A) was selected. In total, 64 PPIs were
found for the expanded ATXN1-Q79 and 24 for the
short -Q32 form with a significant overlap of 7 inter-
actions (P-value Fisher exact test: 1.5� 10�9)
(Figures 4B and C). Hence, the results for ATXN1-Q32
and -Q79 differ in respect with the overall yield of scores
and the enrichment of known literature positives. A
possible explanation for the increased number of inter-
action partners observed with mutant ATXN1 is
provided by the notion that the expanded glutamine
tract alters the conformation of ATXN1 and may
promote the formation of abnormal PPIs with multiple
cellular proteins (20,37). But it also might enhance the
strength of interaction with partners of the wild-type
form, leading to an increased detection of true biological
positives.
In the functional enrichment analysis for ATXN1-Q32

and ATXN1-Q79, we found overrepresentations of differ-
ent signaling pathways and several interesting targets
(Supplementary Table S6). Indeed, at least 10 out of 81
proteins detected in the ATXN1 screens take part in one
or several signaling pathways, such as Lkb1, IFNy, IGF1,
mTOR and more others (enrichment for Lkb1 pathway:
P=4.6� 104 for –Q79 and P=2.6� 105 for –Q32).
Examples for signaling proteins that were found with
both isoforms include the signal transducing adaptor
molecule 2 (STAM2), the mTOR associated protein
LST8 homolog (MLST8) and the hamartin protein
TSC1 (Figure 4C). We also found association with
14–3–3 proteins (YWHAE, YWHAZ and YWHAQ
above or slightly below the chosen cutoffs), which are
known modulators of ATXN1-mediated neuro-
degeneration (38), confirming previously published
results (see Supplementary Table S7). For both wild-type
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Figure 4. Benchmarking and network display for ATXN1 interaction partners. Results are from ATXN1-Q32 and ATXN1-Q79 Y2H screens. (A)
Quantitative benchmarking and determination of automated cutoffs for the ATXN1-Q79 screen set. Evaluations are based on 9941 comparisons
including 109 and 110 known positives from the HIPPIE database. Log2-ratios represented as numerical scores and HIPPIE positives as binary
classifiers. F-measurements (b=0.1, a=0.99) and precision are displayed as repeat sampling curves: sampling with HIPPIE positives: log2-ratiopool
(closed blue line), log2-ratiopBTM (closed red line); control sampling with random set: log2-ratiopool (dashed blue line), log2-ratiopBTM (dashed red
line). Positives correspond to HIPPIE and negatives to non-HIPPIE PPIs. Sampling is done in 100 repetitions, with a rate of 0.5 (50% of classifiers
sampled per run). (B) Venn diagram for overlap of log2-ratio scores for ATXN1-Q79 and ATXN1-Q32. Cutoff is based on repeat sampling of the
ATXN1-Q79 screen set, log2-ratiopool (1.728) and ratiopBTM (1.349). (C) Network display of the ‘pool’ comparison above sampling cutoffs: edge line
width: ratiopool (linear scale). Edge color: q-value Wilcoxon, with high confidence q-values <0.05 (blue). Node and node border colors for pathway
and GO-term associations: baits (diamonds), preys (circles), HIPPIE (green labels), enriched CPDB pathway components (triangles), Lkb1 pathway
(yellow), growth cone (light blue), protein domain-specific binding (purple), phosphoprotein binding (light purple border), learning (green border).
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and mutant ATXN1 isoforms, we found GO-terms
enriched that are related to neuronal cell growth and
brain development, such as ‘growth cone’, ‘pallium devel-
opment’, and ‘neuron projection’, suggesting that ATXN1
function is critical for these processes. For example, genes
among the high confidence scores associated with ‘growth
cone’ included TSC1, orthodenticle homeobox 2 (OTX2),
brain acid soluble protein 1 (BASP1) and the neuronal
acetylcholine receptor subunit alpha-7 (CHRNA7)
(Figure 4C). Overall, the GO analysis suggests a role for
ATXN-1 in cell signaling and neuronal functions.

Sampling the distribution of gene sets with QiSampler
using GO-annotated genes instead of literature-positive
interactors allows a global comparison of quantitative
enrichments in PPI patterns for both ATXN1 isoforms
(Supplementary Figure S6). When sampling for the
Lkb1 signaling pathway and the GO-terms ‘growth
cone’ and ‘learning’, we found similar ROC performances
for both mutant and wild-type ATXN1 baits. For Lkb1
gene associations, for example, ratiopool ROC AUC values
were in the same range for ATXN1-Q32 and ATXN1-Q79
(0.626 and 0.64). Likewise, for most other GO-terms
investigated (not shown), sampling reflects a similar
distribution of classifiers among the scores. In a further
attempt to quantify the enrichments, we sampled the Y2H
scores with two ‘molecular function’ GO-associations,
‘protein domain specific binding’ and ‘phosphoprotein
binding’ (Supplementary Table S6). Here, ROC perform-
ances show a selective association of ‘phosphoprotein
binding’ with the expanded ATXN1-Q79 form, while for
‘protein domain specific binding’, a similar result for
wild-type and mutant ATXN1 proteins was obtained. In
conclusion, GO term enrichments and individual
samplings revealed that the overall PPI pattern of
ATXN1 is similar for the Q32 and Q79 forms. This indi-
cates that enhancement of wild-type protein binding de-
termines pathogenesis of ATXN1 on polyglutamine
expansion, as opposed to pathogenesis being due to
binding the wrong partners.

DISCUSSION

We describe a novel approach for the detection of high
quality Y2H PPIs using DNA microarrays and quantita-
tive statistics. The concept study presented here takes full
advantage of the established tools for the analysis of DNA
microarray data and could have important implications
on how future research on protein interactomes is being
conducted.

We concentrated our proof-of-principle experiments on
the HTT and ATXN1 proteins, which are both neurotoxic
on polyglutamine repeat expansion (18). The approach
was validated by the generation of a set of high-confidence
PPIs for the HTT protein, which were based on micro-
array data after multiple testing for significance. These
results were benchmarked against sets of known positive
PPIs using a quantitative sampling strategy. F-statistics
based on precision-recall distributions was used to deter-
mine automated cutoffs for high-confidence interactions.
PPIs were further restricted by applying two distinct

background controls (pool and vector), which allows the
simultaneous selection of Y2H positives and the filtering
of unspecific autoactivators. Notably, almost two-thirds
of the final high-confidence PPIs for a HTT bait protein
were known positives or validated by a modified
LUMIER assay. Hence, by using quantitative benchmark-
ing and F-statistics, we established a microarray-based
Y2H screening method for the high-confidence mapping
of PPI networks. However, we also advocate that results
may be interpreted with different procedures, depending
on the overall screening performance, the availability of
sets of known positives and also on the specific aims
intended by individual researchers (see Supplementary
information).
Besides the mapping of individual high-confidence

PPIs, microarray Y2H screening data can be more
broadly interpreted for enrichments of pathways and
functional associations. This may be important when ad-
dressing biological consequences of mutations that alter
structural properties in proteins and thus underlie global
perturbations in PPI networks and potentially influence
the outcome of disease (39). Specifically, we addressed
here potential differences in PPI patterns between
protein isoforms (ATXN1-Q32 and ATXN1-Q79, con-
taining short and expanded polyQ tracts). In this assay,
ATXN1-Q79 exhibits more and stronger Y2H interactions
than ATXN1-Q32. On the other hand, our data analysis
also shows that the overall PPI patterns of wild-type and
mutant ATXN1 are not radically different, suggesting that
ATXN1 pathology results from abnormally strong inter-
actions with its biological partners. Although resulting
from a screening effort in a heterologous system (yeast),
this finding is consistent with previously observed effects
of expanded polyQ tracts in ATXN1 and other polyQ
disease proteins (20,21,37). This example demonstrates
how microarray-based Y2H procedures can be used in
conjunction with extensive data-mining strategies to
predict the biological consequences of altered proteins.
While DNA microarrays were used to address Y2H

results in an earlier study (40), a quantitative procedure,
such as the one presented here with large-scale pooling of
a prey library, unbiased selection by competitive growth
and systematic control measurements, was not attempted
before. This approach has two major advantages over
matrix-based Y2H screenings. First, PPIs are
characterized as scores with different parameters (ratios,
P-values, etc.) over a wide dynamic range, instead of being
simple counts from identifications in replicate screens.
Repetitive sampling strategies and the application of two
background controls (pool and pBTM comparisons) have
the important consequence that potential false-positive
interactions can be addressed and eliminated (see
Supplementary information for discussion of false
positive interactions). Because false positives are some-
times estimated up to 50% of all reported interactions
(41,42), their minimization would constitute a major ad-
vantage for mapping of high-confidence PPIs, reducing
also the need for confirmation with orthogonal assays.
Second, smaller volumes of medium for yeast mating
and selection as well as the efficient readout provided by
DNA microarrays greatly reduce labor and material costs.
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Simplifying the screening procedure increases potential
throughput, and therefore larger numbers of Y2H
screens can be performed in parallel. However, while our
system is superior over the ‘classical’ Y2H method with
respect of quantitative measurements, it has also some
limitations. First, ‘color’-based scoring of interactions
via lacZ activation is not possible for the pool-based
screening scheme. Second, some ORFs may not undergo
proper PCR amplification, which could lead to a fraction
of putative PPIs that are undetectable in microarray-Y2H
assays. Indeed, a bias against longer DNA sequences is
evidenced by the lesser representation of ORFs >2 kb in
sizes on the microarray (Supplementary Figure S2). Third,
prey proteins in the complex pool that occur as different
isoforms or with individual mutations may be indistin-
guishable on the DNA microarray. Hence, for optimal
coverage of potential PPIs, DNA microarray and
matrix-based robotic Y2H procedures should be envi-
sioned as complementary approaches.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Information and Methods, Supplementary
Tables 1–7, Supplementary Figures 1–6 and Supplementary
References [43–50].
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